文档库 最新最全的文档下载
当前位置:文档库 › 计算方法复习题与答案

计算方法复习题与答案

计算方法复习题与答案
计算方法复习题与答案

复习题与答案

复习题一 复习题一答案 复习题二

复习题二答案 复习题三 复习题三答案 复习题四

复习题四答案 自测题

复习题(一)

一、填空题:

1、求方程011015.02

=--x x 的根,要求结果至少具有6位有效数字。已知

0099.10110203≈,则两个根为=1x ,

=2x .(要有计算过程和结果)

2、??

???

?????----=410141014A ,则A 的LU 分解为

A ???

?????????=???????????

?。

3、

??????=5321A ,则=)(A ρ ,=∞A . 4、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用抛物线(辛卜生)公式计算求

得?≈3

1

_________

)(dx x f ,用三点式求得≈')1(f .

5、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2

x 的系数

为 ,拉格朗日插值多项式为 . 二、单项选择题:

1、 Jacobi 迭代法解方程组b x =A 的必要条件是( ). A .A 的各阶顺序主子式不为零 B. 1)(

2、设753)(99-+-=x x x f ,均差

]2,,2,2,1[99

2Λf =( ) . A.3 B. -3 C. 5 D.0

3、设

??

???

?????--=700150322A ,则)(A ρ为( ). A. 2 B. 5 C. 7 D. 3 4、三点的高斯求积公式的代数精度为( ). A. 2 B.5 C. 3 D. 4

5、幂法的收敛速度与特征值的分布( )。 A. 有关 B. 不一定 C. 无关

三、计算题:

1、用高斯-塞德尔方法解方程组 ???

??=++=++=++225218241124321321321x x x x x x x x x ,取T

)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算).

2、求A 、B 使求积公式

?-+-++-≈1

1)]21

()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求?

=2

1

1

dx

x I (保留四位小数)。

3、已知

分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数).

4、取步长2.0=h ,用预估-校正法解常微分方程初值问题

??

?=+='1)0(32y y x y )10(≤≤x

5、已知

求)(x f 的二次拟合曲线)(2x p ,并求)0(f 的近似值。

6、证明方程

24)(3

+-=x x x f =0在区间(0,1)内只有一个根,并用迭代法(要求收敛)求根的近似值,五位小数稳定。

复习题(一)参考答案

一、一、1、010.204104061021≈+=x ,00980345.0)10406102(22≈+=x

2、

??

????????--??????????--=1556141501

4115401411A 3、103+,8 4、2.367 0.25 5、-1,

)2)(1(21

)3)(1(2)3)(2(21)(2--------=

x x x x x x x L

二、A B C B C 5,4,3,2,1 三、1、迭代格式

???

???

???--=--=--=++++++)222(51)

218(41)211(41)1(2)1(1)1(3)(3)1(1)1(2)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

2、,,1)(x x x f =是精确成立,即

???

??=+=+32212222B A B A 得98,91==B A

求积公式为

)]21()21([98)]1()1([91)(1

1f f f f dx x f +-++-=?- 当3

)(x x f =时,公式显然精确成立;当4

)(x x f =时,左=52,右=31

所以代数精度为3。

69286.014097

]

3

21132/11[98]311311[9131111322

1

≈=

+++-++++-≈+=??--=dt t dx x x t

3、

)53)(43)(13()

5)(4)(1(6

)51)(41)(31()5)(4)(3(2)(3------+------=x x x x x x x L

)45)(35)(15()

4)(3)(1(4

)54)(34)(14()5)(3)(1(5

------+------+x x x x x x

差商表为

)

4)(3)(1(4)3)(1()1(22)()(33---+----+==x x x x x x x N x P

5.5)2()2(3=≈P f

4、解:

?????+++?+=+?+=++++)]32()32[(1.0)32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y

即 04.078.152.01++=+n n n y x y 5、解:

正规方程组为

???

?

?=+==+41

34103101510520

120a a a a a

1411,103,710210===

a a a

221411103710)(x x x p ++= x x p 711

103)(2

+=' 103)0()0(2

='≈'p f

复习题(二)

一、填空题:

1、近似值*0.231x =关于真值229.0=x 有( )位有效数字;

2、*x 的相对误差的( )倍;

3、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

4、对1)(3

++=x x x f ,差商=]3,2,1,0[f ( ),=]4,3,2,1,0[f ( );

5、计算方法主要研究( )误差和( )误差;

6、用二分法求非线性方程f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为( );

7、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为( );

8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( );

9、两点式高斯型求积公式?1

d )(x

x f ≈( ),代数精度为( );

10、解线性方程组A x =b 的高斯顺序消元法满足的充要条件为( )。 二、单项选择题:

1、求解线性方程组A x =b 的LL T 分解法中,A 须满足的条件是( )。

A. 对称阵

B. 正定矩阵

C. 任意阵

D. 各阶顺序主子式均不为零 2、舍入误差是( )产生的误差。

A. A. 只取有限位数

B.模型准确值与用数值方法求得的准确值

C. 观察与测量

D.数学模型准确值与实际值 3、3.141580是π的有( )位有效数字的近似值。 A. 6 B. 5 C. 4 D. 7

4、幂法是用来求矩阵( )特征值及特征向量的迭代法。

A. 按模最大

B. 按模最小

C. 所有的

D. 任意一个 5、用 1+x 近似表示e x 所产生的误差是( )误差。

A. 模型

B. 观测

C. 截断

D. 舍入

6、解线性方程组的主元素消去法中选择主元的目的是( )。

A.控制舍入误差

B. 减小方法误差

C.防止计算时溢出

D. 简化计算

7、解线性方程组A x =b 的迭代格式x (k +1)=M x (k )+f 收敛的充要条件是( )。

A. 1

B. 1)(

C. 1)(

D. 1)(

1、为了使20的近似值的相对误差限小于0.1%,要取几位有效数字?

2、已知x sin 区间[0.4,0.8]的函数表

如用二次插值求63891.0sin 的近似值,如何选择节点才能使误差最小?并求该近似值。

3、构造求解方程0210=-+x e x

的根的迭代格式Λ,2,1,0),(1==+n x x n n ?,讨论

其收敛性,并将根求出来,4

110||-+<-n n x x 。

4﹑利用矩阵的LU 分解法解方程组 ???

??=++=++=++20

53182521432321321321x x x x x x x x x 。 5﹑对方程组 ???

??=-+=--=++8

4102541015

1023321321321x x x x x x x x x

(1) 试建立一种收敛的Seidel 迭代公式,说明理由; (2) 取初值T )0,0,0()

0(=x

,利用(1)中建立的迭代公式求解,要求

3)()1(10||||-∞+<-k k x x 。

6﹑用复合梯形求积公式计算x

x

d e 10

?,则至少应将[0,1]分为多少等份才能保证所

得积分的近似值有5位有效数字?

复习题(二)参考答案

一、1、2; 2、31倍; 3、

)(1)(1n n n

n n x f x f x x x '---=+; 4、0]4,3,2,1,0[,1]3,2,1,0[==f f ; 5、截断,舍入;

6、1

2+-n a b ; 7、)],(),([2111+++++=n n n n n n y x f y x f h

y y ; 8、 0.15; 9、

?++-≈1

)]

321

3()3213([21d )(f f x x f ;

10、A 的各阶顺序主子式均不为零。

二、1、B 2、A 3、B 4、A 、 5、C 6、A 7、D

三、1、解:设20有n 位有效数字,由

Λ4.420=,知41=a

%1.01081

1021)20()1()1(1*

----n n r a ε,

取 4=n , %1.010125.0)20(3

*

故 472.420≈ 1、1、解: 应选三个节点,使误差

|)(|!3|)(|33

2x M x R ω≤

尽量小,即应使|)(|3x ω尽量小,最靠近插值点的三个节点满足上述要求。即取节点}7.0,6.0,5.0{最好,实际计算结果

596274.063891.0sin ≈,

4

1055032.0)7.063891.0)(6.0963891.0)(5.063891.0(!

31

596274

.063891.0sin -?≤----≤

-

3、解:令 010)1(,

02)0(,

210e )(>+=<-=-+=e f f x x f x

.

且010e )(>+='x

x f )(∞+-∞∈?,

对x ,故0)(=x f 在(0,1)内有唯一实根.将方程0)(=x f 变形为

)e 2(101

x x -=

则当)1,0(∈x 时

)e 2(101

)(x x -=

?,

1

10

e

10e |)(|<≤-='x x ?

故迭代格式

)e 2(101

1n x n x -=

+

收敛。取5.00=x ,计算结果列表如下:

且满足 6671095000000.0||-<≤-x x .所以008525090.0*≈x .

4、解:

??

????????--??????????-==244132

11531

21LU A 令b y =L 得T )72,10,14(--=y ,y x =U 得T

)3,2,1(=x .

5、解:调整方程组的位置,使系数矩阵严格对角占优

???

??=++=-+=--15

1023841025410321321321x x x x x x x x x

故对应的高斯—塞德尔迭代法收敛.迭代格式为

???

???

???+--=++-=++=++++++)1523(101)842(101)54(101)1(2)1(1)1(3)

(3)1(1)1(2

)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

6、解:当0

d e 1

0?有一位整数.

要求近似值有5位有效数字,只须误差

4)

(11021

)(-?≤

f R n .

)(12)()(

2

3

)

(1ξf n a b f R n ''-≤,只要

4

22)(1102112e 12e )

e (-?≤≤≤n n R x n ξ

即可,解得

???=?≥

30877.67106e

2n

所以 68=n ,因此至少需将 [0,1] 68等份。

复习题(三)

一、填空题:

1、为了使计算

32)1(6)1(41310--

-+-+

=x x x y 的乘除法次数尽量地少,应将

该表达式改写为 ,为了减少舍入误差,应将表达式

19992001-改写为 。

2、用二分法求方程01)(3

=-+=x x x f 在区间[0,1]内的根,进行一步后根的所

在区间为 ,进行两步后根的所在区间为 .

3、设

??????-=1223A ,??????-=32x ,则_________||||=∞A ,_________||||2=A , ________||||1=x ,___________||||1=x A . 4、计算积分?1

5

.0d x

x ,取4位有效数字。用梯形公式计算求得的近似值为 ,

用辛卜生公式计算求得的近似值为 ,梯形公式的代数精度为 ,辛卜生公式的代数精度为 。

5、求解方程组??

?=+=+042.01

532121x x x x 的高斯—塞德尔迭代格式为 ,该迭代格

式的迭代矩阵的谱半径)(M ρ= 。 二、计算题:

1、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据.

2、用列主元素消元法求解方程组 ??????????--=???????????????????

?--11124112345111321x x x . 3、取节点1,5.0,0210===x x x ,求函数x

x f -=e )(在区间[0,1]上的二次插值多项

式)(2x P ,并估计误差。

4、用幂法求矩阵

?

?????=9.033399A 按模最大的特征值及相应的特征向量,取T )1,1(0=x ,精确至7位有效数字。 5、用欧拉方法求

?-=x t t

x y 0

d e )(2

在点0.2,5.1,0.1,5.0=x 处的近似值。

6、给定方程

01e )1()(=--=x

x x f 1) 分析该方程存在几个根;

2) 用迭代法求出这些根,精确到5位有效数字; 3) 说明所用的迭代格式是收敛的。

复习题(三)参考答案

一、 一、 1﹑

11,))64(3(10-=

-++=x t t t t y ,199920012+; 2﹑[0.5,1], [0.5,0.75];

3﹑5||||=∞A ,1329||||2+=A ,5||||1=x ,7||||1=x A ; 4﹑0.4268,0.4309,1,3;

5﹑?????-=-=+++20/3/)51()

1(1)1(2

)(2)1(1

k k k k x x x x ,121,收敛的; 二、 1、解:列表如下

设所求一次拟合多项式为x a a y 10+=,则

??????=????????????61454.96657.523177.1047.547.53

10a a

解得 7534.1,355.1410==a a , 因而所求的一次拟合多项式为

x y 7534.1355.14+=.

2、解: ???

??

?????----???→???????????

?----111124111123451111212345411121r r ???????????????

?-----???→??????????

???

????

?------???→?-585

25

10

57951513

0123455795

15

130585251

0123455

2

51

321312r r r r r r

????????

???????

?----??

?→?+13513

50579515

13

012345131

23r r

回代得 3,6,1123==-=x x x 。

3、解:

)15.0)(05.0()

1)(0()10)(5.00()1)(5.0()(5.002----?

+----?

=--x x e x x e x P )5.0(2)1(4)1)(5.0(2)

5.01)(01()

5.0)(0(15.01-+----=----?

+---x x e x x e x x x x e

1

|)(|max ,)(,)(]

1,0[3='''=-='''=∈--x f M e x f e x f x x x

故截断误差

|)1)(5.0(|!31

|)(||)(|22--≤

-=-x x x x P e x R x 。

4、解:幂法公式为 ???

??===-k k k k k k k m m A /)max(1

y x y x y ,???

???=9.033399A 取x 0=(1,1)T ,列表如下:

因为

534102||-?≤

-m m ,所以

T v )33300033.0,1(,99900098.9911≈≈λ

5、解:

?-=x

t t

x y 0d e )(2

等价于

?????=='-0)0(e 2

y y x (0>x )

记2

e

),(x y x f -=,取5.0=h ,0.2,5.1,0.1,5.0,043210=====x x x x x .

则由欧拉公式

??

?=+=+0)

,(01y y x hf y y n n n n , 3,2,1,0=n

可得 88940.0)0.1(,

5.0)5.0(21≈==≈y y y y ,

12604.1)0.2(,

07334.1)5.1(43≈==≈y y y y

6、解:1)将方程

01e )1(=--x x (1) 改写为

x

x -=-e 1 (2)

作函数1)(1-=x x f ,x

x f -=e )(2的图形(略)知(2)有唯一根)2,1(*∈x 。

2) 将方程(2)改写为 x

x -+=e 1

构造迭代格式 ??

?=+=-+5.1e 101x x k

x k ),2,1,0(Λ=k

计算结果列表如下:

3) x

x -+=e

1)(?,x

x --='e

)(?

当]2,1[∈x 时,]2,1[)]1(),2([)(?∈???x ,且

1e |)(|1<≤'-x ?

所以迭代格式 ),2,1,0()(1Λ==+k x x k k ?对任意]2,1[0∈x 均收敛。

复习题(四)

一、填空题:

1、设46)2(,16)1(,0)0(===f f f ,则=)(1x l ,)(x f 的二次牛顿插

值多项式为 。

2、

722

,

141.3,142.3分别作为π的近似值有 , , 位有效数字。

3、求积公式

?∑=≈b

a k n

k k x f A x x f )(d )(0

的代数精度以( )求积公式为最高,具有

( )次代数精度。;

4、解线性方程组的主元素消元法中,选择主元的目的是( );

5、已知f (1)=1,f (3)=5,f (5)=-3,用抛物线求积公式求?5

1d )(x

x f ≈( )。 6、设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( )。

二、单项选择题:

1、用1+3x

近似表示3

1x +所产生的误差是( )误差。

A. 舍入

B. 观测

C. 模型

D. 截断

2、-324.7500是舍入得到的近似值,它有( )位有效数字。 A. 5 B. 6 C. 7 D. 8

3、反幂法是用来求矩阵( )特征值及相应特征向量的一种向量迭代法。 A. 按模最大 B. 按模最小 C. 全部 D. 任意一个

4、( )是解方程组A x =b 的迭代格式x (k +1)=M x (k )+f 收敛的一个充分条件;

A. M <1

B. )(A ρ<1

C. A <1

D. )(M ρ<1

5、用s *=21

g t 2表示自由落体运动距离与时间的关系式 ( g 为重力加速度 ),

s t 是在时间t 内的实际距离,则s t - s *是( )误差。

A. 舍入

B. 观测

C. 模型

D. 截断

6、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( );

A. –0.5

B. 0.5

C. 2

D. -2

7、三点的高斯型求积公式的代数精度为( )。 A. 3 B. 4 C. 5 D. 2

8、求解线性方程组A x =b 的LL T 分解法中,A 须满足的条件是( )。

A. A. 对称阵

B. 各阶顺序主子式均大于零

C. 任意阵

D. 各阶顺序主子式均不为零 三、是非题(认为正确的在后面的括弧中打√,否则打?)

1、1、已知观察值)210()(m i y x i i ,,,,

,Λ=,用最小二乘法求n 次拟合多项式)(x P n 时,)(x P n 的次数n 可以任意取。 ( )

2、2、用1-22

x 近似表示cos x 产生舍入误差。 ( )

3、3、))(()

)((210120x x x x x x x x ----表示在节点x 1的二次(拉格朗日)插值基函数。 ( ) 4、任给实数a 及向量x ,则||||||||x x a a =。 ( )

5、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插

值的结果。 ( )

6、-23.1250有六位有效数字,误差限 ≤4

1021

-?。 ( )

7、矩阵A =?

????

?

?-521352113具有严格对角占优。 ( ) 8、数据拟合的步骤是:

1)作散点图;2)解正规方程组;3)确定函数类型 ( ) 9、 LL T 分解可用于求系数矩阵为实对称的线性方程组。 ( ) 10、幂法的收敛速度与特征值的分布无关。 ( )

四、计算题:(每小题7分,共42分)

2、1、用牛顿(切线)法求3的近似值。取x 0=1.7, 计算三次,保留五位小数。

2、已知 A =?

???? ?

?-010110004,求1A ,∞A ,2||||A 。 4、4、已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1.5)的近似值,取五位小数。 4、n =3,用复合梯形公式求x

x

d e 10

?的近似值(取四位小数),并求误差估计。

5、用幂法求矩阵A =?

???? ?

?---210121004按模最大特征值及相应特征向量,列表 计算三次,取x 0=(1,1,1)T ,保留两位小数。

6、用Gauss-Seidel 迭代法求解线性方程组 ????? ?

?--411131103????? ??321x x x =?

????

??--815, 取x (0)=(0,0,0)T ,列表计算三次,保留三位小数。

7、用预估—校正法求解??

?=+='1)0(y y

x y (0≤x ≤1),h =0.2,取两位小数。

复习题(四)参考答案

一、1、)2()(1--=x x x l ,)1(716)(2-+=x x x x N ; 2、 4 ,3 ,3; 3、高斯型,12+n ; 4、减少舍入误差; 5、12; 6、5.2 二、1D , 2C , 3B , 4A , 5C , 6A , 7C , 8B

三、1、?,2、?,3、√ 4、?,5、√,6、?,7、?,8、?,9、?,10、?

四、1、解:3是

03)(2

=-=x x f 的正根,x x f 2)(=',牛顿迭代公式为 n n n n x x x x 232

1

--

=+, 即

)

,2,1,0(2321Λ=+=+n x x x n n n

取x 0=1.7, 列表如下:

2、解:4||||,4||||1==∞A A ,

???

???????=??????????-??????????-=1101200016010110004010110004A A T ,

)13)(16(11

1200016||2=+--=---=

-λλλλ

λλ

λE A A T

16,253±=

λ,所以 4||||2=A 。

3、解:

)12)(12()

1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+?

--+-+?+------?

=x x x x x x x L

)1)(1(34

)2)(1(23)2)(1(32-+--+---=

x x x x x x

04167

.0241

)5.1()5.1(2≈=≈L f

4、解:7342.1]e )e e (2e [3201d e 132310310≈+++?-=≈?T x x

x x x f x f e )(,e )(=''=,10≤≤x 时,e |)(|≤''x f

05.0025.0108e

312e |e |||2

3≤==?≤

-=ΛT R x

至少有两位有效数字。

5、幂法公式为 ???

??===-k k k k k k k m

m A /)max(1

y x y x y , 取x 0=(1,1,1)T ,列表如下:

00.41≈λ,T )14.0,44.0,1(1-≈v

6、解:Gauss-Seidel 迭代格式为:

???

???

???-+-=----=+-=++++++)8(41)1(31)5(31)1(2)1(1)1(3)

(3)1(1)1(2

)(3)1(1k k k k k k k k x x x x x x x x

系数矩阵?????

????

?--411131103严格对角占优,故Gauss-Seidel 迭代收敛. 取x (0)=(0,0,0)T ,列表计算如下:

7、解:预估—校正公式为

???

??

????

++==++=+),(),()(2

1121211

k y h x hf k y x hf k k k y y n n n n n n Λ,2,1,0=n

其中y x y x f +=),(,10=y ,h =0.2,4,3,2,1,0=n

,代入上式得:

自测题

一、填空题(15分):

1、-43.578是舍入得到的近似值,它有 ( ) 位有效数字,相对误差限为( )。

2、二分法求非线性方程0)(=x f 在区间(1,3)内的根时,二分9次后的误差限为( )。

3、f (1)=1,f (3)=3.6,f (4)=5.2,则过这三点的二次插值多项式中x 2的系数为

《数值计算方法》试题集及答案(1-6) 2

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

(完整word版)西工大计算方法试题参考(完整版).docx

2002-2003 第一学期 一.计算及推导( 5*8) 1.已知 x* 3.141, x ,试确定 x * 近似 x 的有效数字位数。 * * * 0.100 * * * 2.有效数 x 1 3.105, x 2 0.001, x 3 1 x 2 3 ,试确定 x x 的相对误差限。 3.已知 f ( x) 0.5 x 3 0.1x 2 ,试计算差商 f 0,1,2,3 4.给出拟合三点 A (0,1), B (1,0) 和 C (1,1) 的直线方程。 5.推导中矩形求积公式 b (b a) f ( a b ) 1 f '' ( )(b a)3 f (x)dx a 2 24 b n f (x)dx A i f ( x i ) a 6.试证明插值型求积公式 i 0 的代数精确度至少是 n 次。 7.已知非线性方程 x f (x) 在区间 a, b 内有一实根,试写出该实根的牛顿迭代 公式。 8.用三角分解法求解线性方程组 1 2 1 x 1 0 2 2 3 x 2 3 1 3 0 x 3 2 二.给出下列函数值表 0.4 0.5 0.6 0.7 0.8 x i 0.38942 0.47943 0.56464 0.64422 0.71736 f ( x i ) 要用二次插值多项式计算 f (0.63891) 的近似值,试选择合适的插值节点进行计 算,并说明所选用节点依据。 (保留 5 位有效数字)(12 分) 三. 已知方程 x ln x 0 在 (0,1) 内有一实根 ( 1)给出求该实根的一个迭代公式,试之对任意的初始近似 x 0 (0,1) 迭代法都收 敛,并证明其收敛性。 ( 2) x 0 0.5 试用构造的迭代公式计算 的近似值 x n ,要求 x n x n 1 10 3 。 四. 设有方程组

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

通过能力计算

计算题 1.已知某地铁线路车辆定员每节240人,列车为6节编组,高峰小时满载率为120%,且单向最大断面旅客数量为29376人,试求该小时内单向应开行的列车数。 2、已知某地铁线路采用三显示带防护区段的固定闭塞列车运行控制方式,假设各闭塞分区长度相等,均为1000米,已知列车长 度为420米,列车制动距离为100米,列车运行速度为70km/h,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 若该线路改成四显示自动闭塞,每个闭塞分区长度为600米,则此时线路的通过能力是多少? 3.已知某地铁线路采用移动闭塞列车运行控制方式,已知列车长度为420米,车站闭塞分区为750米,安全防护距离为 200米,列车进站规定速度为60km/h,制动空驶时间为1.6秒,制动减速度为2米/秒2,列车启动加速度为1.8米/秒2,列车最大停站时间为40秒。试求该线路的通过能力是多少? 4.已知某地铁线路为双线线路,列车采用非自动闭塞的连发方式运行,已知列车在各区间的运行时分和停站时分如下表,线路的连发间隔时间为12秒。试求该线路的通过能力是多少?

5.已知地铁列车在某车站采用站后折返,相关时间如下:前一列车离去时间1.5分钟,办理进路作业时间0.5分钟,确认信号时间0.5分钟,列车出折返线时间1.5分钟,停站时间1分钟。试计算该折返站通过能力。 6.已知某终点折返站采用站前交替折返,已知列车直到时间 为40秒,列车侧到时间为1分10秒,列车直发时间为40秒,列车侧发时间为1分20秒,列车反应时间为10秒, 办理接车进路的时间为15秒,办理发车进路的时间为15秒。试分别计算考虑发车时间均衡时和不考虑发车时间均衡时,该折返站的折返能力是多少? 7.已知线路上有大小交路两种列车,小交路列车在某中间折返 站采用站前折返(直到侧发),已知小交路列车侧发时间为1分20秒,办理接车进路的时间为15秒,办理发车进路的时间为15秒,列车反应时间为10秒,列车直到时间为25 秒,列车停站时间为40秒;长交路列车进站时间为25秒。试分别计算该中间折返站的最小折返能力和最大折返能力分别是多少? 8.已知线路上有大小交路两种列车,小交路列车在某中间折返站采用站后折返,已知小交路列车的相关时分为:列车驶出车站 闭塞分区时间为1分15秒,办理出折返线调车进路的时间 为20秒,列车从折返线至车站出发正线时间为40秒,列车反应时间为10秒,列车停站时间为40秒。

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x ?及常向量g ?,迭代过程g x B x k k ? ??+=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式就是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差与( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f (4)=5、9,则二次Newton 插值多项式中x 2系数为( 0、15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式

车站通过能力计算

车站通过能力 车站通过能力是在车站现有设备条件下,采用合理的技术作业过程,一昼夜能接发和方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站通过能力包括咽喉通过能力和到发线通过能力。 咽喉通过能力是指车站某咽喉区各衔接方向接、发车进路咽喉道岔组通过能力之和,咽喉道岔通过能力是指在合理固定到发线使用方案及作业进路条件下,某衔接方向接、发车进路上最繁忙的道岔组一昼夜能够接、发该方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 到发线通过能力是指到达场、出发场、通过场或到发场内办理列车到发作业的线路,采用合理的技术作业过程和线路固定使用方案,一昼夜能够接、发各衔接方向的货物(旅客)列车数和运行图规定的旅客(货物)列车数。 车站咽喉通过能力计算 咽喉占用时间标准 表咽喉道岔占用时间表 顺序作业名称时间标准 (min) 顺序作业名称 时间标准 (min) 1 货物列车接车占用6~8 4 旅客列车出发占用4~6 2 旅客列车接车占用5~7 5 单机占用2~4 3 货物列车出发占用5~7 6 调车作业占用4~6 道岔组占用时间计算 表到发线固定使用方案 线路编号固定用途 一昼夜 接发列车数 线路 编号 固定用途 一昼夜 接发列车数 1 接甲到乙、丙旅客列车8 7 接乙到甲直通、区段货物列车9 4 接乙到甲旅客列车 5 8 接甲、乙到丙直通、区段货物列车10 接丙到甲旅客列车 3 9 接丙到甲、乙直通、区段货物列车10 5 接甲到乙直通、区段货物列车11 10 接发甲、乙、丙摘挂货物列车10 表甲端咽喉区占用时间计算表 编号作业进路名称 占用 次数 每次 占用时间 总占用 时间 咽喉区道岔组占用时间 1 3 5 7 9 固定作业 1 1道接甲-乙,丙旅客列车8 7 56 56 2 4道发乙-甲旅客列车 5 6 30 30 30 3 4道发丙-甲旅客列车 3 6 18 30 30 5 往机务段送车 3 6 18 18 6 从机务段取车 2 6 12 12

计算方法模拟试题及答案

计算方法模拟试题 一、 单项选择题(每小题3分,共15分) 1.近似值210450.0?的误差限为( )。 A . 0.5 B. 0.05 C . 0.005 D. 0.0005. 2. 求积公式)2(3 1 )1(34)0(31)(2 0f f f dx x f ++≈ ?的代数精确度为( )。 A. 1 B. 2 C. 3 D. 4 3. 若实方阵A 满足( )时,则存在唯一单位下三角阵L 和上三角阵R ,使LR A =。 A. 0det ≠A B. 某个0 det ≠k A C. )1,1(0det -=≠n k A k D. ),,1(0det n k A k =≠ 4.已知?? ?? ? ?????=531221112A ,则=∞A ( )。 A. 4 B. 5 C. 6 D 9 5.当实方阵A 满足)2(,221>>-=i i λλλλ,则乘幂法计算公式1e =( )。 A. 1+k x B. k k x x 11λ++ C. k x D. k k x x 11λ-+ 二、填空题(每小题3分,共15分) 1. 14159.3=π,具有4位有效数字的近似值为 。 2. 已知近似值21,x x ,则=-?)(21x x 。 3.已知1)(2-=x x f ,则差商=]3,2,1[f 。 4.雅可比法是求实对称阵 的一种变换方法。

5.改进欧拉法的公式为 。 三、计算题(每小题12分 ,共60分) 1. 求矛盾方程组; ??? ??=-=+=+2 42321 2121x x x x x x 的最小二乘解。 2.用列主元法解方程组 ??? ??=++=++=++4 26453426352321 321321x x x x x x x x x 3.已知方程组 ???? ? ?????=????????????????????----131********x x x a a a a (1) 写出雅可比法迭代公式; (2) 证明2

路段通行能力计算方法

根据交叉口的现场交通调查数据,通过各流向流量的构成关系,可推得各路段流量,从而得到饱和度V/C 比。路段通行能力的确定采用建设部《城市道路设计规范》(CJJ 37-90)的方法,该方法的计算公式为:单条机动车道设计通行能力n C N N a ????=ηγ0,其中N a 为车道可能通行能力,该值由设计车速来确定,如表2.2所示。 表2.13 一条车道的理论通行能力 其中γ为自行车修正系数,有机非隔离时取1,无机非隔离时取0.8。η为车道宽度影响系数,C 为交叉口影响修正系数,取决于交叉口控制方式及交叉口间距。修正系数由下式计算: s 为交叉口间距(m),C 0为交叉口有效通行时间比。 车道修正系数采用表 2.3所示 表2.3 车道数修正系数采用值 路段服务水平评价标准采用美国《道路通行能力手册》,如表2.4所示 表2.4 路段服务水平评价标准

由路段流量的调查结果,并且根据交叉口的间距、路段等级、车道数等对路段的通行能力进行了修正。在此基础上对路段的交通负荷进行了分析。 路段机动车车道设计通行能力的计算如下: δ m c p m k a N N = (1) 式中: m N —— 路段机动车单向车道的设计通行能力(pcu/h ) p N —— 一条机动车车道的路段可能通行能力(pcu/h ) c a —— 机动车通行能力的分类系数,快速路分类系数为0.75;主干道分类 系数为0.80;次干路分类系数为0.85;支路分类系数为0.90。 m k —— 车道折减系数,第一条车道折减系数为 1.0;第二条车道折减系数 为0.85;第三条车道折减系数为0.75;第四条车道折减系数为0.65.经过累加,可取单向二车道 m k =1.85;单向三车道 m k =2.6;单向四车道 m k =3.25; δ—— 交叉口影响通行能力的折减系数,不受交叉口影响的道路(如高架 道路和地面快速路)δ=1;该系数与两交叉口之间的距离、行车速度、绿信比和车辆起动、制动时的平均加、减速度有关,其计算公式如下: ?+++= b v a v v l v l 2/2///δ (2) l —— 两交叉口之间的距离(m ); a —— 车辆起动时的平均加速度,此处取为小汽车0.82/s m ; b —— 车辆制动时的平均加速度,此处取为小汽车1.662/s m ; ?—— 车辆在交叉口处平均停车时间,取红灯时间的一半。 Np 为车道可能通行能力,其值由路段车速来确定: 表4.1 Np 的确定

数值分析计算方法试题集及答案

数值分析复习试题 第一章 绪论 一. 填空题 1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误 差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 位;又取 1.73≈-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得 到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2, 如果取0 1.41y ≈作计算,则计算到10y 时,误 差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值 14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3

路区间通过能力计算办法

路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行

图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=―――― (1) T周 式中:N――平行运行图通过能力(对数或列数); 1440――一昼夜时分; T周――运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为:

计算方法各章习题及答案

第二章 数值分析 2.1 已知多项式432()1p x x x x x =-+-+通过下列点: 试构造一多项式()q x 通过下列点: 答案:54313 ()()()3122 q x p x r x x x x x =-=- ++-+. 2.2 观测得到二次多项式2()p x 的值: 表中2()p x 的某一个函数值有错误,试找出并校正它. 答案:函数值表中2(1)p -错误,应有2(1)0p -=. 2.3 利用差分的性质证明22212(1)(21)/6n n n n +++=++. 2.4 当用等距节点的分段二次插值多项式在区间[1,1]-近似函数x e 时,使用多少个节点能够保证误差不超过 61 102 -?. 答案:需要143个插值节点. 2.5 设被插值函数4()[,]f x C a b ∈,() 3()h H x 是()f x 关于等距节点 01n a x x x b =<<<=的分段三次艾尔米特插值多项式,步长b a h n -= .试估计() 3||()()||h f x H x ∞-. 答案:() 4 43||()()||384 h M f x H x h ∞-≤. 第三章 函数逼近 3.1 求()sin ,[0,0.1]f x x x =∈在空间2 {1,,}span x x Φ=上最佳平方逼近多项式,并给 出平方误差. 答案:()sin f x x =的二次最佳平方逼近多项式为

-522sin ()0.832 440 710 1.000 999 10.024 985 1x p x x x ≈=-?+-, 二次最佳平方逼近的平方误差为 0.1 22-1220 (sin )())0.989 310 710x p x dx δ=-=??. 3.2 确定参数,a b c 和,使得积分 2 1 2 1 (,,)[I a b c ax bx c -=++-?取最小值. 答案:810, 0, 33a b c ππ =- == 3.3 求多项式432()251f x x x x =+++在[1,1]-上的3次最佳一致逼近多项式 ()p x . 答案:()f x 的最佳一致逼近多项式为3 2 3 ()74 p x x x =++ . 3.4 用幂级数缩合方法,求() (11)x f x e x =-≤≤上的3次近似多项式6,3()p x ,并估计6,3||()()||f x p x ∞-. 答案: 236,3()0.994 574 650.997 395 830.542 968 750.177 083 33p x x x x =+++, 6,3||()()||0.006 572 327 7f x p x ∞-≤ 3.5 求() (11)x f x e x =-≤≤上的关于权函数 ()x ρ= 的三次最佳平方逼近 多项式3()S x ,并估计误差32||()()||f x S x -和3||()()||f x S x ∞-. 答案:233()0.994 5710.997 3080.542 9910.177 347S x x x x =+++, 32||()()||0.006 894 83f x S x -=,3||()()||0.006 442 575f x S x ∞-≤. 第四章 数值积分与数值微分 4.1 用梯形公式、辛浦生公式和柯特斯公式分别计算积分1 (1,2,3,4)n x dx n =? ,并与 精确值比较. 答案:计算结果如下表所示

计算方法复习题

软工13计算方法复习题 1、对下面的计算式做适当的等价变换,以避免两个相近的数相减时的精度损失。 (1))ln()1ln(x x -+,其中x 较大 (2)x x -+12,其中x 较大 222、已知函数方程0)ln(3)(=--=x x x f 有一正根,请完成以下几方面的工作: (1)分析并选定一个含有这一正根的区间[a 0 , b 0],以便于用二分法求解; (2)验证在[a 0 , b 0]上用二分法求根的可行性,并计算逐步缩小的区间[a 1 , b 1] 和[a 2 , b 2]; (3)若考虑用简单迭代法求此根,试构造一个在[a 0 , b 0]上能保证收敛的迭代式)(1k k x x ?=+。 解: (1)把方程的根看成y=3-x 和y=ln(x)的交点,经分析可取含根区间[1.0 , 3.0] (2)经验算可得f(1.0)*f(3.0)<0,另f ’(x)在[1.0 , 3.0]上不变号,f(x)单调,二分法可行 (3)迭代式)ln(31k k x x -=+从迭代收敛定理两方面作完整讨论,知迭代式能保证收敛 3、用Doolittle 分解法求解线性方程组????? ?????=?????????????????????564221231112321x x x (要求写明求解过程)。 解:(1)先对系数矩阵A 作LU 分解得A=LU=?? ?? ????????????????5/32/32/511 215/32/112/11 (2)由L Y=B 解出Y=(4,4,3/5)T ,由UX=Y 解出X=(1,1,1)T 4、关于某函数y =f (x ),已知如下表所示的一批数据 (1)由上表中的数据构建差商表,并求出各阶差商; (2)分别用二点、三点牛顿插值法计算f (0.75)的近似值; (3)若用bx ae y =来拟合这一批数据,试求出系数a 和b (提示:两边取自然对数得ln y =ln a +bx , 令u =ln y ,问题转化为求拟合直线u =ln a +bx ); (4)分别用复化梯形积分和复化辛普森积分计算 ? 20 )(dx x f 的近似值。

计算方法试题集及答案(新)

1.* x 为精确值 x 的近似值;() **x f y =为一元函数 ()x f y =1的近似值; ()**,*y x f y =为二元函数()y x f y ,2=的近似值,请写出下面的公式:**e x x =-: *** r x x e x -= ()()()*'1**y f x x εε≈? ()() () ()'***1**r r x f x y x f x εε≈ ? ()()()() ()* *,**,*2**f x y f x y y x y x y εεε??≈?+??? ()()()()() ** * *,***,**222r f x y e x f x y e y y x y y y ε??≈ ?+??? 2、 计算方法实际计算时,对数据只能取有限位表示,这时所产生的误差叫 舍入误差 。 3、 分别用2.718281,2.718282作数e 的近似值,则其有效数字分别有 6 位和 7 1.73≈(三位有效数字)-21 1.73 10 2 ≤?。 4、 设121.216, 3.654x x ==均具有3位有效数字,则12x x 的相对误差限为 0.0055 。 5、 设121.216, 3.654x x ==均具有3位有效数字,则12x x +的误差限为 0.01 。 6、 已知近似值 2.4560A x =是由真值T x 经四舍五入得到,则相对误差限为 0.0000204 . 7、 递推公式,??? ? ?0n n-1y =y =10y -1,n =1,2,L 如果取 0 1.41y =≈作计算,则计算到10y 时,误差为 81 10 2 ?;这个计算公式数值稳定不稳定 不稳定 . 8、 精确值Λ14159265.3* =π,则近似值141.3*1=π和1415.3*2=π分别有 3 位和 4 位有效数字。 9、 若* 2.71828x e x =≈=,则x 有 6 位有效数字,其绝对误差限为1/2*10-5 。 10、 设x*的相对误差为2%,求(x*)n 的相对误差0.02n 11、近似值* 0.231x =关于真值229.0=x 有( 2 )位有效数字; 12、计算方法主要研究( 截断 )误差和( 舍入 )误差; 13、为了使计算 ()()23 346 10111y x x x =+ +- --- 的乘除法次数尽量地少,应将该表达式改

数值计算方法试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知/⑵=12 /⑶= 1.3 ,则用辛普生(辛卜生)公式计算求得 J 1 /(x )d“ ,用三点式求得广⑴? ___________ 。 答案:2.367, 0.25 2、/(1) = -1, /⑵=2, /(3) = 1,则过这三点的二次插值多项式中F 的系数为 ___________ ,拉格 朗日插值多项式为 ________________________ L 、(x) — — (x — 2)(x — 3) — 2(x — l)(x — 3) — — (x — l)(x — 2) 3、近似值疋=0.231关于真值% = 0.229有(2 )位有效数字; 4、设/(J 可微,求方程Y = /U )的牛顿迭代格式是( 答案畑 1 一厂 (x“) 5、 对/V ) = P + x + l 差商/'[0,1,2,3]=( 1 ),/[0丄2,3,4] =( 0 ); 6、 计算方法主要研究(裁断)误差和(舍入)误差; 7、 用二分法求非线性方程f (x )=0在区间@力)内的根时,二分〃次后的误差限为 b-a (耐 ); 8、已知人1)=2,人2)=3,人4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15 ); 11、 两点式高斯型求积公式匸心皿利"曲4[磴#)+磴为]),代数精度为 (5); … 3 4 6 y = 10 ---------- 1 -------- ------------ T 12、 为了使计算 兀一 1匕一1广 仗一1)的乘除法次数尽量地少,应将该表达 式改写为〉'=1°+(3+(4-6/””,『=口,为了减少舍入谋差,应将表达式^/555^-^/i^ 答案:-1, );

算法考试试题及答案

一、填空题(本题10分,每空1分) 1、算法的复杂性是的度量,是评价算法优劣的重要依据。 2、设n为正整数,利用大“O(·)”记号,将下列程序段的执行时间表示为n的函数,则下面 程序段的时间复杂度为。 i=1; k=0; while(i

铁路区间通过能力计算办法

铁路区间通过能力计算办法 铁道部 铁路区间通过能力计算办法 1984年10月1日,铁道部 第一章总则 第1条为了保证铁路完成和超额完成不断增长的运输任务,以适应国民经济发展和国防建设对铁路运输的需要,铁路必须大力加强运输组织工作,采取有效措施,积极提高铁路线路通过能力。 铁路线路通过能力,是根据现有技术设备、行车组织方法及规定的技术作业过程确定的在一昼夜内所能通过的最大列车对数或列数。 铁路线路通过能力,系按区间、车站、机务段设备和整备设备、车站给水设备、电气化铁路的供电设备分别确定,以其中最小的通过能力,作为该区段的限制通过能力。 为了计算铁路区间通过能力,本办法规定了铁路区间通过能力的计算办法。 第2条铁路区间通过能力,是指每一区间在一昼夜内所能通过的列车数量(列数或对数)。 区间通过能力的大小,在一定的行车组织条件下,主要取决于正线数目、区间长度、线路纵断面、信联闭设备、牵引机车类型和列车运行速度等因素。 第3条计算区间通过能力时,应先计算平行运行图通过能力,再计算非平行运行图通过能力。 平行运行图通过能力,一般应按货物列车对数或列数计算;非平行运行图通过能力,系在规定旅客列车数量的基础上,以扣除系数的方法计算出旅客列车和货物列车的对数或列数。 第4条铁路区间通过能力,由各铁路局或分局负责计算,并填制区间通过能力计算表及区间通过能力汇总表,经铁路局审核后报铁道部运输局。 第5条本办法系根据我国铁路现有技术设备条件及多年来编制和执行列车运行图的经验,规定了铁路区间通过能力的一般计算方法。个别特殊情况,由铁路局根据具体情况和特点,进行图解和计算。 第二章平行运行图区间通过能力 第6条平行运行图区间通过能力,应分别对区段内每一区间计算。运行图周期最大的区间通过能力,即为该区段的限制区间通过能力。 运行图周期,是指一定类型运行图的一组列车占用区间的总时间。其组成因素,在非自动闭塞区段包括:列车区间运行时分,起停车附加时分及列车在车站的间隔时间。在自动闭塞区段为追踪列车间隔时间。 平行运行图区间通过能力的基本关系式如下: 1440 N=———— (1) T周 式中:N——平行运行图通过能力(对数或列数); 1440——一昼夜时分; T周——运行图周期。 电力牵引区段,由于每日须进行接触网检修,因此,其计算公式为: 1440—t网 N=---------------- (2)

相关文档
相关文档 最新文档