文档库 最新最全的文档下载
当前位置:文档库 › 半导体(电子)及太阳能电池材料多晶硅

半导体(电子)及太阳能电池材料多晶硅

半导体(电子)及太阳能电池材料多晶硅
半导体(电子)及太阳能电池材料多晶硅

半导体(电子)及太阳能电池材料的多晶硅

一、概要

1、从锗到硅

锗:融点960℃用石英或炭的容器来熔化。

硅:融点1420℃炭和石英反应生成。(沸点:2355℃)

最初半导体的产生从生产使用方便的锗材料开始的,随着技术进步,开始使用了特别显著性质的硅(从1965年的硅的生产量超过了锗的生产量),用于太阳能电池就从这时开始的。

2、硅的特性

半导体:导体、绝缘物的中间导电物。

导电:有P型与N型。根据温度有所变化,P型N型的结合。(P 型:空穴;N型:电子)

常温下,本征半导体硅的电导率是230000Ω·cm,1100℃时为0.01Ω·cm.纯度为9个9时为100Ω·cm,10个9时为1000Ω·cm。所含杂质越多,导电性越好。

3、高纯度多晶硅的技术变化

进入1950年开始工业性生产(美国Du-pont)日本是从进入1960年代,6个厂家开始生产,以后开始摸索新的尝试。

现状TCS 为原材料,用西门子法为主流MONO 硅烷的西门子法或FBR法也实用。

开始做的是块状,现在做的是棒状。

4、多晶硅生产厂家的变化的现状

当初有过各电子器具厂家自己制造多晶硅、单晶硅、硅片素子(Device)的时期。后来此行业渐渐开始专业化,垄断化,现在只剩8家。

硅的循环(市场需求量):一般4.5年为一个周期,多晶硅厂家来说10年间(有过2次周期),这期间有设新厂的,也有倒闭的,但总的来说厂家的数目没变。

中国目前可能有30家正在发展。

5、今后的展望

从来是主要用于半导体(电子),太阳能级只是利用多晶硅的等外品,或是废料就可。今后的潮流是太阳能级别的多晶硅的需要更加伸展,新加入此行业也随着增多,一部分多晶硅厂家转为生产太阳能级别的专业厂家。

太阳能级别的多晶硅的新的制造法也有很多种提案正在往实用化方面试验中。

a.SiCl4的锌还原法

b.TCS (SiHCl3)的FBR的方法(该方法做出的多晶硅纯度高,而且该方法节电,可

以降低成本,但目前没有工业化)

c.高温碳表面上反应,生产液状多晶硅的方法

d.把金属硅精制,提高纯度的方法

二、TCS 为原料的西门子法

半导体或太阳能级别的多晶硅纯度非常高,特别是对导电度影响很大的周期表里的Ⅲ族,Ⅴ族元素(B、Al、P、As等),半导体中利用时要求10–11(0.01ppba)的高度水准。要制造这样高纯度的东西,首先从原料上制造容易精制的液体或气体状的硅化合物,以它为主再蒸馏、吸收等物理的方法来精制。

从高纯度精制出的中间原料中,以没有污染的条件为基础,还原或热分解的反应制造出多晶硅。

1、三氯氢硅(TCS)的制造

a、合成

工业用金属硅(纯度为98%)与氯化氢(HCl)反应来合成

Si+3HCl=SiHCl3+H2(300℃时90%) (1)(90%是摩尔比)

Si+4HCl=SiCl4+2H2(高温会增加)(2)

此反应在280℃左右开始,是发热反应。所以需要保证冷却到300℃前后,不然超温就引起四氯化硅的增多。最高温度不要超过320℃,温度低于280℃时不反应,反应最佳温度是300℃.

b、转化(conversion)

(TCS)的合成约10%多晶硅的制造的反应里制造1㎏,生产16-18㎏的四氯化硅,把这个

,有使用金属硅的和不使用金属硅的。

STC作原料变换成SiHCl

3

Si+3SiCl4+2H2=4SiHCl3 (550℃)(3)冷氢化

SiCl4+H2= SiHCl3+ HCl (clean conversion) (1250℃)(4)热氢化

这里开始的反应的一部分STC变化成TCS,未反应的成分,分离回收后再起反应。

冷氢化需要加更多的工序来去除硅粉中的杂质,要得到电子级的多晶硅还是用热氢化方法比较好。

2.TCS的精馏

从金属硅制出来的TCS里含不纯物,有氯化物混在里面,还有同时生成的STC。有时用水蒸气来除掉硼。精制的最后阶段,用蒸馏或吸着的物理手段防止或除掉添加剂等不纯物的污染。为了制造比一般化学制品还要高层次的多晶硅,以TCS为中间原料,经数十层的蒸馏塔。塔也有几座,所有等于蒸馏数百层。制造太阳能电池级别的时候可以简略蒸馏过程,降低成本(不纯物的纯度可降2.3个百分点)。

3.反应工程

西门子法是通过加热保证1000℃以上的情况下送TCS和H2,那么很细的硅芯表面起反应,析出粗状的多晶硅棒。

副原料未使用的H2对TCS需要数倍的摩尔比,跟TCS同样要十分精制品。

a 、硅芯的通电加热

高纯度多晶硅电阻在室内温度里大约102-103Ω·cm 在进行反应中 1000℃以上的温度里是10-2Ω·cm有很大变化,反应炉里设置的通硅芯线(slimrod)是保证1000℃的通电加热的特殊手段。

1)预备加热的方法

硅芯的温度达300℃-400℃时电阻为1Ω·cm对硅芯1m流100V电压。具体的硅芯加热方法有从反应炉外边加热法,还有炉内设置的加热器法,还有炉内送N2等,不活性气体的等离子加热法等都在使用,

2)增高电压的方法

做硅芯时加杂质,使用时电阻低的东西,通上高压电的方法。此方法线很多厂家正在使用。此方法因使用高压电,需要高标准的绝缘,所以这方面需要考虑

b、多晶硅棒加热用电源

多晶硅的电阻随温度所变,温度高电阻反而降低,与通常的金属相反的温度特性。为了保证多晶硅的流电量(稳定温度),需要特定电流的电源。从前使用过IVR(induction voltge regulater)方法,现在很多厂家使用硅可控整流器。反应的初期,加热只有几mmn硅芯,需要100-150A的电流开始,达到直径100mm的多晶硅棒为止,需1500A的电流,对多晶硅棒通电时,需要的电压反而越粗越低。

VI1/3=一定

在炉内有复数的多晶硅棒相互加热,所以实际是小于比上面公式算出的电流量,也能保持一定的所需要的温度。

怎么说也是用在多晶硅反应炉的电源,是从高电压低电流开始,移到大电流的。所以需要有对应此方面的特殊东西。

C、生成多晶硅的反应

在炉内起以下2中主要反应

4SiHCl3=Si+3SiCl4+2H2 (5) (主反应)

SiHCl3+H2=Si+3HCl (6)

这个反应制造哪一个TCS时,逆反应时(5)和(3)(6)和(1)实际起反应最多的是(5),供给反应炉中的TCS中的多晶硅的含量中只析出10%,剩下的H2TCS SiCl4 HCl等混合气排出炉外。

既然5为主反应,为什么反应叫做还原反应?

日本专家做过72对棒的还原炉,一次产多晶硅8吨,硅棒是130毫米。

d、硅芯的制作法

1)从多晶硅棒切出的方法

2)从多晶硅溶液中拉出的方法

●?20-25mm的棒,用高周波的加热变成液状从那里拉出。

●?90-100mm的棒上部用特殊的高周波的电线圈加热溶解,同时拉出7根硅芯

●石英坩锅里溶解的液体,从低部小孔一点一点凝固起来,拉出细硅棒。

日方拉单晶在真空中是每分钟5毫米(因为冷却慢),我方是每分钟7毫米。

4、处理从炉内排出的气体

从炉排出的气体,主要成分是H2未反应的TCS STC HCl dichlosilanl等,为再利用分离回收。用冷却、压缩、吸收、精馏、吸附组成(CDI)工艺系统。吸着里使用的活性炭是从有机物量化炭化而成。含磷所以吸附的活性炭,再利用时产生P的氯化物,必须十分注意。反应炉内发生的少量高分子量的硅氯化物(polych loro silane),蓄积在回收装置内。所以设备维修时必须注意这一点,防止出现故障。

5、多晶硅棒的加工

反应炉内生成的硅棒切成合适大小,或破碎、洗净、干燥后成为产品。

太阳能电池用多晶硅时,质量比半导体(电子级)稍低一点,所以洁净室标准也低一点,洗净工程也可省略,最终成本也降低。这种方法很多厂家在应用中。

多晶硅加工时带来的污染存在于硅棒的外面,在后面的清洗过程中可以清洗掉,切割时

用耐高温的金刚石。

6、产品质量分析

高纯度多晶硅比通常的工业品纯度要求很高,太阳能电池级别的产品也对周期表中Ⅲ族,Ⅴ族的不纯物要求在10-8(10ppba 电阻为10Ω·cm )以下的标准。多晶硅样品,用浮游带域精制法变成单晶硅测定它,一般都在用此方法。还有红外光线,floating zonemelting process,放射性化学分析法等。

日方用四探针测试仪来测,我们用二探针测试仪,主要测的是电阻率。测试时取样不要取硅棒截面的中心部分,每次取大约200毫米的长度,直径17~18毫米,取出后,去掉两头的部分。取样后合格的直接进带,不合格的再清洗。(太阳能级的杂质含量:V族10ppb,Ⅲ族10ppb,电子级的杂质含量:V族0.1或0.2,Ⅲ族0.1 ppb)

7、火灾例与安全对策

多晶硅制造中的原料TCS 在反应炉内产生的STC 及HCl对人有害,特别是TCS是在消防法里认定为最容易燃烧的特殊引火物。燃烧中有害的HCl产生,所以使用或处理中特别注意。还有因H2,因TCS引起火灾、爆炸、烧伤都经历过。必须彻底吸取教训,掌握性质,遵守消防法的前提下建立新的工厂。

SiHCl3(燃点:-27.8℃自燃点:104.4℃沸点:31.8℃着火点:100℃)

SiHCl3易着火,当SiHCl3的温度达到100℃时,一遇到空气中的O2就着火,着火时用大量的水来灭火,最好在SiHCl3容易泄露的地方,储备一些NaOH溶液。

SiHCl3有恶臭的味道,当闻到臭味时,应及时屏住呼吸,然后进行处理。

针对SiHCl3着火,工人在上岗前应该安排消防演练,发生泄露是要及时要戴口罩和眼罩。

H2的爆炸下限是4%。

要有防电意识,不要用湿手去接触电源开关。

多晶硅太阳能电池

摘要 在全球气候变暖、人类生态环境恶化、常规能源短缺并造成环境污染的形势下,可持续发展战略普遍被世界各国接受。光伏能源以其具有充分的清洁性、绝对的安全性、资源的相对广泛性和充足性、长寿命以及免维护性等其它常规能源所不具备的优点,被认为是二十一世纪最重要的新能源。 由于不可再生能源的减少和环境污染的双重压力,使得光伏产业迅猛发展;太阳电池的发展也日新月异。太阳能电池的发展历程,详细介绍了多晶硅太阳能电池的各种工艺,多晶硅太阳能电池的结构、特点,以及多晶硅的制备方法,并展望了多晶硅太阳能电池的研究趋势。 关键词:多晶硅太阳能电池发展趋势

目录 绪言 (3) 一.太阳能电池概述 (4) 1.1太阳能电池简介 (4) 1.2太阳能电池原理 (4) 1.3太阳能电池材料 (5) 二.多晶硅太阳电池的制造 (6) 三.多晶硅生产工艺分析 (7) 3.1不同硅原子种类太阳能电池商业化的比较 (7) 3.2多晶硅太阳能电池生产工艺分析 (8) 3.3多晶硅太阳能电池影响因素分析 (8) 四.多晶硅电池应用前景分析 (9) 参考文献 (10)

绪言 鉴于常规能源供给的有限性和环保压力的增加, 世界上许多国家掀起了开发和利用新能源的热潮。在新能源中, 特别引人瞩目的是不断地倾注于地球的永久性能源——太阳能。太阳能是一种干净、清洁、无污染、取之不尽用之不竭的自然能源,将太阳能转换为电能是大规模利用太阳能的重要技术基础, 世界各国都很重视。 利用太阳能有许多优点,光伏发电将为人类提供主要的能源,但目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,提高太阳电池的光电转换效率,降低生产成本应该是我们追求的最大目标,从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。多晶硅,这种原本主要用作电子芯片领域的原材料,在中国成为各地争上的产业,虽然在2008年曾因金融危机的影响,但是作为一种新型的产业其具有极强的生命力。中国电子材料行业协会给国家发改委的一份行业报告显示,到2009年6月底,我国已有19家企业多晶硅项目投产,产能规模达到3万吨/年,另有10多家企业在建,扩建多晶硅项目,总规划产能预计到2010年将超过10万吨。而2008年我国多晶硅的总需求量才17000吨。这些产能若全能兑现,将超过全球需求量的2倍以上。

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

!!!太阳能电池制程工艺-培训资料

员 工 培 训 资 料 2008年09月04日初订 目录 第一章太阳能概况 (2) 第二章太阳能电池的发明和未来前景 (3) 1.太阳能电池发明 (3)

2.太阳能电池前景 (4) 第三章太阳能光伏技术 (5) 1.光伏效应 (5) 2.光伏电池分类 (5) 3.晶体硅生产一般工艺流程 (5) 第四章硅太阳能电池的工作原理及其结构 (12) 第五章太阳能电池基本参数 (16) 1.标准测试条件 (16) 2.太阳电池等效电路 (16) 3.伏安(I-V)特性曲线 (17) 4.开路电压 (18) 5.短路电流 (18) 6.最大功率点 (18) 7.最佳工作电压 (18) 8.最佳工作电流 (18) 9.转换效率 (18) 10.填充因子(曲线因子) (19) 12.电压温度系数 (19) 第一章太阳能概况 太阳能是各种可再生能源中最重要的基本能源,生物质能、风能、海洋能、水能等都来自太阳能,广义地说,太阳能包含以上各种可再生能源。太阳能作为可再生能源的一种,则是指太阳能的直接转化和利用。通过转换装置把太阳辐射

能转换成热能利用的属于太阳能热利用技术,再利用热能进行发电的称为太阳能热发电,也属于这一技术领域;通过转换装置把太阳辐射能转换成电能利用的属于太阳能光发电技术,光电转换装置通常是利用半导体器件的光伏效应原理进行光电转换的,因此又称太阳能光伏技术。 二十世纪50年代,太阳能利用领域出现了两项重大技术突破:一是1954年美国贝尔实验室研制出6%的实用型单晶硅电池,二是1955年以色列Tabor提出选择性吸收表面概念和理论并研制成功选择性太阳吸收涂层。这两项技术突破为太阳能利用进入现代发展时期奠定了技术基础。 70年代以来,鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发利用太阳能和可再生能源的热潮。1973年,美国制定了政府级的阳光发电计划,1980年又正式将光伏发电列入公共电力规划,累计投入达8亿多美元。1992年,美国政府颁布了新的光伏发电计划,制定了宏伟的发展目标。日本在70年代制定了“阳光计划”,1993年将“月光计划”(节能计划)、“环境计划”、“阳光计划”合并成“新阳光计划”。德国等欧共体国家及一些发展中国家也纷纷制定了相应的发展计划。90年代以来联合国召开了一系列有各国领导人参加的高峰会议,讨论和制定世界太阳能战略规划、国际太阳能公约,设立国际太阳能基金等,推动全球太阳能和可再生能源的开发利用。开发利用太阳能和可再生能源成为国际社会的一大主题和共同行动,成为各国制定可持续发展战略的重要内容。 二十多年来,太阳能利用技术在研究开发、商业化生产、市场开拓方面都获得了长足发展,成为世界快速、稳定发展的新兴产业之一。 第二章太阳能电池的发明和未来前景 1.太阳能电池发明 1839年法国物理学家A·E·贝克勒尔意外的发现,两片金属进入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他把这种现象称为光生伏打效应。1883年,有人在半导体硒和金属接触处发现了固体光伏效应。后来就把能够产生光生伏打效应的器件称为光伏器件。由于半导体PN结器件在阳光下光电

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

太阳能电池板原理

太阳能电池板原理

随着全球能源日趋紧张,太阳能成为新型能源得到了大力的开发,其中我们在生活中使用最多的就是太阳能电池了。太阳能电池是以半导体材料为主,利用光电材料吸收光能后发生光电转换,使它产生电流,那么太阳能电池的工作原理是怎么样的呢?太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能。

一、太阳能电池的物理基础 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向型区,空穴被驱向P型区,从而使凡区有过剩的电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。 如果半导体内存在P—N结,则在P型和N型交界面两边形成势垒电场,能将电子驱向N区,空穴驱向P区,从而使得N区有过剩的电子,P区有过剩的空穴,在P—N结附近形成与势垒电场方向相反光的生电场。 制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。下

面我们以硅太阳能电池为例,详细介绍太阳能电池的工作原理。 1、本征半导体 物质的导电性能决定于原子结构。导体一般为低价元素,它们的最外层电子极易挣脱原子核的束缚成为自由电子,在外电场的作用下产生定向移动,形成电流。高价元素(如惰性气体)或高分子物质(如橡胶),它们的最外层电子受原子核束缚力很强,很难成为自由电子,所以导电性极差,成为绝缘体。常用的半导体材料硅(Si)和锗(Ge)均为四价元素,它们的最外层电子既不像导体那么容易挣脱原子核的束缚,也不像绝缘体那样被原子核束缚的那么紧,因而其导电性介于二者之间。 将纯净的半导体经过一定的工艺过程制成单晶体,即为本征半导体。晶体中的原子在空间形成排列整齐的点阵,相邻的原子形成共价键。

《太阳能电池基础与应用》太阳能电池-第四章-4

第四章
4.1 3 4.2 4.3 3 4.4 4.5 4.6
太阳电池基础
光生伏特效应 光生载流子的浓度和电流 太阳电池的伏安特性 太阳电池的性能表征 太阳电池的测试技术 太阳电池的效率分析

4.6 太阳电池效率分析-极限效率
太阳电池的理论效率
VOC I SC ? FF ?? ?100% Pin
当入射太阳光谱AM0或AM1.5确定后, 为获得较高的转换效率, 需要增加Voc、Isc和FF
填充因子FF
在理想情况下(当voc>10),填充因子FF仅是开路电压Voc的函数
Voc的函 数
voc ? ln(voc ? 0.72) q FF ? voc ? Voc , voc ? 1 kT

4.6 太阳电池效率分析-极限效率
短路电流Isc
I sc ? ? I L I L ? qAG ? Le ? W ? Lh ? ,
假设到达电池表面的每一个能量大于材料禁 带宽度Eg的光子,会产生一个电子-空穴对。 将光通量对波长进行积分,可以得到产生率G。
开路电压Voc
Voc ?
2
? kT ? I L ln ? ? 1? q ? I0 ?
? Eg ? I 0 =1.5 ? 10 exp ? ? ? kT ? ?
5
Eg ) I0∝ ni ? N C N V exp(? kT
禁带宽度Eg减小,I0增加,Voc减小

4.6 太阳电池效率分析-极限效率
最佳带隙宽度
禁带宽度Eg减小
Isc增加
Voc减小

单晶硅、多晶硅、非晶硅、薄膜太阳能电池地工作原理及区别1

单晶硅、多晶硅、非晶硅、薄膜太阳能电池 的工作原理及区别 硅太阳能电池的外形及基本结构如图1。其中基本材料为P型单晶硅,厚度为0.3—0.5mm左右。上表面为N+型区,构成一个PN+结。顶区表面有栅状金属电极,硅片背面为金属底电极。上下电极分别与N+区和P区形成欧姆接触,整个上表面还均匀覆盖着减反射膜。 当入发射光照在电池表面时,光子穿过减反射膜进入硅中,能量大于硅禁带宽度的光子在N+区,PN+结空间电荷区和P区中激发出光生电子——空穴对。各区中的光生载流子如果在复合前能越过耗尽区,就对发光电压作出贡献。光生电子留于N+区,光生空穴留于P区,在PN+结的两侧形成正负电荷的积累,产生光生电压,此为光生伏打效应。当光伏电池两端接一负载后,光电池就从P区经负载流至N+区,负载中就有功率输出。 太阳能电池各区对不同波长光的敏感型是不同的。靠近顶区湿产生阳光电流对短波长的紫光(或紫外光)敏感,约占总光源电流的5-10%(随N+区厚度而变),PN+结空间电荷的光生电流对可见光敏感,约占5 %左右。电池基体域

产生的光电流对红外光敏感,占80-90%,是光生电流的主要组成部分。 2.单晶硅太阳能电池 单晶硅太阳能电池是当前开发得最快的一种太阳能电池,它的构成和生产工艺已定型,产品已广泛用于宇宙空间和地面设施。这种太阳能电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳能电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。有的也可使用半导体器件加工的头尾料和废次单晶硅材料,经过复拉制成太阳能电池专用的单晶硅棒。将单晶硅棒切成片,一般片厚约0.3毫米。硅片经过成形、抛磨、清洗等工序,制成待加工的原料硅片。加工太阳能电池片,首先要在硅片上掺杂和扩散,一般掺杂物为微量的硼、磷、锑等。扩散是在石英管制成的高温扩散炉中进行。这样就在硅片上形成PN结。然后采用丝网印刷法,将配好的银浆印在硅片上做成栅线,经过烧结,同时制成背电极,并在有栅线的面涂覆减反射源,以防大量的光子被光滑的硅片表面反射掉,至此,单晶硅太阳能电池的单体片就制成了。单体片经过抽查检验,即可按所需要的规格组装成太阳能电池组件(太阳能电池板),用串联和并联的方法构成一定的输出电压和电流,最后用框架和封装材料进行封装。用户根据系统设计,可

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

《太阳能电池基础与应用》太阳能电池-第四章-1

第四章 太阳电池基础 光生载流子的浓度和电流4.2太阳电池的测试技术4.4光生伏特效应34.1太阳电池的伏安特性34.34.5太阳电池的效率分析 太阳电池的性能表征4.6

太阳电池基本结构 以晶体硅太阳电池为例。 (1)以p型晶体硅半导体材料为衬底; (2)为了减少光的反射损失,常制作绒面减反结构(3)采用扩散法在硅衬底上制作重掺杂的n型层(4)PECVD生长SiO 减反层 2 (5)在n型层上面制作金属栅线,作为正面接触电极(6)在衬底背面制作金属膜,作为背面欧姆接触电极

半导体 吸收光子产生电子空穴对,电子空穴对在p-n结内建电场作用下分离,从而在p-n结两端产生电动势。 p-n结是太阳电池的核心 光生载流子形成一个与热平衡结电场方向相反的电场,使得势垒降低;光生电流与正向结电流相等时,pn结建立稳定的电势差,即光生电压 Electric Field

载流子运动的角度 太阳电池工作原理:当太阳光照射到太阳电池上并被吸收时,其中 的光子能把价带中电子激发到导带上去,形成 能量大于禁带宽度E g 自由电子,价带中留下带正电的自由空穴,即电子—空穴对,通常 称它们为光生载流子。自由电子和空穴在不停的运动中扩散到p-n结的空间电荷区,被该区的内建电场分离,电子被扫到电池的n型一例,空穴被扫到电池的p型一侧,从而在电池上下两面(两极)分别形成了正负电荷积累,产生“光生电压”,即“光伏效应”。如果在电 池的两端接上负载,在持续的太阳光照下,就会不断有电流经过负载。这就是太阳电池的基本工作原理。

能带的角度 持续光照条件下,大量的光生载流子产生,光生电子和空穴被源源不断地分别扫到n型和p型一两侧,致使n区和p区费米能级的分裂,若太阳电池断路,光生电压V即为开路电压V 。若外电路短路,pn结正向电流为 oc 零,外电路电流为短路电流,理想情况下也就是光电流。

太阳能电池基础知识

一,基础知识 (1)太阳能电池的发电原理 太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置. ?半导体的光电效应所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和电子的结合力降低,电子摆脱原子核的束搏,成为自由电子. 光激励 核核 电子 空穴电子 电子对?PN 结合型太阳能电池 太阳能电池是由 P 型半导体和 N 型半导体结合而成,N 型半导体中含有较多的空穴,而P 型半导体中含有较多的电子 ,当 P 型和 N 型半导体结合时在结合处会形成电势当芯 片在受光过程中,带正电的空穴往 P 型区移动,带负电子的电子往 N 型区移动,在接上连线和负载后,就形成电流.. (2)太阳能电池种类 - ++- - +P 型

铸 造 2 工 PN 结合(正面 N 极,反 面 P 极 ) 减 反膜形成 通过电极,汇集电 ※在现在的太阳能电池产品中,以硅半导体材料为主,其中又以单晶硅和多晶硅为代表.由于 其原材料的广泛性,较高的转换效率和可靠性,被市场广泛接受.非晶硅在民用产品上也有 广泛的应用(如电子手表,计算器等),但是它的稳定性和转换效率劣于结晶类半导体材料. 化合物太阳能电池由于其材料的稀有性和部分材料具有公害,现阶段未被市场广泛采用. ※现在太阳能电池的主流产品的材料是半导体硅,是现代电子工业的必不可少的材料,同时 以氧化状态的硅原料是世界上第二大的储藏物质. ※京瓷公司早在上世纪的八十年代就认识到多晶硅太阳能电池的光阔前景和美好未来,率先 开启多晶硅太阳能电池的工业化生产大门.现在已经是行业的龙头,同时多晶硅太阳能电 池也结晶类太阳能电池的主流产品(太阳能电池的 70%以上). (3)多晶硅太阳能电池的制造方法 空间用 民用 转换效率:24% 转换效率:10% 转换效率:8% (1400 度以上) 破锭(150mm *155mm ) N 极烧结 电极 印刷 ( 正 反

2019年多晶硅太阳能电池片企业发展战略和经营计划

2019年多晶硅太阳能电池片企业发展战略和经营计划 2019年4月

目录 一、行业发展趋势 (3) 1、宏观经济层面 (3) 2、行业环境层面 (3) 二、公司发展战略 (4) 三、公司经营计划 (5) 1、强化内控管理 (5) 2、加快技改进程 (5) 3、稳定现有客户资源,拓展优质新客户 (5) 4、推进品牌战略,提升企业形象 (6) 四、风险因素 (6) 1、客户集中风险 (6) 2、委外加工模式的风险 (6) 3、产品价格波动的风险 (7) 4、产业政策变动风险 (7) 5、竞争加剧的风险 (8) 6、资金压力及融资风险 (9)

一、行业发展趋势 1、宏观经济层面 根据《国家应对气候变化规划(2014-2020年)》,我国规划到2020年非化石能源占一次能源消费的比重达到15%左右;根据《中美气候变化联合声明》,中国计划2030年左右二氧化碳排放达到峰值且将努力早日达峰,并计划到2030年非化石能源占一次能源消费比重提高到20%左右。国家对于未来中长期的能源规划非常清晰。 现阶段,各项非化石能源对应的2020年和2030年发电量目标总和低于《中美气候变化联合声明》中的要求,考虑到风电和光伏的建设周期相对较短,因此用于填补发电量缺口的可能性较大。与风电相比,光伏发电更清洁,更有优势。以2020年为例,非化石能源发电量测算缺口659亿千瓦时,如果全部用光伏填补缺口相当于光伏并网从 100GW增加到155GW。由此可见,光伏发电的发展空间仍相当可观,电站运营的未来发展十分有前景。 2、行业环境层面 国内光伏电站运营商的竞争处于“一超多强”的格局,央企国电投独占鳌头,其后国企、民企群雄并起。由于电站运营属于资本密集型行业,进入壁垒较高,企业不但需要有雄厚的资金实力,还需要有持续的项目开发能力,因此大型国企的竞争优势较强。但民营企业依靠自身灵活多变的机制,强大的执行力,以及通过资本市场融资平台,

多晶硅太阳能电池生产工艺.docx

太阳能电池光电转换原理主要是利用太阳光射入太阳能电池后产生电子电洞对,利用P-N 接面的电场将电子电洞对分离,利用上下电极将这些电子电洞引出,从而产生电流。整个生产流程以多晶硅切片为原料,制成多晶硅太阳能电池芯片。处理工艺主要有多晶硅切片清洗、磷扩散、氧化层去除、抗反射膜沉积、电极网印、烧结、镭射切割、测试分类包装等。 生产工艺主要分为以下过程: ⑴ 表面处理(多晶硅片清洗、制绒) 与单晶硅绒面制备采用碱液和异丙醇腐蚀工艺不同,多晶硅绒面制备采用氢氟酸和硝酸配成的腐蚀液对多晶硅体表面进行腐蚀。一定浓度的强酸液对硅表面进行晶体的各相异性腐蚀,使得硅表面成为无数个小“金字塔”组成的凹凸表面,也就是所谓的“绒面”,以增加了光的反射吸收,提高电池的短路电流和转换效率。从电镜的检测结果看,小“金字塔”的底边平均约为10um 。主要反应式为: 32234HNO 4NO +3SiO +2H O Si +???→↑氢氟酸 2262SiO 62H O HF H SiF +→+ 这个过程在硅片表面形成一层均匀的反射层(制绒),作为制备P-N 结衬底。处理后对硅片进行碱洗、酸洗、纯水洗,此过程在封闭的酸蚀刻机中进行。碱洗是为了清洗掉硅片未完全反应的表面腐蚀层,因为混酸中HF 比例不能太高,否则腐蚀速度会比较慢,其反应式为:2232SiO +2KOH K SiO +H O →。之后再经过酸洗中和表面的碱液,使表面的杂质清理干净,形成纯净的绒面多晶硅片。 酸蚀刻机内设置了一定数量的清洗槽,各股废液及废水均能单独收集。此过程中的废酸液(L 1,主要成分为废硝酸、氢氟酸和H 2SiF 6)、废碱液(L 2,主要成分为废KOH 、K 2SiO 3)、废酸液(L 3,主要成分为废氢氟酸以及盐酸)均能单独收集,酸碱洗后均由少量纯水洗涤,纯水预洗废液(S 1、S 2、S 3)和两级纯水漂洗废水(W 1),收集后排入厂区污水预处理设施,处理达标后通过专管接入清流县市政污水管网。 此过程中使用的硝酸、氢氟酸均有一定的挥发性,产生的酸性废气(G 1-1、G 1-2),经设备出气口进管道收集系统,经厂房顶的碱水喷淋系统处理达标后排放。G 1-2与后序PECVD 工序产生的G 5(硅烃、氨气)合并收集后经过两级水吸收处理后经排气筒排放。

太阳能板相关知识

太阳能板相关知识 一、太阳能电池发电原理:太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程。 二、多晶硅太阳能电池和单晶硅太阳能电池是没有区别的。多晶硅太阳能电池和单晶硅太阳能电池的寿命和稳定性都很好。虽然单晶硅太阳能电池的平均转换效率比多晶硅太阳能电池的平均转换效率高1%左右,但是由于单晶硅太阳能电池只能做成准正方形(4个顶端是圆弧),当组成太阳能电池组件时就有一部分面积填不满,而多晶硅太阳能电池是正方形,不存在这个问题,因此对于太阳能电池组件的效率是一样的。 另外,由于两种太阳能电池材料的制造工艺不一样,多晶硅太阳能电池制造过程中消耗的能量要比单晶硅太阳能电池少30%左右 单晶硅电池具有电池转换效率高,稳定性好,但是成本较高。单晶硅电池早在20多年前就已突破光电转换效率20%以上的技术关口。 多晶硅电池成本低,转换效率略低于直拉单晶硅太阳能电池,材料中的各种缺陷,如晶界、位错、微缺陷,和材料中的杂质碳和氧,以及工艺过程中玷污的过渡族金属被认为是造成多晶硅电池光电转换率一直无法突破20%的关口。德国弗劳恩霍夫协会科研人员采用新技术,在世界上率先使多晶硅太阳能电池的光电转换率达到20.3%。 从固体物理学上讲,硅材料并不是最理想的光伏材料,这主要是因为硅是间接能带半导体材料,其光吸收系数较低,所以研究其他光伏材料成为一种趋势。其中,碲化镉(CdTe)和铜铟硒(CuInSe2)被认识是两种非常有前途的光伏材料,而且目前已经取得一定的进展,但是距离大规模生产,并与晶体硅太阳电池抗衡需要大量的工作去做。 单晶硅太阳能电池的特点:1.光电转换效率高,可靠性高; 2.先进的扩散技术,保证片内各处转换效率的均匀性; 3.运用先进的PECVD成膜技术,在电池表面镀上深蓝色的氮化硅减反射膜,颜色均匀美观; 4.应用高品质的金属浆料制作背场和电极,确保良好的导电性。多晶硅可作拉制单晶硅的原料,多晶硅与单晶硅的差异主要表现在物理性质方面。例如,在力学性质、光学性质和热学性质的各向异性方面,远不如单晶硅明显;在电学性质方面,多晶硅晶体的导电性也远不如单晶硅显著,甚至于几乎没有导电性。在化学活性方面,两者的差异极小。多晶硅和单晶硅可从外观上加以区别,但真正的鉴别须通过分析测定晶体的晶面方向、导电类型和电阻率等。,供不应求,发展前景十分广阔。正因为如此,很多人都说,谁掌握了多晶硅及微电子技术,谁就掌握了世界。 在太阳能利用上,单晶硅和多晶硅也发挥着巨大的作用。虽然从目前来讲,要使太阳能发电具有较大的市场,被广大的消费者接受,就必须提高太阳电池的光电转换效率,降低生产成本。从目前国际太阳电池的发展过程可以看出其发展趋势为单晶硅、多晶硅、带状硅、薄膜材料(包括微晶硅基薄膜、化合物基薄膜及染料薄膜)。从工业化发展来看,重心由单晶向多晶硅和薄膜方向发展,主要原因为: A.可供应太阳电池的头尾料愈来愈少; B.对太阳电池来讲,方形基片更合算,通过浇铸法和直接凝固法所获得的多晶硅可直接获得方形材料;

太阳能电池材料

太阳能电池材料 The materials of Solar Cells 课程编号:07310550 学分:3 学时:45 ( 其中:授课学时:45 实验学时:0 上机学时:0 ) 先修课程:新能源材料,固体物理导论 适用专业:无机非金属材料工程(光电材料与器件) 教材:《太阳能电池材料》杨德仁主编,化学工程出版社,2006 年10 月第一版开课学院:材料科学与工程学院 一.课程的性质与任务本课程是光电材料与器件专业的一门主要专业方向课程。本课程力求在介绍太阳能光电转化基本原理和太阳能电池基本结构和工艺的基础上,重点介绍太阳能电池材料的制备,材料的结构和性能。 二. 课程的基本内容及要求 第一章太阳能和光电转换 1.教学内容 (1)太阳能 (2)太阳能辐射和吸收 (3)太阳能光电的研究和应用历史 (4)太阳电池的研究与开发 2.基本要求 (1)了解太阳能电池的发展历史 (2)了解太阳能的基本参数 第二章太阳能光电材料及物理基础 1.教学内容 (1)半导体材料和太阳能光电材料 (2)载流子和能带 (3)杂质和缺陷能级 (4)热平衡下的载流子以及非平衡载流子 (5)pn 结和金属-半导体接触 (6)太阳能转换原理-光生伏特效应 2. 基本要求 (1)理解半导体材料以及太阳能光电材料的定义,分类 (2)理解载流子的分类,定义以及半导体能带理论 (3)熟练掌握杂质半导体的分类,能级理论

(4)理解非平衡载流子的产生,复合,寿命,扩散,在电场下的漂移 (5)掌握pn 结的制备,原理,电流电压特性,金属-半导体接触,欧姆接触的原理 (6)掌握半导体材料的光吸收,光生伏特效应的原理第三章单晶硅材料 1.教学内容 (1)硅的基本性质 (2)太阳能电池用硅材料 (3)高纯多晶硅的制备 (4)太阳能级多晶硅的制备 (5)区熔单晶硅 (6)直拉单晶硅 (7)硅晶片加工 2.基本要求 (1)了解硅的基本物理,化学性质 (2)理解太阳能电池用硅材料在纯度,物理,化学等方面的要求 (3)了解西门子法,硅烷法,四氯化硅氢还原法的原理 (4)掌握了解太阳能级多晶硅的制备步骤 (5)了解区熔单晶硅的制备步骤 (6)熟悉直拉单晶硅的生长原理,生长技术,掺杂技术和工艺 (7)了解硅晶片制备步骤中的切断,滚圆,切片,化学腐蚀第四章铸造多晶硅 1.教学内容 (1)概述 (2)铸造多晶硅的制备工艺 (3)铸造多晶硅的晶体生长 2.基本要求 (1)了解铸造多晶硅的定义。 (2)熟悉铸造多晶硅的制备工艺步骤。 (3)理解铸造多晶硅的晶体生长中所需的原材料,坩埚,晶体生长工艺,晶体生长的因素,晶体掺杂。 第五章太阳电池的结构和制备 1.教学内容 (1)太阳电池的结构和光电转换效率 (2)晶体硅太阳电池的基本工艺 ⑶薄膜太阳电池 2.基本要求

《太阳能电池基础与应用》期中

第 1 页 绝密★启用前 江西冶金职业技术学院 2013-2014学年第一学期《太阳能电池基础与应用》期中考试试卷 一、选择题(请在备选答案中选出最恰当的一项,每小题2分,共20分) 1、在衡量太阳电池输出特性参数中,表征最大输出功率与太阳电池短路电流和开路电压乘积比值的是( )。 A 、转换效率 B 、填充因子 C 、光谱响应 D 、方块电阻 2、下列表征太阳电池的参数中,哪个不属于太阳电池电学性能的主要参数( )。 A .开路电压 B.短路电流 C. 填充因子 D 、掺杂浓渡 3、某单片太阳电池测得其填充因子为77.3%,其开路电压为0.62V ,短路电流为5.24A,其测试输入功率为15.625W,则此太阳电池的光电转换效率为( )。 A 、16.07% B 、15.31% C 、16.92% D 、14.83% 4、太阳能光伏发电系统的最核心的器件是( )。 A 、控制器 B 、逆变器 C 、太阳电池 D 、蓄电池 5、下列选项中,不属于减反射膜材料的是( )。 A 、TiO2 B 、SiF4 C 、SiNx D 、SiO2 6、目前已被实用化的太阳能电池中98%使用的是( )材料。 A 、硅 B 、锗 C 、镓 D 、铟 7、下列仪器中,用来测量方块电阻的是( ) A 、少子寿命测量仪 B 、辉光放电质谱仪 C 、金相电子显微镜 D 、四探针测试仪 8、硅在常温下很稳定,只能与 发生反应生成 。( ) A 、HCL 和SiCl 4 B 、HNO 3和SiNx C 、F 2和SiF 4 D 、HF 和SiF 4 9、磷硅玻璃由( )组成。 A CF 4 B SiO 2 C 磷 D SiF 4 10、单晶硅绒面呈( )形。 A 、三角形 B 、金字塔形 C 、圆形 D 、正方形 二、填空题(每空 1分,共 20分) 11、晶体硅太阳电池制造设备主要由 、 、RENA 后清洗机、 、丝网印刷机、 等。 12、丝网印刷工艺流程主要分为三步,分别是 , 和 。 13、去PSG 中用到的化学试剂是HF ,它的反应方程式是 。 14、刻蚀分为干法刻蚀和 刻蚀;其中,等离子体刻蚀属 刻蚀。 15、三氯氢硅氢还原法制多晶硅的化学反应式是: 。 16、丝网印刷的目的是 17、PECVD 的中文是 ,它的目的是 。 18、直拉法生产单晶硅的设备是 。 19、Isc 的中文意思是 ,Uoc 的中文意思是 20、125Χ125mm 规格的单晶硅太阳能电池,它的输出电压是 V ,输出功率是 W 左右 21、粗硅制备的化学原理 三、判断题(每小题2分,共20分) 22、太阳能电池片的正面电极为正极 ( ) 23、光伏组件参数的测试中,不需要冰雹测试。 ( ) 24、人体吸入高浓度氧气会引起“氧中毒”。 ( ) 25、光伏企业一般采用氢氧化钠溶液在80~90度腐蚀数分钟来出去晶体硅表面的机械损伤层。 ( ) 26、各向异性腐蚀主要用于单晶硅绒面制备。 ( ) 27、SiNx 减反射膜既有减少光的反射作用,又能对表面进行钝化。 ( ) 28、TPT 的作用是为了防水和绝缘。( ) 29、硅烷法是目前国际上多晶硅制造的主流工艺。 ( ) 30、实现多晶硅定向凝固生长的方法有四种,常用的是布里奇曼法。 ( ) 31、POCl 3在有O 2的情况下分解为P 2O 5和Cl 2。( ) 四、简答题( 每小题6 分,共30分) 32、为什么要对太阳能电池片进行组合和封装? 33、写出太阳能电池片的生产流程。 34、丝网印刷的工作原理? 适用班级:12光伏班 姓名: 系部:机电工程系 出卷人:聂行 密 封 线

太阳能电池及其应用

太阳能光电工程学院 《太阳能电池及其应用》 课程设计报告书 题目:非晶硅及微晶硅薄膜太阳能电池的研究现状与未来展望姓名:陈易昭 专业:光伏材料应用技术 班级: 准考证号:014411304221 设计成绩: 指导教师:

摘要 本设计主要阐述了非晶硅薄膜电池、多晶硅薄膜电池原理、制备方法,从材料、工艺与转换效率等方面讨论了它们的优势和不足之处,并提出改进方法。但是,当前大规模产业化的非晶硅薄膜电池效率偏低,为了实现光伏发电平价上网,必须对薄膜硅太阳能电池进行持续的研究。本设计也总结了提高薄膜硅太阳能电池效率的主要技术与进展,如TCO技术、窗口层技术、叠层电池技术和中间层技术等,这些技术用在产业化中将会进一步提高薄膜硅太阳能电池的转换效率,进而降低薄膜硅电池的生产成本。硅薄膜电池技术是光伏领域中最具低成本优势的光伏技术,目前已成为各国光伏计划支持的重点,相比非晶硅相变区的微晶硅薄膜太阳能电池几乎没有光致衰退,具有良好的长波段光谱响应特性,可以与非晶硅薄膜电池相结合制备成叠层电池。本设计也重点关注于微晶硅薄膜电池的研究进展以及制备的柔性衬底上电池的特殊性相对于单晶硅和非晶硅来说,微晶硅薄膜太阳电池具有更多的优势.高速沉积高效微晶硅太阳电池已经成为当前研究的热点.综合介绍了微晶硅p-i-n太阳电池的结构以及基本原理、研究现状和存在的问题,并对其发展前景进行了展望。最后让我们展望一下薄膜太阳能电池的发展前景。 关键词:太阳能电池;薄膜电池;非晶硅;多晶硅;微晶硅;光伏建筑;最新进展

目录 绪言 (3) 1.非晶硅(a-Si)薄膜太阳能电池 (4) 1.1 原理及及结构 (4) 1.2 制备方法 (4) 1.3 基础物性.................................. 错误!未定义书签。 2.微晶硅薄膜太阳能电池 (5) 2.1 原理及结构 (5) 2.2 实验及制备方法............................ 错误!未定义书签。 3.非晶硅薄膜电池和微晶硅电池的优势及不足 (6) 3.1 非晶硅和 (6) 3.2 (7) 3.3 (7) 4.改进方法 (8) 4.1 (8) 4.2 (9) 4.3............................................ 错误!未定义书签。 4.4 (10) 4.5 (12) 5.研究进展和研究前景 (13) 6.结论 (13) 参考文献14

太阳能电池材料的研究现状及未来发展

太阳能电池材料的研究现状及未来发展 太阳能是人类取之不尽,用之不竭的可再生能源,它不产生任何环境污染,是清洁能源.太阳光辐射能转化电能是近些年来发展最快,最具活力的研究,人们研制和开发了不同类型的太阳能电池.太阳能电池其独特优势,超过风能、水能、地热能、核能等资源,有望成为未来电力供应主要支柱.制造太阳能电池材料的禁带宽E:应在1.1eV-13W之间,以1.5eV左右为佳,最好采用直接迁移型半导体,较高的光电转换效率(以下简称“效率”),材料性能稳定,对环境不产生污染,易大面积制造和工业化生产. 1954年美国贝尔实验室研制了世界上第一块实用半导体太阳能电池,不久后用于人造卫星.经近半个世纪努力,人们为太阳电池的研究、发展与产业化做出巨大努力.硅太阳电池于1958年首先在航天器上得到应用.在随后10多年里,空间应用不断扩大,工艺不断改进.20世纪70年代初,硅太阳电池开始在地面应用,到70年代末地面用太阳电池产量己经超过空间电池产量,并促使成本不断降低.80年代初,硅太阳电池进入快速发展,开发的电池效率大幅度提高,商业化生产成本进一步降低,应用不断扩大.20世纪80年代中至今,薄膜太阳能电池研究迅速发展,薄膜电池被认为大幅度降低成本的根本出路,成为 今后太阳能电池研究的热点和主流,并逐步向商业化生产过渡. 1.不同材料太阳电池分类及特性简介 太阳能电池按材料可分为品体硅太阳电池、硅基薄膜太阳电池、化合物半导体薄膜太阳电池和光电化学太阳电池等儿大类.开发太阳能电池的两个关键问题就是:提高效率和降低成本. 1晶体硅太阳电池 晶体硅太阳电池是PV(Photovoltaic)市场上的主导产品,优点是技术、工艺最成熟,电池转换效率高,性能稳定,是过去20多年太阳电池研究、开发和生产主体材料.缺点是生产成本高.在硅电池研究中人们探索各种各样的电池结构和技术来改进电池性能,进一步提高效率.如发射极钝化、背面局部扩散、激光刻槽埋栅和双层减反射膜等,高效电池在这些实验和理论基础上发展起来的. 2硅基薄膜太阳电池 多晶硅(ploy-Si)薄膜和非晶硅(a-Si)薄膜太阳电池可以大幅度降低太阳电池价格.多晶硅薄膜电池优点是可在廉价的衬底材料上制备,其成本远低于晶体硅电池,效率相对较高,不久将会在PV市场上占据主导地位.非晶硅是硅和氢(约10%)的一种合金,具有以下优点:它对 厚,材料的需求量大大减少,沉积温度低(约200'C),阳光的吸收系数高,活性层只有1m 可直接沉积在玻璃、不锈钢和塑料膜等廉价的衬底材料上,生产成本低,单片电池面积大,便于工业化大规模生产.缺点是由于非晶硅材料光学禁带宽度为1.7eV,对太阳辐射光谱的长

相关文档