文档库 最新最全的文档下载
当前位置:文档库 › 利用测井资料评价煤层含气量的新方法

利用测井资料评价煤层含气量的新方法

利用测井资料评价煤层含气量的新方法
利用测井资料评价煤层含气量的新方法

利用测井资料评价煤层含气量的新方法

编译:张妮(西安石油大学油气资源学院)刘仲敕(西安石油大学)

薛媛(长庆油田苏里格研究中心)

审校:谭成仟(西安石油大学油气资源学院)

摘要 确定煤层原地基含气量是评价煤

层气资源中非常关键的一步。目前认为,煤

层含气量与煤层气中的有机成分和无机成分

这两个独立成分的相对丰度具有函数关系。

在有些煤田内有机成分几乎不变,而无机成

分可能在横向和垂向上变化显著。因此,从

理论上讲测井响应能够反映煤层气中无机成

分的变化,并通过测井响应有效评价煤层含

气量。然而,目前通用的评价方法是密度测

井,效率比较低,不是将声波测井、光电吸

收指数、伽马测井等一起应用,实际上这几

种测井响应也可反映煤层中无机成分的变

化。本文提到的新方法,主要是用上述的三

种测井方法联合密度测井推导每一个煤心样

品的复合数值C。不同深度的C值曲线与

实测煤层含气量具有较好的相关性。实践证

明C值曲线和煤心化验测得的含气量曲线

吻合得很好,它们之间相差常数K。而K

值的确定只取决于煤层的性质。因此,评价

一定深度煤层含气量只需简单地用C值加

上K值。印度2个不同的煤田已经使用了

这种方法。试验证明,综合应用多种测井响

应推导的结果是合理而精确的。这一技术为

不同性质的煤田计算其含气量提供了可靠的

方法。

关键词 煤田 煤层含气量 测井响应无机成分 纯灰分

DOI:1013969/j.iss n.10022641X12010131015

1 引言

目前,用于评价煤层含气量的方法,多数是用密度测井推算灰分含量和其他近似的参数值。我们知道测井体积密度与煤层含气量具有较好的相关性,特别是在煤阶较高的煤层中,但是这种关系不是始终简单、线性的。因此,通常先建立测井体积密度与无机成分含量的关系,然后将无机成分含量与煤层含气量相关联。现在所用的方法都是用测井体积密度与灰分含量的关系来估算煤层含气量,不过这些方法不一定适用于各种类型的煤田,主要是因为它们过分依赖像密度测井这样的单一测井方法,加之参数选择的不准确性,从而产生累计误差,导致煤层气评价过程中存在主观性。

一个煤田中煤层含气量的变化更多地依赖无机成分与有机成分比值大小而不是某个单一成分。实际上,含气量不同主要是由于无机成分含量和储层条件改变的结果。虽然无机成分既不能生成气体也不能储存气体,但是同一煤层中无机成分与有机成分相对值的改变会直接影响煤层含气量,即使在有机成分稳定的情况下。这类似于当声音质量发生变化时信噪比也随之改变,无机成分就相当于噪音,同样对总的含气量产生显著影响。在目标体或储集空间中无机成分比例的相对变化直接影响实际储存气体的含量。换句话说,无机成分的改变以及由此引起的含气量改变也会影响各种测井响应。

考虑到以上各个方面,综合应用多种测井方法的新技术应运而生。常规的方法主要是用测井体积密度和其他近似参数评价煤层含气量,而新方法直接用含气量与多种测井响应的关系评价煤层含气量。

这种新方法采用四种常规测井(体积密度测井、声波测井、伽马测井、岩性密度测井)得到累计测井响应,如果某一测井响应的异常不明显,可用其他测井响应补偿,从而增强测井响应与煤层含气量的联系。无论在煤田性质不同还是煤阶不同的地区这种新方法都适用。

2 评价煤层含气量的常规方法

评价煤层含气量的常规方法都是利用测井体积密度和实测灰分的回归分析计算灰分含量。目的是获得不含气体的纯煤密度(ρcoal)以及纯灰分的密度(ρash),进而估算每个煤层取心样品的灰分含量。

接着,用估算的灰分含量按照下列步骤估算其他近似体积参数,即固定碳、水分、挥发分。

灰分体积(V ASH)=(ρb–ρcoal)/(ρash–ρcoal),

由测井体积密度与实测灰分的回归分析计算。固定碳体积(V FC)由固定碳与实测灰分的回归分析计算。水分体积(V MOIS)由水分与实测灰分的回归分析计算。挥发分体积V VOL=1-(V ASH+V FC+ V MOIS)。

计算煤层气含量,可用K im方程、Langmuir 方程、Mullen方程或者Mavor方程、Clo se& McBaner方程等。

在煤阶较高的煤层中,测井体积密度与煤层含气量具有较好的相关性;但是,在煤阶较低的煤层中,由于密度值簇生在一起,相关性并不明显。

常规测井评价方法不可能得到纯煤和纯灰分的密度值,然后再用其评价煤层含气量也就不精确。另外,目前流行的方法过分依赖像密度测井这样的单一测井方法,加之参数选择过程中的不准确性,从而产生累计误差,导致煤层气评价过程中存在主观性。

3 新方法

综合应用六种常规测井(体积密度测井、伽玛测井、声速测井、岩性密度测井、电阻率测井、中子测井)形成了评价煤层含气量的新方程。分析上述所有测井响应与煤层含气量之间的关系发现,电阻率测井响应和中子测井响应不能用到新方程中。因为电阻率测井响应与煤层含气量之间的相关性较差,测井所得的电阻率变化幅度相当大并且与煤层的变化趋势相反。电阻率这种急剧变化并不是由于灰质中黏土矿物发生较小变化引起的,而是由泥质或泥浆滤液侵入煤层夹板(裂缝)中引起的,因此,电阻率测井响应不能反映煤层含气量变化较小的情况。通常,由于煤层段含氢量较高,中子测井解释的视孔隙度偏高(J honson,1990)。在仪器敏感性最差的地方,孔隙度读数却是高值,这是因为煤层含气与不含气,其视孔隙度在理论上仅仅相差约3p1u,加之没有实际测井响应,因而用它估算煤层含气量也是不可能的。

剩下的四种测井方法中,密度测井、伽马测井、岩性密度测井响应均与煤层含气量成反比(基于原地储层条件下),而声波测井响应与煤层含气量成正比。考虑到这些物理特性,综合运用多种测井方法所得的方程如下:

煤层含气量∝dt/(ρb×Pe×GR)

上式可改写为煤层含气量∝C

复合数C=dt/(ρb×Pe×GR)

注意,dt的单位是μs/ft,ρb的单位是g/cm3,Pe的单位是b/e,GR的单位是A PI,煤层含气量的单位是cm3/g。

单一测井响应不能反映它与煤层含气量之间的真实匹配关系,而综合应用多种测井响应得到的C 值则较好地反映了测井响应与煤层含气量之间的线性关系,如图1、图2所示

图1 复合数C

与煤层含气量具有较好的线性关系

图2 复合数C与煤层含气量具有较好的线性关系

在印度2个完全不同的煤田,即J haria煤田(烟煤)和Barmer2Sanchore煤田(褐煤),C值与含气量的回归曲线斜率约为1,但2条曲线的截距却完全不同,J haria煤田曲线截距约1015,Bar2 mer2Sanchore煤田曲线截距约315。作煤心样品的C值与对应深度的交会图(图3、图4)。结果显示,煤心实测含气量曲线与综合测井响应推导的C 值曲线匹配得相当好,之间相差常数K,同时也证实了图1、图2中的回归分析结果。常数K主要随煤田性质的改变而改变。

最终,每个煤心的预测含气量就等于对应的C 值加上常数K,预测含气量与实测含气量如图5、6所示。

将上述得到的离散数据点按趋势向两侧延伸就能得到每一深度点的预测含气量,从而获得整个区域煤层的预测含气量曲线。

图3 对比实测含气量与测井资料推导的含气量,相差常数

K

图4 对比实测含气量与测井资料推导的含气量,相差常数

K

图5 对比同一深度预测含气量和实测含气量

图6 对比同一深度预测含气量和实测含气量

4 实例应用

选择代表性的煤心样品是非常重要的,因为要用它们建立同煤心含气量之间的可靠关系。必须注

意,不是所有的煤心含气量数据和测井数据都是完

全正确的。原因如下:获得的煤心含气量数据在某些层段可能是错误的,甚至和区域内的曲线完全不符,这也许由地球物理测量造成,或者钻探取心的煤层深度发生偏移;同样,测井数据在某些点也存在错误,可能由井眼问题或其他技术和仪器的限制以及深度偏移造成。如果要用实测煤心数据做实际应用分析,煤心数据与测井数据的深度偏移问题将是所有问题中最大的问题。

5 结果与讨论

印度2个完全不同类型的煤田(J haria 煤田和

Barmer 2Sanchore 煤田)已经采用了这种新方法。选择了6口井进行研究,其中J haria 煤田的4口井离得很近,而Barmer 2Sanchore 煤田的2口井相距较远。

将同一深度的C 值和实测煤层含气量进行对比,其目的是获得该区域的K 值,接着用新方程估算煤层含气量。

J haria 煤田主力煤层是冈瓦纳古陆煤系,以较

高阶的沥青质煤为主。煤田内的4口井位于煤性相

同的区块且相距较近,其灰分含量高达40%而水分含量则较低(<1%)。试验表明该区块K 值变化范围为9~11。

Barmer 2Sanchore 煤田的主力产煤层是中Tharad 地层,该地层以褐煤为主,具有煤阶低、煤化作用弱的特点。其主要几个厚煤层的产煤量均较差,且灰分含量较低(<10%),但水分含量较高(>10%)。该煤田的这2口井位于不同的勘探区块,距离相对较远,尽管都是褐煤但煤质不同。其中一口井在被厚层泥岩分开的深浅2个煤层单元中,其K 值完全不同。另一口井的厚煤层中K 值约为210。该煤田K 值的范围约为115~315。

评价煤层含气量可选用不同的方程,即修正的K im 方程、Mullen 方程、Mavor 方程、Clo se 方

程、McBane 方程,然后将以下公式计算的结果同

用新方程计算的结果进行对比。

修正的K im 方程:

V G as =(1–a –w )×V w /V d ×[k 0(01095h )n

–b (118d/100+11)] 单位:cm 3/g 式中w ———水分质量分数,即水分体积(V M );

a ———灰分质量分数,即灰分体积(V A );V w ———湿煤体积分数;V d ———干煤体积分数;V w /V d ———0175(湿煤和干煤的比值);

k 0(常数)=018(V FC /V VM )+516;n 0(常数)=01315–0101(V FC /V VM );b (常数)

=0114;

d ———深度,m 。

Mullen 方程:

V G as =32187–16192ρb 单位:cm 3

/g 式中 ρb —

——体积密度。Mavor 方程:

V G as =18177–23147a d (v/v ) 单位:cm 3/g

式中a d (干燥基灰分)=(ρb –ρcoal )/(ρash –ρcoal )=a/(1–w )=V A /(1–V M )

如图7和图8所示,对比常规方程计算的煤层含气量和新方程的计算结果,很明显,在煤阶较高的煤层中,除了Mavor 方程,大多数常规方程需要进一步的修正才能用于目标区域。但是,如果煤阶较低,那么这些常规方程根本不能用于任何有价值的计算

图7 

对比不同方程计算的烟煤含气量

图8 对比不同方程计算的褐煤含气量

6 结论

J haria (烟煤):

◇用Mullen 方程推导J haria 煤田煤层含气量是不合适的。

◇尽管K im 方程仅适用于烟煤地层,但是在

J haria 煤田它并不适用于计算煤层含气量。

◇在J haria 煤田,用Mavor 方程相对能较好地

推导煤层含气量。

◇用新方程推导的煤层含气量与实测煤层含气量吻合得最好,尤其适合J haria 煤田评价煤层含气量。

Barmer 2Sanchore (褐煤):

◇Mullen 方程主要依赖测井体积密度,而Ma 2vor 方程主要依赖灰分含量的变化,它们都不适合估算煤层含气量,不能得到真实的体积密度与含气量的关系,以及体积密度与灰分的关系。

◇K im 方程仅适用于烟煤地层,因此也不能用它估算Barmer 2Sanchore 煤田煤层含气量。

◇在Barmer 2Sanchore 煤田的褐煤地层中评价煤层含气量,只能用新方程,新方程能较好地反映煤层含气量。

7 总结

目前,常规评价煤层含气量的方法,主要是用密度测井估算灰分和其他近似参数。这些方法并不适用于任何类型的煤田,因为它们过多地依赖像密度测井这样的单一测井技术。这就不可能得到不含气体的纯煤和纯灰分的密度范围。同一煤田中煤层含气量的变化更多地依赖无机成分与有机成分的比值大小而不是某个单一成分。在目标体或储集空间中无机成分比例的相对变化直接影响实际储存气体的数量。无机成分对含气量影响很大,即无机成分的改变以及由此引起的含气量改变也会影响各种测井响应。

这种新方法利用四种测井数据得到优效的累积测井响应,进而得到测井响应与煤层含气量的可靠关系。如果一种测井响应的异常不明显,可用其他测井响应来补偿。

印度2个完全不同类型的煤田(J haria 煤田和Barmer 2Sanchore 煤田)已经采用了这种新方法。研究证明,综合多种测井响应的计算结果是合理而精确的。这一技术为不同性质不同类型的煤田计算其含气量提供了可靠的方法。

资料来源于美国《SPE 115563》

(收稿日期 2009201205)

煤层气测井评价

题目煤层气的测井评 制作人:刘博彪成杰朱博文崔莎莎 周道琛万程贾凡解冲雷

前言 (1) 0.1研究目的及意义 (1) 0.2煤层气测井的研究现状 (2) 第一章煤层气及储层的基本特征 (4) 1.1 煤层气的储层特征 (4) 1. 2煤层气的赋存状态 (5) 第二章煤层气的测井解释 (6) 2.1 煤储层的测井响应 (6) 2.1.1煤层气的电性特性 (6) 2.2.2 煤层气的测井相应特征 (6) 2.2储层参数的测井评价方法 (7) 2.2.1煤层的深度和厚度 (7) 2.2.2煤的工业分析参数 (8) 2.2.3煤层含气量 (8) 2.2.4渗透率和裂缝孔隙率 (8) 2.2.5岩石力学性质 (8) 2.3 实例分析 (9) 2.3.1 煤层与围岩的识别 (9) 2.3.2 煤的工业分析 (9) 2.3.3 含气量 (12) 2.3.4 渗透性的测井评价 (14) 2.3.5 资料的处理 (15) 第三章结论及建议 (17) 3.1 本文得出的结论 (17) 3.2 煤层气测井技术存在的煤层问题与建议 (17) 参考文献 (18)

前言 0.1研究目的及意义 煤层气俗称煤层甲烷或煤层瓦斯,是有机质在煤化作用过程中生成的、主要以吸附 状态赋存于煤层及其围岩中的可燃气体,其主要成分是甲烷,其次为二氧化碳、氮气等。煤层气是一种自生自储式的天然气资源,与石油及常规天然气藏有所区别,故称为非常 规天然气。 在过去的几十年里,作为一种新型绿色能源,煤层气资源受到世界各国的重视,许 多国家相继加大了对煤层气资源的勘探开发力度。美国、加拿大、澳大利亚、俄罗斯及 英国等国家是较早的将煤层气作为天然气能源进行开发和利用的国家。其中,美国是世 界上开采煤层气最早、煤层气商业性开发最为成功、也是产量最高的国家。 我国煤层气资源丰富,分布广泛,图1-1为我国主要含气区煤层气资源分布情况。 但是,由于我国煤层气勘探开发尚处于起步阶段,煤层气勘探程度普遍偏低。煤岩的组 成组分较为复杂,且各组分含量变化较大,被认为是最复杂的岩石,加之其基质孔隙- 裂缝的双重孔隙系统,共同导致煤层具有很强的非均质性,这给测井解释带来了更大的 多解性和不确定性。 测井方法被广泛应用于煤层气勘探开发过程,主要用于划分煤体宏观结构层深度、厚度及夹研层等),进行煤质分析,确定煤体的物理参数(孔隙度、渗透率、地层孔隙压力及温度等),以及结合室内煤心分析化验资料计算煤层含气量等。目前,我国煤层气测井评价水平整体较低,加强对煤层气储层测井评价的基础研究工作,提高煤层气储层测井解释精度,对我国煤层气资源的开发和利用具有重要意义

浅谈煤层气测井技术

因其具有改善能源结构,缓解能源压力,保障煤矿安全生产,保护环境等优点,近年来,煤层气开发利用成为能源勘探的一个亮点。为进一步加大煤层气抽采利用力度,强化煤矿瓦斯治理,减轻煤矿瓦斯灾害,国务院办公厅于2006年6月发布了《关于加快煤层气(煤矿瓦斯)抽采利用的若干意见》。在煤炭资源勘探日趋减少的情况下,煤层气勘探给煤炭地质勘探带来了一个新的发展机遇。 1煤层气测井现状 ①早先国内各大石油勘探局(公司)凭着技术、 仪器设备的优势和固井、射孔、压裂方面的能力,率先进入煤层气测井市场,测井项目、测井参数、报告格式均按照石油测井模式进行。现行的唯一一个煤层气测井规程--《煤层气测井作业规程》(中联煤层气有限责任公司企业标准Q/CUCBM 0401-2002)基本照搬了石油测井的标准。测井仪器系统有CSU- D 、SKD-3000、SKH-2000、SKN-3000等等。 ②随着煤层气测井市场的不断扩大,许多煤田 勘探测井队伍进入煤层气测井市场,测井仪器设备主要有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂的TYSC 型和北京中地英捷物探仪器研究所的PSJ-2型数字测井仪系统。 2煤层气测井仪器对比分析 ①石油测井仪器设备具有组合化程度高、可测 参数多等优点,如感应测井、地层产状测井、微球聚焦等仪器。但仪器体积大、笨重,施工成本高,采样间隔大,解释精度低。 ②美国蒙特系列Ⅲ数字测井系统方法仪器多, 配备有中子、全波列、产状仪等,基本可以满足煤层气测井参数要求;渭南煤矿专用设备厂的TYSC 型数字测井仪需要另外配备其它仪器厂的补偿中子、双侧向、全波列等测井探管;北京中地英捷物探仪器研究所基本可以配全煤层气测井仪器系统。这些煤田测井仪器设备均具有轻便灵活的特点,虽然组合化程度比石油测井仪器低,但对于煤层气钻孔只是 n ×100m 的孔深来说,效率并不低,而采样间隔密,解 释精度高,施工成本低,适用于煤层气测井。 3测井地质成果 煤层气测井的主要地质任务为: ①划分钻井岩性,进行岩性分析;②确定煤层的深度、厚度及其结构; ③进行煤质分析,计算目的煤层的固定碳、灰 分、水分及挥发份,计算目的煤层的含气量; ④进行含水性、渗透性分析; ⑤测量钻井的井斜角和方位角,计算钻孔歪斜 情况; ⑥测量井温,了解储层温度; ⑦检查固井质量,评价水泥环的胶结情况等。 对于钻井岩性的划分和煤层深度、厚度及其结构的确定,可以说是煤田测井仪器的强项,其较高的仪器分辨率可以划分煤层中10cm 左右的夹矸,井温、井斜测量也可以进行连续测量。在煤质分析、碳、灰、水及含气量计算中,其关键是选择计算参数。在一个地区实施煤层气测井,要尽量收集目的煤层的各项实验室指标,并将其与测井的各项参数进行对比,找出相关关系,以便使测井计算出的煤层各项指标更客观、更接近实际。 作者简介:赵保中(1956—),男,物探工程师,长期从事地球物理测 井、地质勘探等工作。 浅谈煤层气测井技术 赵保中,郑应阁,吴正元 (河南省煤田地质局二队,河南洛阳471023) 摘要:目前用于煤层气测井的主要设备有美国蒙特系列Ⅲ数字测井仪、渭南煤矿专用设备厂TYSC 型和北京中地英捷物探仪器研究所PSJ-2型数字测井仪系统。煤层气裸眼井常测的参数有自然伽马、长短源距人工伽马、自然电位、双侧向、双井径、声波、补偿中子、井温、井斜等,而固井质量检查测井则用自然伽马、声幅、声波变密度和磁定位等方法。受井径过大的影响,密度三侧向测井、声速和补偿中子测井会存在较大误差。另外《煤层气测井作业规程》是单一企业标准,其中有些规定在实际执行过程中存在诸多问题,需在实践中进行修正。关键词:测井仪器;测井方法;固井;测井规范;煤层气中图分类号:P631.8 文献标识码:A 文章编号:1674-1803(2008)12-0032-02 中国煤炭地质 COAL GEOLOGY OF CHINA Vol.20No.12Dec .2008 第20卷12期2008年12月

煤层气报告

高压细水雾技术在煤层气抽采利用 和控制煤矿瓦斯粉尘危害的应用概述 一、中国煤层气(瓦斯)的现状 煤层气俗称“瓦斯”,是储存在煤层中的自生自储式的非常规天然气,是一种清洁高效的能源资源。它的甲烷浓度最高可达98%,而石油天然气则只有80%左右。但是煤层气的危害极大,70~80%的煤矿事故均与煤层气(瓦斯)爆炸有关,给人民的生命财产造成巨大损失,而未经处理或回收的煤层气直接排放到大气中会造成严重的环境污染,而且浪费了宝贵的能源资源。 甲烷是一种比二氧化碳威力更强的温室气体,温室效应是二氧化碳的21~23倍,同时甲烷也是一种洁净高效的能源,热值与常规天然气相当。 我国煤层气(瓦斯)资源丰富,分布区域广,位居世界第三,储量与我国陆上30万亿立方米的天然气资源储量基本相当,相当于450亿吨标准煤。但我国每年瓦斯的实际利用率不到2%,过去因为没有找到合理的利用手段,我国在煤矿开采中所抽放的瓦斯大多排放到大气中,即浪费了资源,又污染了环境。 瓦斯被称为煤矿的第一杀手。因此,开发利用煤层气不仅可以从根本上防止煤矿瓦斯事故的发生,改善煤矿安全生产,还可变害为宝。 我国煤层气资源丰富,可是煤层气钻井施工难度大,开采困难,我国煤层气单井产量不高,必须采用特殊技术工艺,才能提高产量,实现商业开采。 二、中央、省政府的高度重视及政策 大型煤层气和大型油气田的开发是《国家中长期科学和技术发展规划纲要》中确定的16个重大专项之一。 国务院副总理张德江在《大力推进煤矿瓦斯抽采利用》中详细分析了煤矿瓦斯抽采的重大意义。重大煤矿安全事故时有发生,瓦斯、煤尘灾害形势不容乐观。 张德江指出:增强瓦斯抽采利用科技保障能力。搞好瓦斯抽采利用,必须立足科技创新和技术进步,要进一步加大以煤矿瓦斯抽采和利用为重点的安全技改国债支持力度,地方和企业也要增加配套资金。要大力推进煤层气开发国家科技重大专项的实施,加强瓦斯抽采利用重大问题的科技攻关,加大瓦斯抽采和煤层

煤层气国外研究现状

国外视煤层气为重要能源, 并把煤层气作为新的勘探目标。美国有较丰富的煤层气资源, 估计资源量为11.3*1012m3,占世界第三位,1977年2月, Amcoc公司首先在圣胡安盆地CeDARHill地区完钻第一口煤层气井, 90年代美国煤层气已逐渐形成一门新兴的能源工业.目前美国煤层气生产井有7000口以上, 预计到2000年煤层气产量可达8495*104m3/d 。美国煤层气勘探开发的成功很快引起的世界各国的重视与兴趣。加拿大把煤层气作为该国90年代的能源资源, 加紧开展评价和研究。英国也于1991年引进美国技术进行煤层气勘探开发。前苏联等国通过煤层资源的评价, 已肯定它是重要的第二动力资源 ----------《煤层气开采技术与发展趋势》p24 全球的煤层气总资源量大约达260 万亿m 3。根据国际能源机构( IEA ) 的统计数据显示, 全球90%的煤层气资源量分布在12 个主要产煤国。按资源量从大到小依次是: 俄罗斯、乌克兰、加拿大、中国、澳大利亚、美国、德国、波兰、英国、哈萨克斯坦、印度和南非〔1〕。 ------------<国外煤层气开发现状及对中国煤层气产业发展的思考>p46~p47 据美国国家石油委员会(NPC) 的报告,2006 年世界煤层气资源分布情况见表1。 表1 2006 年世界煤层气资源分布 根据美国能源部能源信息局(EIA)的报告,2007年全世界探明煤炭储量分布情况见表2。由表2 可见,世界煤炭探明储量合计9088.64×108t,其中亚太地区居第一位,欧洲和欧亚大陆地区居第二位,北美地区居第三位。 国煤层气勘探、开发、利用最为成功,居世界领先地位,加拿大和澳大利亚也初见成效[4]。 -----------<国外煤层气生产概况及对加速我国煤层气产业发展的思考>p26~p28

XX秋石大远程《测井解释与生产测井》在线作业一二

XX秋石大远程《测井解释与生产测井》在线作业一1.(2. 5分)自然电位曲线的泥岩基线代表。 ?r A、测量自然电位的零线 ?? B、衡量自然电位专门的零线 ?「C、测量自然电位的最大值 ?「D、没有意义 2.(2.5分)明显的自然电位正专门讲明。 ?" A、Cw< Cmf ?厂B、Cw>Cmf ?( C^ Cw=Cmf ?C D、不确定 3.(2. 5分)用SP运算泥质含量的有利条件是。 ?厂A、地层含油气 ?C B、薄层 ?「C、侵入深的地层 ?D、完全含水、厚度较大和侵入较深的水层 4.(2.5分)电极系AO. 5M2. 25N的记录点是。

?(A、A 点 ?C B、M 点 ?金c、AM中点 ?r D、N 点 5.(2.5分)电极系AO. 5M2. 25N的电极距是。 A、0.5 B、2.25 C、2.5 D、2.75 6.(2.5分)梯度电极系的探测半径是。 ?( A、1倍电极距 ?厂B、2倍电极距 ?厂C、3倍电极距 ?D、1.5倍电极距 7.(2.5分)电极系N2. 25M0. 5A的名称是。 ?「A、单电极供电倒装2. 5m顶部梯度电极系 ?「B、单电极供电倒装2. 5m底部梯度电极系 ?'C、单电极供电倒装0.5m电位电极系 ?C D、单电极供电倒装0.5m梯度电极系

8.(2.5分)三侧向测井电极系加屏蔽电极是为了减少的分流阻碍。 A、地层 B、泥浆 C、冲洗带 D、围岩 9.(2.5分)在感应测井仪的接收线圈中,由二次交变电磁场产生的感应电动势与成正比。 ? ???“ A、地层电导率C B、地层电阻率r C、电流频率(D、磁导率 10. \ (2. 5分)关于单一高电导率地层,当上下围岩电导率相同时,在 地层中心处,曲线显现。 “ A、极大值厂B、极小值 「C、零值 C Dx负值 1L(2. 5分)岩石孔隙只有一种流体时候测得的渗透率为 A、绝对渗透率 ?(B、相对渗透率

煤层气地球物理测井技术现状及发展趋势

第33卷 第1期 2009年2月 测 井 技 术 WELL LO GGIN G TECHNOLO GY Vol.33 No.1Feb 2009 基金项目:国家科技大专项大型油气田及煤层气开发课题煤层气地球物理测井技术研究(2008ZX50352002)作者简介:张松扬,男,1963年生,博士,高级工程师,现为煤层气地球物理测井技术研究课题组组长。 文章编号:100421338(2009)0120009207 煤层气地球物理测井技术现状及发展趋势 张松扬 (中国石化石油勘探开发研究院,北京100083) 摘要:在煤层气勘探开发中,地球物理测井是识别煤层、分析煤层特性、评价煤层气储层的重要手段。煤层气储层具有非均质性和各向异性较强、孔隙结构复杂的特点,常规油气勘探中测井解释评价的基本模型在煤层气解释中不能直接套用,必须建立适合煤层气测井的解释方法和模型,才能对煤层气做出正确评价。通过煤层气勘探开发测井技术应用调研,对煤层气测井采集技术、解释评价技术及面临的技术难题进行了阐述,指出当前煤层气勘探开发测井技术的发展趋势。认为我国未来煤层气测井技术的发展将向成像测井技术的应用、煤心刻度测井技术的应用,井中和井间地球物理技术的结合等方向发展。关键词:测井技术;煤层气;解释评价;发展趋势中图分类号:P631.81 文献标识码:A Actualities and Progresses of Coalbed Methane G eophysical Logging T echnologies ZHAN G Song 2yang (Petroleum Exploration and Production Research Institute ,SINOPEC ,Beijing 100083,China ) Abstract :The geop hysical logging technologies are important means to identify coal bed ,analyze coal bed t rait and evaluate t he coalbed met hane reservoir in t he process of coalbed met hane explo 2ration and develop ment.The conventional log interp retation and evaluation models for oil explo 2ration can not be directly used in coalbed met hane evaluation ,because t he coalbed met hane reser 2voir is different from t he oil reservoir in t he following aspect s.It has higher heterogeneity ,higher anisot ropy ,and more complex porosity.The interpretation met hod and model suitable to t he coalbed met hane logging should be established to correctly evaluate t he coalbed met hane reser 2voir.After st udying t he coalbed met hane exploration and develop ment technologies in recent years ,expounded are data acquisition technology ,data interp retation technology in coalbed met h 2ane logs ,t he technology challenges we face and coalbed gas develop ment t rend.It is believed t hat t he coalbed met hane log technology in China should make p rogress by applying imaging logging ,coal core calibration logging ,and combined in 2well and between 2well seismic technologies.K ey w ords :logging technology ,coalbed met hane ,interp retation &evaluation ,develop ment t rend 0 引 言 地球物理测井是煤层气勘探开发配套工艺技术之一,可以提供高精度的煤层气储层测井地质信息。开展煤层气地球物理测井评价技术的研究具有重要意义和广阔应用前景[1210]。近年来,我国煤层气地球物理测井技术研究已取得长足发展[11220]。原地质 矿产部华北石油地质局数字测井站自1991年率先开始在安徽淮南、河南安阳、山西柳林等地区开展了地球物理测井在煤层气储层评价中的应用研究,取得了定性识别煤层特性等方面的一些进展[5,11212]。中国石油集团测井有限公司自1997年开始,先后在山西大城、晋城、吴堡、大宁-吉县和安徽淮北地区对煤系地层应用测井新技术开展相应的煤层气储层

煤层气储层的测井评价方法研究

煤层气储层的测井评价方法研究 发表时间:2019-01-07T16:04:11.333Z 来源:《基层建设》2018年第33期作者:王清琢 [导读] 摘要:随着世界经济的加速发展,常规的油气资源开始无法满足我们的生活和社会需求,煤层气、页岩气等非常规能源的勘探开发显得尤为重要。 中石油煤层气有限责任公司韩城分公司陕西韩城 715400 摘要:随着世界经济的加速发展,常规的油气资源开始无法满足我们的生活和社会需求,煤层气、页岩气等非常规能源的勘探开发显得尤为重要。我国煤炭资源量巨大,开展煤层气储层研究必将为我国的社会发展带来重大效益。本文以煤层气储层测井评价为核心展开讨论,对煤层气储层的地质与测井特征展开分析,开展煤层气储层测井评价研究。 关键词:煤层气储层;煤质组分分析;储集参数评价 1.绪论 由于经济迅猛发展,能源短缺问题日益明显。天然气是一种清洁能源,是未来能源发展的重要方向。随着中国对能源需求的增长,天然气的勘探与开发将解决能源在优化结构和供给安全两方面的难题,对实现可持续发展具有重要作用。测井方法作为煤层气储层开发研究工作中的一种手段具有广泛前途。因此,利用地球物理测井解释理论与方法,结合煤层气储层的特性,深入开展煤层体积模型、煤层气吸附机理和吸附规律测井解释方法研究,建立评价系统,具有较高的理论意义和应用价值。 2.煤层气储层的地质与测井特征 2.1煤层气储层的成分与结构特征 煤层气储层可以看成是孔隙-裂隙双重复杂孔隙结构,是固体、液体、气体三相介质共存的地质体。煤层裂隙把煤岩切割成无数个基质块,煤岩含有许多基质孔隙,其比表面很大,成为吸附气体存储的主要场所,煤裂缝被水填充,有少量溶解气存在于水中,也有少量游离气于孔隙-裂隙系统中存在。 煤层气储层中的固体介质就是指煤基质部分,主要成分分为有机质和无机矿物。在光学显微镜下,有机质可以分为镜质组(脆性强,容易产生裂缝,对气体吸附和流体流动有利)和惰质组以及壳质组。无机矿物组分中粘土约占 60%~80%,其余矿物成分有硫化物、氧化物等。无机矿物在基质中呈现颗粒状,偶尔以夹矸出现,导致煤层气储层的强非均质性,同时也影响了裂隙发育以及渗透性和含气性,煤中无机矿物对煤层气的储集以及开发具有负面影响。 煤层气储层中的液体介质就是指煤中的水,包括自由水和束缚水,自由水主要指宏观裂隙、显微裂隙、大中孔隙中的游离水,束缚水主要指强结合水、弱结合水以及微孔中的毛细水。按照水分结构形态划分,可以分为液态水和结合水。当分子间的引力比重力小时,水与周围岩体颗粒之间以物理力学形式连接,形成液态水,包括主要受重力作用形成的重力水和因毛细管作用吸附的毛细水。 2.2煤层气储集特征 煤层气的储集不需要圈闭,甲烷是其主要成分,在煤基质中以吸附态赋存。基质孔隙内表面大,能够给气体分子充足的存储空间。 在煤的裂缝中可能含有气和水,在煤层气开采之前,为了降低裂缝的存储能力,要把裂缝中的水开采出来。脱水过程会导致基质中的气体解吸,扩散并移动到裂缝中。煤层气的运移机理包括: (1)解吸:在煤层气开采之前,是以分子状态在煤颗粒表面(孔隙内表面)吸附着的,煤层气开采时,由于压力的降低,地层能量逐渐衰减,当低于解吸压力之后,吸附气被解吸出来变成游离气。 (2)扩散:吸附气被解吸出来后,由于煤基质与裂缝之间存在不同的气体浓度,导致煤层气开始扩散,气体从浓度高的基质扩散进入浓度低的裂缝。 (3)运移:气体解吸、扩散导致压力梯度发生改变,由于裂缝与井眼之间压力差的存在,使得气体由煤岩裂缝向井眼中运移。 煤层与其他岩性不同的是,在煤基质中赋存的吸附气的特点。能够产生吸附状态气体是因为有不饱和能存在于煤的孔隙表面,气体分子是非极性的,将与不饱和能之间产生吸附力(范德华力),将气体分子吸附。而水分子并不是非极性的,与煤孔隙表面不会产生这种吸附力。 3.煤层气储层测井评价 3.1常规煤层气测井技术 煤层气测井方法的测井系列与油田的测井系列类似,具体划分为以下三种基本类型。 (1)套管井煤层气测井系列 选择合适的测井系列,对整个煤层气勘探开发环节意义重大。国内外前人学者大量理论及实践,对识别煤层和确定煤层厚度有很多借鉴之处,在裸眼井测井系列中,一般选用补偿密度测井、高分辨率密度测井、岩性密度测井;井径测井;自然伽马测井;双感应、双侧向测井;高分辨率感应测井。 对于完成煤岩工业分析、确定煤层的基质孔隙度和裂缝孔隙度、含气饱和度、基质渗透率和裂缝渗透率以及岩石的力学参数等,除了使用密度测井、井径测量、自然伽马测井外,还可额外使用微电阻率测井;双侧向测井、微球型聚焦测井;自然电位测井;补偿中子测井、超热中子测井;微电阻率扫描测井;数组声波测井和声波全波段测井;地球化学测井;碳氧比能谱测井;井下电视;温度测量等测井技术。 (2)套管井煤层气测井系列 考虑到测井理论,尽可能的选择裸眼井测井,会使获得的煤系地层信息尽可能准确。若实际条件不允许或其它各种客观因素致使无法完成裸眼井测井,可选择套管井测井,从而更方便的处理套管井煤层气储层评价问题及对井筒进行动态监测等。由美国的相关实践,对煤层气储层在套管井中的确定、识别煤层厚度及对水泥胶结的监测,可以选择:密度测井、补偿中子测井、脉冲中子测井;自然伽马测井、自然伽马能谱测井;水泥胶结测井、声波变密度测井等测井技术。 (3)生产井煤层气测井系列 煤层气生产测井是进入生产开发阶段之后,人们设计的一种为了掌握该阶段井筒流体的动态参数和井内出现或可能出现的环境故障的测井组合。此测井组合是融合工程测井,以对动态的流体参数测量为主,并辅以一些勘探中常用的测井方法的组合。目前,煤层气生产测

煤层气(矿井瓦斯)综合利用工程项目建议书

目录 1概述 2资源:煤层气(矿井瓦斯) 3厂址条件 4工程方案 5环境保护 6劳动安全与工业卫生 7节约及合理利用能源 8工程项目实施条件、轮廓进度9劳动定员 10投资估算与经济分析 11结论

1 概述 1.1 编制依据 1.1.1 项目名称 平顶山煤业集团煤层气(矿井瓦斯)综合利用工程。 1.1.2 编制依据 根据平煤集团公司的委托公函,依据现行的有关瓦斯及燃气等方面规范规程,并重点根据下述有关规范规程进行编制。 1.1. 2.1《煤矿安全规程》 1.1. 2.2《煤炭工业矿井设计规范》 1.1. 2.3《矿井瓦斯抽放管理条例规范》 1.1. 2.4《瓦斯综合治理方案的通知》 1.1. 2.5《城镇燃气设计规范》 1.1. 2.6《石油化工企业设计防火规定》 1.1. 2.7《建筑防火规范》 1.1. 2.8《工业企业煤气安全规程》 1.2 研究范围 平煤集团四、五、六、八、十、十一、十二、十三、首山一矿的煤层气(矿井瓦斯)综合利用,通过瓦斯发动机驱动发电机进行发电,对其进行可行性分析。 主要技术原则:①机组选型为低浓度瓦斯发电机组500GF-RW型②十矿设5000m3储气罐③主厂房采用封闭式④设备年运行小时数:7200h。 1.3 平煤集团概况

平顶山市位于河南省中南部,西依蜿蜒起伏的伏牛山脉,东接宽阔平坦的黄淮平原,南临南北要冲的宛襄盆地,北连逶迤磅礴的嵩箕山系。 地理坐标:北纬33°08′~34°20′,东经112°14′~113°45′之间,总面积7882平方公里。中心市区位于北纬33°40′~33°49′,东经113°04′~113°26′,东西长40公里,南北宽17公里,面积453平方公里,以建在"山顶平坦如削"的平顶山下而得名。市区距省会郑州铁路里程218公里,公路里程135公里。市党政机关驻中心市区。1957年经国务院批准建市,是河南省省辖市之一。 平顶山市是河南省工业基地之一,工业基础雄厚,全市有大中型企业50家。其中平顶山煤业(集团)有限责任公司,年产原煤2000万吨,是全国第二大统配煤矿;中国神马集团有限责任公司年产尼龙六六盐两万吨,锦纶帘子布五万吨,是世界三大帘子布生产企业之一;姚孟发电有限责任公司,装机容量120万千瓦,是华中电网大型骨干火电厂之一;舞阳钢铁公司是我国第一家生产特宽特后钢板的重点企业;天鹰集团有限责任公司是全国生产高压电器的三大主导厂家之一,产品国内市场占有率达80%。平顶山市现已形成了以煤炭、电力、钢铁、纺织、机械、化工、建材、食品等门类为主体产业的工业体系。 平顶山地处京广和焦枝两大铁路干线之间,横贯市区的漯宝铁路把两条大动脉相连接,货物年吞吐量 3000 余万吨,客运量 4000 余万人。全市境内公路通车里程 4175 公里,铁路 409 公里。周边三个航空港,其中新郑国际机场距平顶山只有 100 公里,并有高速公路相通,可直达日本、香港和国内30多个大中城市,形成空中和地上便利的交通条件。 平顶山市属暖温带大陆性季风气候,四季分明,冬季寒冷干燥,夏季炎热,秋季晴朗,日照充足。

生产测井原理与解释

一、填空题 1、垂直两相管流中五种典型的流型为泡状流、弹状流、段塞流、环状流和雾状 流。 2、如果井筒中原油溶解气越多,则其密度越小、体积系数越大。 3、如果原油溶解气越少,则其密度越则其密度越大、体积系数越小。 4.以泥岩为基线,渗透性地层的SP曲线的偏转(异常)方向主要取决于泥浆滤液和地层水的相对矿化度。当Rw>Rmf时,SP曲线出现正异常,Rw

山西煤层气测井解释方法研究

山西煤层气测井解释方法研究 一煤层电性响应特征 煤层是一种特殊沉积岩,煤层在煤热演化过程中主要产生的副产品是甲烷和少量水,而煤的颗粒细表面积大,每吨煤在0.929×108m2以上,因此煤层具有强吸附能力,所以煤层的甲烷气含量和含氢指数很高。由于煤层的上述特性,反映在电性曲线上的特征是“三高三低”。 三高是:电阻率高、声波时差大、中子测井值高(图1)。 三低是:自然伽马低、体积密度低、光电有效截面低。 根据多井资料统计,煤层的双侧向电阻率变化一般100—7000Ω·m,变质程度差的煤层电阻率一般30—350Ω·m。 测井曲线反映煤层的声波时差一般370—410μs/m;中子值30%—55%;自然伽马一般20—80API;密度测井值1.28—1.7g/cm3;光电有效截面0.35—1.5b/e之间。 不同类型的煤,在电性上的响应有较大的变化。表1中列出了几种煤类与测井信息的响应值。 表1 不同煤类骨架测井响应值

图1 晋1-1井煤层电性典型曲线图

二煤层工业参数解释 煤的重要参数有:煤层有效厚度、镜质反射率、含气量、固定碳、水分、灰分、挥发分等,这些参数是研究煤层组分,评价煤层气的地质勘探、工业分析及经济效果的依据。上述参数一般由钻井取芯后对煤层岩心进行实验测定得出。 1、煤层厚度划分 煤层有效厚度根据电性曲线对煤层的响应特征,以自然伽马和密度或声波时差曲线的半幅度进行划分(见图1),起划厚度为0.6m。2、含气量计算 煤层含气量与煤层的厚度、煤的热演化程度、煤层深度、温度和压力等参数有密切的关系,由于煤的内表面积大,储气能力高,据国外资料统计,煤层比相同体积的常规砂岩多储1~2倍以上的天然气,相当于孔隙度为30%的砂岩含水饱和度为零时的储气能力。据此应用气体状态方程和煤层密度计算含气量: P1V1=RT1(1) P2V2=RT2 (2) 则V1=T1·P2·V2/ P1T2(3) 式中:P1——地面压力,0.1MPa; V1——地面气体体积,m3; T1——地面绝对温度,273.15℃+15℃;

煤层气的开采与利用

煤层气的开采与利用 (包括不限于新旧技术的介绍与对比、国内外技术对比,目的是搞清楚煤层气作为一种自然资源是如何实现经济效益的); 一.煤层气背景介绍 1.我国煤层气资源分布 我国大型煤矿区煤层气资源丰富,13个大型煤炭基地煤矿区埋藏深度1500m以浅,煤 ,煤 2. 12起,。3. 程等。 地质载体特殊性 煤层气的地质载体为煤层,煤炭本身就是能源开发的重要对象,这一自然属性更是有别于其他所有的化石能源矿产。煤层气与煤炭资源的同源同体的伴生性决定了这2种资源的开发必然有密不可分的内在关联。煤矿区煤炭资源的开采引起矿区岩层移

动的时空关系,影响着煤层气资源开发的钻井(孔)的布设、采气方法的选择和抽采效果等多个方面。 鉴于上述特殊性,煤层气勘探开发技术既有常规天然气勘探开发技术的来源、借鉴甚至直接移植,又有自己的独特性,还有与采煤技术交叉融合的耦合特性,是一个与常规天然气和煤炭开发技术既有联系又有区别的复杂技术系统。 1. 三(多) , 2. 创新, 3. 前提下,协同开采技术得以发展和进步。如解放层开采、井上下联合抽采、煤炭与煤层气共同开采等就是其典型实例。 4.煤层卸压增透技术

对于煤层渗透率低和含气饱和度低的矿区须探索应用煤层卸压增透技术,提高煤层气 抽采率。此类技术主要包括保护层开采卸压增透技术、深孔预裂爆破技术、深穿透 射孔技术、高能气体压裂技术和高压水力增透技术等。 三.近年来我国煤层气开采技术发展 1.勘探技术手段深化 (eg 2~3倍; 管、。)2. 活性 变排量控制缝高技术、前置液粉砂多级段塞降滤失技术、前置液阶段停泵测试技术、大粒径/高强度支撑剂尾追技术、压后合理放喷控制技术等。 针对多煤层地区,采用煤层和岩层组合分段压裂技术,可以有效提高单井产量和资源 利用效率。

煤层瓦斯含气量预测汇总

专题讲演 煤层气含气量预测方法 学生姓名:孙晓旭 专业班级:煤层12-2 学号:1201160215 指导教师:陶梅 完成日期:2016.1.10 综合成绩: 辽宁工程技术大学

煤层含气量预测方法 摘要 为了提高煤层含气量预测效果,更准确地评价煤层气资源量、预测煤层气开发前景,以及制定合理的开发方案,基于大量文献调研,首先梳理了煤层气及煤层含气量的概念、影响因素,其次对煤层含气量预测方法的特点进行了比较分析,进而开展了煤层含气量预测方法发展趋势分析研究表明,煤层含气量的影响因素主要包括煤的变质程度、温度、压力、煤质、煤层有效埋藏深度、储层有效厚度、储层物性等,其中,煤变质程度起着根本性作用煤层含气量定量预测方法主要有等温吸附曲线法、含气量梯度法、测井法、地震法等合理选择煤层含气量预测方法,开展多学科、多种预测方法综合预测含气量研究、研发新的煤层含气量预测方法是煤层含气量预测的主要发展趋势。 关键词:煤层气;含气量;影响因素;预测方法

Prediction method of gas content in coal seam ABSTRACT In order to improve the prediction of coalbed gas content, a more accurate evaluation of coalbed gas resource, prediction of coalbed methane development prospects, and formulate a reasonable development plan, based on extensive literature research, firstly reviews the concept and factors of coal-bed gas and coal seam gas content, followed by the characteristics of coal seam gas content prediction methods are compared and analyzed then, carry out the analysis of coalbed gas content prediction methods of the development trend of research shows that the influence factors of coal seam gas content mainly includes the metamorphic degree of coal, temperature, pressure, coal and coal seam buried depth, reservoir thickness, reservoir property, the degree of coal metamorphism plays a fundamental role in prediction of coalbed the main gas quantitative selection of isothermal adsorption curve method, gradient method, gas logging, seismic method of coal seam gas content prediction method, carry out Multi discipline, multi prediction methods comprehensive prediction of gas content research, research and development of new coal bed gas content prediction method is the main development trend of coal seam gas content prediction. Keywords:coalbed gas;Gas content;Influence factor;Prediction method

煤层气储层测井评价技术及应用

煤层气储层测井评价技术及应用 随着我国经济实力的不断增长,我国对于煤的使用率在不断的增加,针对煤层的特点,设计出煤层气测井评价技术,来对煤层进行评价。在煤层中主要是煤层储集,其具有双重孔隙的特点,主要是煤的基质微孔和割理(裂缝)系统组成。所以在进行评价时,不能在采用传统的评价技术,这样会导致评价结果出现错误。本文主要通过对过往的国内外煤层气测井技术的发展过程,并针对目前煤层气储层测井评价技术现状,进行了详细的讲述,并结合所应用的技术,进行分析与研究,为煤层气储层测井评价技术的发展提供相应的参考方向。 标签:煤层气储层;测井评价技术;实际应用 在煤层气储层中,所具有物质的不仅仅具有储存甲烷,还具有生成甲烷的初始物质,所以在煤层的储集中,主要有两个系统构成。在天然气储层中,天然气主要以气体的形式储存在其中,但是在煤层中的甲烷主要有三种形式存在,分别是以分子状态吸附在基质微孔的内表面上;以游离气态存在于煤层中的地层水中;以游离气态存在于煤层中的裂缝中。和天然气的存储状态不同,不能采用评价常规天然气储层的方法。煤层气储层测井技术是煤层气勘探开发中的主要方法,要加强对测井评价技术的研究与分析,并结合其技术进行提出相应的应用方式,才能更好的促进煤层气储层的测井评价技术发展。 1煤层气储层测井评价系列选择 目前主要的评价技术就是采用的煤层气储层测井评价技术,采用这种技术能够有效的对煤层气储层中的数据进行相应的分析,能够对采集到的数据进行估计,从而得出内部煤层气储层的内部信息。煤层气测井技术具有操作便利、可重复利用、成本低、准确率高等优势,能够改进传统技术中技术不达标的问题。煤层气储层是跟周围的岩性具有截然不同的性质,所以在进行检测时,需要对煤层气储层测井评价系列进行选择。目前主要的评价煤层气的常规测井方法有自然电位、微电极、补偿密度、自然伽马、声波时差、声波全波列、中子孔隙度以及井径测井等。 2煤层气储层测井评价技术现状 2.1煤层的划分、岩性识别 在对煤层气储层测井技术的实际应用中,首先要对煤层气井的测井资料进行了解才能进行操作,要对煤层气层进行划分、识别,然后才能在已知种类的煤层气层上进行相应的参数计算。所以在对煤层气井的测井资料解释时,要先对煤层气层进行分类,针对不同的物质来进行分析。煤层是明显的区别于周围的物质的,主要具有的特点是密度低、声波时差大、含氢量高、自然伽马低、自然电位有异常、电阻率高(无烟煤除外)等。所以在进行划分时,只需要对煤层气层进行相应的检测就能将其划分为不同的种类。并通过对数据的探测进行制定煤层气层的

国外煤层气发展现状

国外煤层气开发技术新进展改善勘探开发 2011-11-14 13:36:39 全球石油网 内容摘要:当前国际能源供需矛盾突出,能源安全日益成为各国关注的焦点,煤层气勘探开发聚焦了世界的目光。Big Cat 目前正和澳大利亚的一个业务供应商进行商讨评价,将ARID 井内含水层回注系统用于澳大利亚的煤层气产出水处理。 当前国际能源供需矛盾突出,能源安全日益成为各国关注的焦点,煤层气勘探开发聚焦了世界的目光。主要大国出于经济和政治利益的考虑,加大了对煤层气的投入。煤层气在采矿业被看作是危险的因素,但作为一种储量丰富的清洁能源,煤层气有巨大的发展潜力。发达国家煤层气勘探开发技术日趋成熟,通过对世界煤层气资源勘探开发现状的研究,实现煤层气资源的优化利用,改善勘探开发效果。最近的一些技术新进展正在成为我们开发这一非常规资源的得力助手。其中有些方法源于对常规油气作业中所使用的技术方法的改进,有些则是针对煤炭的独有特征而专门设计的新型技术方法。 1. 煤层气新型压裂液技术 水力压裂是煤层气增产的首选方法,美国2/3 以上的煤层气井采取水力压裂技术进行改造,以提高产量。传统压裂液能够改变煤层基质的润湿性,不利于煤层脱水。斯伦贝谢公司新型CoalFRAC 压裂液技术,添加专为煤层气生产开发的CBMA 添加剂,能够加强煤层脱水。这种添加剂不仅能够保持煤层表面的润湿性,还能减少微粒运移。添加到常规增产液的表面活性剂会改变地层流体性质,并影响对启动煤层气生产至关重要的脱水过程。斯伦贝谢公司针对煤层气储层开发的CBMA 添加剂可以优化脱水,并有助于控制生产过程中的微粒。微粒会降低产液量,堵塞井筒,损坏生产设备。黑勇士(Black Warrior)盆地的煤层气井在开始脱水后不久就显示出CoalFRAC压裂液的增产效果—比周围那些用其他压裂液处理的井产量高38%。 2. 注CO2 提高煤层气产量技术 注气开采煤层气就是向储层注入N2、CO2、烟道气等气体,其实质是向煤层注入能量,改变压力传导特性和增大或保持扩散速率不变,从而达到提高产量和采收率的目的。煤基质表面对气体分子的吸附能力是一定的,向煤层中注入氮气、二氧化碳气,其气体分子会在一定程度上置换甲烷分子,使甲烷分子脱离煤基质束缚而进入游离状态,混入流动的气流中,从而达到提高煤层气产量的目的。 西南地区碳封存合作伙伴(SWP)在美国新墨西哥州北部圣胡安盆地Pump Canyon地区进行先导试验,将CO2注入到难以采掘的深煤层进行埋存,同时提高煤层气的产量(ECBM),目的是为了测试CO2 提高煤层气产量以及埋存的效果。试验由康菲石油公司实施,在一个现有的煤层气开采井网中,新钻了一口CO2 注入井,深度达到白垩纪晚期Fruitland 煤层。康菲公司在井中部署了各种监测、验证和计算(MVA)设备,用来跟踪CO2 的运移轨迹,并实施了一个详细的地质描述和油藏模拟方案,用来再现和理解地层

《测井解释与生产测井》复习题及答案

《测井解释与生产测井》期末复习题 一、填充题 1、在常规测井中用于评价孔隙度的三孔隙测井是声波速度测井,密度测井,中子测井。 2、在近平衡钻井过程中产生自然电位的电动势包括扩散电动势,扩散吸附电动势。 3、在淡水泥浆钻井液中(R mf > R w),当储层为油层时出现减阻现象,当储层为水层是出现增阻现象。 4、自然电位包括扩散电动势,扩散吸附电动势和过滤电动势三种电动势。 5、由感应测井测得的视电导率需要经过井眼,传播效应,围岩,侵入四个校正才能得到地层真电导率。 6、感应测井的发射线圈在接收线圈中直接产生的感应电动势通常称为无用信号,在地层介质中由_____________产生的感应电动势称为有用信号,二者的相位差为90°。 7、中子与物质可发生非弹性散射,弹性散射,快中子活化,热中子俘获四种作用。 8、放射性射线主要有射线,射线,射线三种。 9、地层对中子的减速能力主要取决于地层的氢元素含量。 10、自然伽马能谱测井主要测量砂泥岩剖面地层中与泥质含量有关的放射性元素钍,钾。 11、伽马射线与物质主要发生三种作用,它们是光电效应,康谱顿效应,电子对效应; 12、密度测井主要应用伽马射线与核素反应的康普顿效应。 13、流动剖面测井解释的主要任务是确定生产井段产出或吸入流体的位置,性质,流量,评价地层生产性质。 14、垂直油井内混合流体的介质分布主要有泡状流动,段塞状流动,沫状流动,雾(乳)状流动四种流型。 15、在流动井温曲线上,由于井眼内流体压力低于地层压力,高压气体到达井眼后会发生致冷效应,因此高压气层出气口显示正异常。 16、根据测量对象和应用目的不同,生产测井方法组合可以分为流动剖面测井,采油工程测井,储层监视测井三大测井系列。 17、生产井内流动剖面测井,需要测量的五个流体动力学参量分别是流量,密度,持率,温度,压力。 二、简答题 1、试给出以下两个电极系的名称、电极距、记录点位置和近似探测深度:(A);(B) 2、试述三侧向测井的电流聚焦原理。 3、试述地层密度测井原理。 4、敞流式涡轮流量计测井为什么要进行井下刻度?怎样刻度? 5、简述感应测井的横向几何因子概念及其物理意义 6、简述声波测井周波跳跃及其在识别气层中的应用。 7、能量不同的伽马射线与物质相互作用,可能发生哪几种效应?各种效应的特点是什么? 8、简述怎样利用时间推移技术测量井温曲线划分注水剖面。 9、试比较压差流体密度测井和伽马流体密度测井的探测特性和应用特点。 10、什么是增阻侵入和减阻侵入?请说明如何运用这两个概念判断油气层。 11、试述热中子测井的热中子补偿原理。 12、简述感应测井的横向几何因子概念及其物理意义。 13、简述声波测井周波跳跃及其在识别气层中的应用。 14、能量不同的伽马射线与物质相互作用,可能发生哪几种效应?各种效应的特点是什么? 15、简述怎样利用时间推移技术测量井温曲线划分注水剖面。 16、试比较压差流体密度测井和伽马流体密度测井的探测特性和应用特点。 17、试给出以下两个电极系的名称、电极距、记录点位置和近似探测深度:(A);(B) 18、什么是增阻侵入和减阻侵入?请说明如何运用这两个概念判断油气层。 19、试述侧向测井的电流聚焦原理。 20、试述热中子测井的热中子补偿原理。 21、简述怎样利用时间推移技术测量井温曲线划分注水剖面。 三、假设纯砂岩地层的自然伽马测井值GRmin=0和纯泥岩层的自然伽马测井值GRmax=100,已知某老地层(GCUR=2) 的自然伽马测井值GR=50,求该地层的泥质含量Vsh。 四、试推导泥质砂岩地层由声波速度测井资料求孔隙度的公式 五、已知某一纯砂岩地层的地层水电阻率R w=0.5Ω?m,流体密度ρf=1.0g/cm3,骨架密度ρma=2.65g/cm3,测井测得的

相关文档