文档库 最新最全的文档下载
当前位置:文档库 › 碎屑岩热解分析参数s1s2值的校正方法(胜利)ok打

碎屑岩热解分析参数s1s2值的校正方法(胜利)ok打

碎屑岩热解分析参数s1s2值的校正方法(胜利)ok打
碎屑岩热解分析参数s1s2值的校正方法(胜利)ok打

碎屑岩热解分析参数S1、S2值的校正方法

编写人:腾玉明、丁莲花

审核人:陈东敬

胜利石油管理局地质录井公司

一九九七年八月

碎屑岩热解分析参数S1、S2值的校正方法

一、前言

碎屑岩储集岩样热解所测得的S1、S2值是残余含量,不能直接显示储层原始含油气状态。其影响因素有多种,有地层温度、压力变化造成烃类损失,有钻井液冲刷造成烃类损失,有样品采集保存等因素影响造成烃类损失,,所有这些因素直接影响储层评价效果,因此必须进行校正方能评价储集层。在近十年的地化录井实践中,根据几百口井碎屑岩储层不同岩样的分析终结,建立了适合胜利油田砂泥析剖面的热解烃类损失校正方法,并取得了较好的效果,下面作一简单介绍。

二、碎屑岩热解分析参数S1、S2的损失因素分析

对于三个峰分析的岩石热解仪,其直接分析参数有S0、S1、S2。S0是在90℃温度下得到的C1—C7气态烃,储集层含量很少(除气层外),样品分析值很小直至为零。在这里不讨论其损失因素。着重讨论一下S1和S2值的损失因素。

S1值表示的是岩样在90℃--300℃温度区间热蒸发得到的C8—C33之间的液态烃量。S2值表示的是在300℃--600℃温度区间,程序升温热蒸发和热裂解的大于C33以上重烃及胶质沥青含量。根据石油烃类的物理性质,S1值以液态的轻烃为主,很不稳定易挥发损失,因此,热解分析S1值不能代表岩样的原始含烃量,是一残留量。S2值也不等于岩样重组馏分和胶质沥青的绝对量,仍是一个残留量。造成热解分析参数S1和S2值损失的因素,归纳起来有以下几方面:

1.地层温度压力改变以及钻井液对岩样的冲洗造成部分烃类损失。

当地层被钻开后,地层温度、压力发生了变化,溶于原油中的气体,从储层中逸出,带走了一些液体,主要为油、水,减小了岩样分析值S1、S2的含烃量。岩样从井底沿井筒返至地面时,含油岩样与钻井液接触部位,受到冲刷作用,使岩样中的原油被泥浆冲掉一部分,所以又减少了岩样分析值S1、S2的含烃量。

2.不同录井方式采取的样品分析值S1、S2损失量不同。岩心录井、井壁取心、岩屑录井三种录井方式取得的岩样在同一层位、同一深度,经分析得到的S1值、S2值,差别较大,见表1。

不同录井方式样品分析烃类损失

表一为※※※井沙二段同一个深度的富含油迹的砂岩样品,进行了热解分析,其结果与密封闭取心热解分析结果对比,烃类损失变化:井壁取心S1值损失在15%--36%,S2值损失6%--17%;岩屑(湿样)S1值损失在29%--54%;S2值损失19%--29%;岩屑(干样)S1值损失37%--60%;S2值损失26%--36%。同时还可以看出碎屑储集层含油级别越高,烃类损失量就越大。

3.岩样挑选制备及保存不当造成烃类损失

通常采取的岩样必须及时处理,上机分析。如果岩样不密闭保存,或者在处理时将样品粉碎细(对储油岩而岩)都会造成烃类的损失,特别是S1值减少。如果晾晒时间过长,岩样中的轻烃挥发就更多。一般情况下,岩样放置两天以上轻烃会损失6%以上,放置30天,烃类损失可达35%以上,见表二。

岩样放置时间烃类损失

三、 热解分析参数S1值、S2值校正方法

根据前面对碎屑储集岩石热解参数S1值S2值损失因素的分析,主要是不同录井方式及岩样放置时间。对S1值S2值的校正也从这两方面入手。表三为总结了S1值恢复系数K1的取值范围以及S2值恢复系数K2的取值范围。图二是总结了不同油性质的储层岩样放置时间与烃类损失的关系曲线,确定S1值恢复系数Kd 。

轻质原油S1

中质原油S1

重质原油S1

图1 不同性质原油S1值损失曲线

烃类损失还与储集层中原油有关,油质越烃,烃类损失越大,放置时间越长,轻烃就越易损失。见图一。图中轻质原油在放置30天以后,S1值损失达50%以上。S2值损失很少,一般在5%左右。

不同录井方式样品烃类恢复系数

在制定恢复系数表中,把富含油和油浸砂岩划为一个恢复档次;油斑和油迹砂岩划为一个档次。另外还考

虑地面原油和地下原油体积发生的变化对分析值的影响,又附加了原油

体积系数(B0),一般采用1.3。

从烃类损失量随放置时间变化曲线上分析,样品损失在10天之内最

大,30天后趋于平衡。S2值与放置

时间烃类损失量很小。因此样品分析无论在现场还是在室内,如果样品不是密闭保存,那么样品分析S1值必须有放置时间烃类损失的恢复。

经过放置时间恢复,再经过不同

录井方式分析值恢复S1值和S2值基本上得到了校正能够用来评价储集层。

四、应用效果分析

近十年中我们应用烃类损失量与放置时间关系以及不同录井方式与烃类损失关系,对地化录井所有的储集层包括探井,科探井、参数井、开发井等样品分析值进行一系列恢复后评价储集层含油性质,含油级别、原油性质、估量产能等取得较好效果,作为完井试油的一项重要资料得到广泛重视。

地化录井与试油成果对比表

表4

图2 烃类损失量随放置时间变化曲线

表四是地化分析储集层评价与试油结果对比的一部分实例。从表四中可以看出,用校正的后的地化分析数据在解释油水层方面有较好的符合性,与试油结论符合率达90%以上。岩石热解分析值S1、S2的校正方法是来之于生产实践又就用于生产实际,方法的总结立足于济阳坳陷第三系地层,储集层的物性、含油性,根据充足、方法简单适用,完全适合现场快速评价储集层要求。

华测网络RTK操作方法

140860GPRS作业模式的操作 采用GPRS 作业模式作业时要注意提供开通GPRS net 流量的手机卡,可以采用包月的方式,此项各地区不同,可与当地移动服务商联系确认,一般两小时的GPRS 流量为一兆,可根据每月的作业时间计算总流量,包月套餐。 1.1 基准站架设 1.1.1 架设要求 基准站应当选择视野开阔的地方,这样有利于卫星信号的接收,并确定此处有无手机网络信号。基准站架设高度应避免过低,防止人为干扰。基准站应尽量整平(基准站架设在已知点时还要求对中精平)。 1.1.2 架设图示 将开通了GPRS 的SIM 卡插入接收机内,基准站数据可通过网络发送。 1.2 基准站的操作 1.2.1 工作模式的设置 采用GPRS 模式作业建议采用自启动的方式,方便作业。打开测地通,点击【配置】→【手簿端口配置】,连接类型选择‘蓝牙’,点击配置,搜索蓝牙,绑定主机,点击确定,退出测地通。打开HCGpsSet,选中‘用蓝牙’,打开端口,华测的基准站接收机出厂默认设置如图3-2 所示。 手簿上的HCGpsSet,连上后数据设置为:“正常模式、自启动基准站、 Port2+GPRS/CDMA、CMR“,其他默认,点击应用即可。

图3-2 基准站工作模式设置 进行GPRS 设置时,打开手簿上的HCGPRS,也可打开电脑HCGPRS(安装RTK 软件后,【开始】→【HuaceRTK】→【工具】→【GPRS 设置升级软件】原名叫HCGPRS),按下图所示设置完各项参数后,点击更新。 图3-3 用HCGPRS 软件设置基准站内置GPRS 图3-3 是上海华测免费提供用户的服务器IP 地址及端口号,基站启动后数据会自动通过上海服务器转发,移动站与其绑定即可获得基站数据。 注:华测提供双服务器,上海服务器IP 为:222.44.183.12,端口为9902。 华测上广电服务器为:210.14.66.58,端口为9902.此服务器带宽充足,建议使用此服务器。 设置完后,打开测地通,【配置】→【基准站选项】 1.广播格式----标准CMR. 2.测站索引----1. 3.发射间隔-----1秒 4.高度角-------10 5.天线+测量到:根据具体情况设定

华测RTK基本操作步骤说明教学教材

华测R T K基本操作步 骤说明

华测RTK使用(常规操作)说明 一、电台的设置 功频设置——分功率和频率设置。 功率:远半径(大约10-30公里)设置为15瓦、近半径(2-3公里)设置为1-5瓦。 频率:推荐使用默认的458.050,但与外界干扰时可向高波段或低波段调整,调整方法:在电台屏上按上、下箭头指示选择,然后按回车键确认。 二、RTK手簿操作 1、桌面图标 (1)回收站、(2)我的设备(即我的电脑)、(3)HCGPRS图标—设置(接收机模式设置、(4)HCGPS…—设置(接收机启动设置)、 (5)RTKCE—操作软件。 2、蓝牙连接 启动RTKCE(双击或按键盘快捷键)——配置——手簿端口配置——连接类型(选蓝牙)——配置——搜索——绑定移动站(GNSS900589)—绑定——退出——确定。 注:移动站接收机为单数号,并直接安有外天线。基站按收机为双数号,蘑菇头下没外天线。 3、设置接收机 配置——移动站参数——移动站选项——天线高度(杆高为2米,无特殊情况时输2米)——天线类型(选X90)——测量到——天线底部——确定。

4、设置电台频率 配置——移动站参数——内置电台和GPS——工作模式(选电台模式)——当前频率(选与电台一致的频率,例如推荐采用默认的458.050)——设置——接受。 5、启动移动站接收机 测量——启动移动站接收机——固定后可操作。 6、新建任务(工作文件) 文件——新建任务——输入任务名称——选坐标系统(例选BEIJING54坐标系统)——接受——文件——保存任务(此必须操作步,测量过程中程序会每10秒自动保存一次,防数据丢失)——文件——当前坐标参数——修改中央子午线(我地区选用117度)——确定。 7、点校正(每新建一次任务需执行一次点校正,但不必建球,华测 RTK已在出厂前将球内设完成,在全国范围内可不再建球使用)点校正分两步,可先做第一步,也可先做第二步 第一步:键入——点——输点名称(自己命名)——输X、Y、H坐标值和高程值(原已知点的值)——控制点打“勾”——保存。第一点完成并且接点数重复操作键入所有参与点校正的点的坐标及高程值,至完成 第二步:测量——点——输点名称(与第一步时的点对应测量,但不可重名,即在同一点上进行第二次测量,点名称不能相同,可人为的在心里分开记得)——测量(测量的位置在下面),(必须汽泡居中后测量)——找坐标文件——元素管理器——点管理器——细节(或双击)

华测RTK使用指南

测量前准备 开始测量之前,首先要对控制软件进行设置,最终得到和当地符合的结果,具体的操作步骤如下: 架设基准站 新建任务?配置坐标系统?保存任务 设置基准站(包括安装、手簿设置) 设置流动站(包括安装、手簿设置) 点校正 测量 下面按照以上顺序依次介绍操作过程及方法: 1.1.1架设基准站 图1.架设基准站 基准站的架设包括电台天线的安装,电台天线、基准站接收机、DL3电台、蓄电池之间的电缆连线。要求: 基准站应当选择视野开阔的地方,这样有利于卫星信号的接收; 基准站应架设在地势较高的地方,以利于UHF无线信号的传送,如移动站距离较 远,还需要增设电台天线加长杆。

图2.电台接口连接 当基准站启动好之后,把电台和基准站主机连接,电台通过无线电天线发射差分数据。一般情况下,电台应设置一秒发射一次,即电台的红灯一秒闪一次,电台的电压一秒变化一次,每次工作时根据以上现象判断一下电台工作是否正常。 1.1.2建立新任务 1.1. 2.1新建任务 运行手簿测地通软件,执行【文件】?【新建任务】,输入任务名称,选择坐标系统,其它为附加信息,可留空。(注:一般坐标系选WGS-84) 图3.新建任务

1.1. 2.2坐标系管理 【配置】?【坐标系管理】 图4.坐标系管理 根据实际情况,进行坐标系的设置。选择已有坐标系进行编辑(主要是修改中央子午线,如标准的北京54坐标系一定要输入和将要进行点校正的已知点相符的中央子午线),或新建坐标系,输入当地已知点所用的椭球参数及当地坐标的相关参数,而【基准转换】、【水平平差】、【垂直平差】都选“无”;当进行完点校正后,校正参数会自动添加到【水平平差】和【垂直平差】;如果已有转换参数可在【基准转换】中输入七参数或三参数,但不提倡。当设置好后,选择确定,即会替代当前任务里的参数,这样测量的结果就为经过转换的。如果新建一个任务则不需要重新作点校正,它会自动套用上一个任务的参数,到下一个测区新建任务后直接作点校正即可,选择保存会自动替代当前任务参数。 1.1. 2.3保存任务 【文件】?【保存任务】

褐煤低温干馏(热解)加工的生产工艺介绍

一、 褐煤低温干馏(热解)加工的生产工艺介绍 3.1 低温煤干馏(热解)加工的主要工艺 煤热解工艺按照不同的工艺特征有多种分类方法。 按气氛分为惰性气氛热解(不加催化剂),加氢热解和催化加氢热解。 按热解温度分为低温热解即温和热解(500~650℃)、中温热解(650~800℃)、高温热解(900一l000℃)和超高温热解(>1200℃)。 按加热速度分为慢速(3~5℃/min)、中速(5~100℃/s)、快速(500~105℃/s)热解和闪裂僻(>106℃/s)。 按加热方式分为外热式、内热式和内外并热式热解。 根据热载体的类型分为固体热载体、气体热载体和固一气热载体热解。 根据煤料在反应器内的密集程度分为密相床和稀相床两类。 依固体物料的运行状态分为固定床、流化床、气流床,滚动床。 依反应器内压强分为常压和加压两类。 而且煤热解工艺的选择取决于对目标产品的要求,并综合考虑煤质特点、设备制造、工艺控制技术水平以及最终的经济效益。慢速热解如煤的炼焦过程,其热解目的是获得最大产率的

固体产品――焦炭;而中速、快速和闪速热解包括加氢热解的主要目的是获得最大产率的挥发产品――焦油或煤气等化工原料,从而达到通过煤的热解将煤定向转化的目的。 表3—1 目标产品与相应的工艺条件 上表列出了目标产品与一般所相应采用的热解温度、加热速度、加热方式和挥发物的导出及冷却速率等工艺条件。 到目前为止,国内外研究开发出了多种各具特色的煤热解工艺方法,有的处于试验室研究阶段,有的进入中试实验阶段,也有的达到了工业化生产阶段如鲁奇~鲁尔煤气公司法、COED 法、Toscoal法等。下面将其中的典型热解方法加以介绍。 3.1.1国外低温煤干馏的加工工艺 (一)鲁奇~鲁尔煤气公司法(Lurgi Ruhrgas) 1.工艺简介 该法是由Lurgi GmbH公司(联邦德国)和Ruhrgas AG公司(美国)开发研究的。 其工艺流程为粒度小于5mm的煤粉与焦炭热载体混合之后,在重力移动床直立反应器中进行干馏。 产生的煤气和焦油蒸气引至气体净化和焦油回收系统,循环的焦炭部分离开直立炉用风动输送机提升加热,并与废气分离后作为热载体再返回到直立炉。在常压下进行热解得到热值为26~32MJ/m3的煤气、半焦以及煤基原油,后者是焦油产品经过加氢制得。 2.开发应用状况 此工艺过程在日处理能力12t煤的装置上已经掌握,并建立了日处理250t煤的试验装置以及日处理800t煤的工业装置。 (二)COED法 1.工艺简介 该工艺由美国FMC和OCR联合开发,采用低压、多段、流化床煤干馏工艺流程。 平均粒度为0.2mm的原料,顺序通过四个串联的反应器,其中第一级反应器起煤的干燥和预热的作用,在最后一级反应器中,用水蒸气和氧的混合物对中间反应器中产生的半焦进行部分气化。气化产生的煤气作为热解反应器和干燥器的热载体和流化介质。借助于固相和气相逆流流动,使反应区根据煤脱气程度的要求提高温度,有力地控制热解过程的进行。热解在压力35~70kPa下进行。最终产品为半焦、中热值(15-18MJ/m3)煤气以及煤基原油,后者是用热解液体产品在压力17-21MPa下催化(Ni-Mo)加氢制得的。 2.开发应用状况 该工艺已有日处理能力36t煤的中间装置,并附有油加工设备。 (三)CSIRO工艺

华测GPS-cors操作步骤

华测GPS-cors操作步骤

CORS下测地通简要操作 外业操作 首先将手簿和GPS主机用蓝牙连接在一起,方法如下:打开RTKCE(测地通),选择配置——手簿端口配置,将使用蓝牙打钩,选择配置蓝牙,选择眼睛的图案搜索主机蓝牙,搜索完成之后点击主机编号,选择绑定,确定——确定即可。(蓝牙绑定之后,下次开机时只要打开软件就可以自动连接) 1.1新建任务 点击【文件】,选择【新建任务】,输入任务名称,选择坐标系统,之后点【接受】 1.2保存任务

点击【文件】,选择【保存任务】 1.3选择坐标参数 运行测地通,【配置】-【坐标系管理】,修改中央子午线和投影高度(海拔超过一千米需要输入)。(用户根据自己需求,选择需要的坐标系,核对半长轴、扁率,根据当地情况,更改中央子午线和投影高度,也可以【新建】,新建坐标系,输入相应的坐标参数)。 确定之后,出现下图对话框,点击【确定】 2已知点数据的输入

打开测地通,点击【键入】-【点】,输入已知点坐标,【保存】,继续输入已知点坐标,结束后点击【取消】 选择配置——移动站参数——移动站选项:按如下设置(第一次设置之后再次开机就会默认设置):

选择配置——内置电台和GPRS,按如下设置(第一次设置之后再次开机就会默认设置): 选择完内容之后,点设置,将内容写入接收机。选择配置——移动站参数——内置VRS移动站,将源列表(江苏CORS默认的源列表是Leica),用户名,密码输入:

当GPRS状态显示“准备CORS登陆”的时候点设置,过一段时间会弹出一个对话框“成功登录VRS网络,请启动移动站接收机”,点确定,此时GPRS状态会显示CORS登陆成功。 选择测量——启动移动站接收机,约10秒钟左右仪器就会由单点定位到固定。 测地形:通过测量——测量点对需要测量的地物进行测量。在选项中可以更改观测时间和水平精度、垂直精度。 点放样:选择测量——点放样——常规点放样,按照个人想要放样的点选择方法,如果放样的点很多,将所有的点增加进来以后,选择最近点进行放样,放

100万吨兖矿褐煤热解提油提气技术方案建议书

100万吨兖矿褐煤热解提油提气技术方案建议 书 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

100wt/a低阶煤分段热解提烃 生产优质油气及缚硫洁净炭 技术与工艺方案建议书 1 低阶煤中低温分段热解提取油气资源的背景和意义 我国能源资源结构特点是缺油少气富煤。截止2012年我国查明石油剩余技术可采储量仅为亿t,天然气万亿m3;而煤炭资源探明储量为万亿t,其中有75%以上是中低阶煤。 开发新工艺技术推动我国低阶煤清洁高效梯级利用已迫在眉睫。先提取煤中业已存在的油气资源,并生产高附加值固体洁净炭,从而形成热解提烃(油气)-洁净炭气化-合成、热解-油气提质-洁净炭燃烧发电等多途径低阶煤清洁高效梯级利用技术路线,是解决我国低阶煤利用的必由之路。若采用低阶煤中低温分段热解提烃技术,在我国目前直接燃烧发电的低阶煤中,每年仅以10亿t 低阶煤先提取油气资源然后再发电计算,就可提取油1亿t左右(相当于原油亿t)、烷烃气产品超过1000亿m3、其余利用余热生产合成气合成甲烷的量接近甚至超过提取烷烃气的量。 采用科学的分段热解中低阶煤技术制取油气,对于弥补我国缺油少气现状、突破油气对外依存度、保障我国能源安全、经济安全、国防安全和国家可持续发展具有重大意义。 一般情况下,低阶煤(多指褐煤、长焰煤等低煤化度煤)与挥发分大于18%的中阶煤的挥发物主要是以烃类物质构成的。在 挥发分大于25%的中、低阶煤挥发物中,烃类成分一般占无水 基挥发分质量的80%以上。尤其在长焰煤、气煤及更低煤化度 的低煤阶煤中,烃类成分大多占无水基煤总质量比的30%左 右,高者甚至可达35%以上。

中纬GPS操作教程。莱卡通用

中纬GPS应用培训方案

目录 一、坐标转换及其它: (3) 1、坐标转换:坐标系变换、基准变换 (3) 2、RTK常见问题 (5) 3、RTK测量关键问题: (5) 二、中纬全系列GNSS产品介绍,操作讲解 (6) 1、仪器认识 (6) 2、GeoMaxSurvey软件介绍及功能讲解 (15) (1)、电台模式的具体操作 (16) (2)、网络模式的具体操作 (18) (3)、坐标转换:点校正,重设当地坐标系 (20) (4)、其它功能: (22) 三、静态测量 (24) 1、静态设置 (24) 2、静态数据传输 (25) 3、静态数据处理 (25)

一、坐标转换及其它: 大家知道,GPS 定位的过程是在WGS84坐标系统下进行的,定位结果是WGS84系统下的大地坐标。而用户最终需要的是用于工程项目的平面直角坐标系统(可能是国家坐标,也可能是独立的地方坐标),这就需要在不同的坐标系统之间进行转换。下面就让我们来看看坐标转换是怎样进行的! 1、坐标转换:坐标系变换、基准变换 坐标系变换就是在不同的坐标表示形式间进行变换(同一基准)。 XYZ 基准变换就是指在不同的参考基准间进行变换(参考椭球变换) 常用的坐标系统 为了减少投影变形或满足保密需要,也可以使用独立(地方)坐标系,坐标原点一般在测区或城区中部,投影多为当地平均高程面。 高程基准: 1、1956年黄海高程系 水准点设在观象山,采用1950-1956年7年的验潮结果计算的黄海平均海水面,推得水准原点高程为72.289m 2、1985国家高程基准 水准原点同 1956年黄海高程系,采用1952~1979年共28年的验潮结果,并顾及了海平面18.6年的周期变化及重力异常改正,计算的黄海平均海水面,推得水准原点高程为72.260m 点校正就解算出WGS-84和当地平面坐标系统之间的转换参数

CO2对褐煤热解行为的影响

文章编号:0253?2409(2013)03?0257?08  收稿日期:2012?10?15;修回日期:2012?12?26三  基金项目:国家自然科学基金(21106173);中国科学院战略性先导科技专项(XDA 0705100);中国科学院山西煤炭化学研究所青年人才基金(2011SQNRC 01)三  联系作者:房倚天,研究员,Tel /Fax :0351?2021137,E?mail :fyt @https://www.wendangku.net/doc/91190224.html, 三  本文的英文电子版由Elsevier 出版社在ScienceDirect 上出版(http ://https://www.wendangku.net/doc/91190224.html, /science /journal /18725813)三 CO 2对褐煤热解行为的影响 高松平1,2,3,赵建涛1,王志青1,王建飞1,2,房倚天1,黄戒介1 (1.中国科学院山西煤炭化学研究所,山西太原 030001; 2.中国科学院大学,北京 100049; 3.太原工业学院,山西太原 030008) 摘 要:利用热天平和快速升温固定床进行了CO 2气氛下褐煤热解特性的研究,考察了CO 2对半焦的产率和气体产物分布的影响三通过对半焦的比表面积二孔结构二官能团和元素含量的分析,确定了CO 2对煤热解过程的影响机制三CO 2对新生半焦的气化反应破坏了含氢的半焦结构,一方面,促进了羟基二甲基二亚甲基等基团的断裂和苯环的开裂;另一方面,减弱H 与其依附本体的结合,增加了氢的流动性,引发了更多的氢自由基生成三这些氢自由基与煤大分子断裂生成的碎片自由基结合生成更多的挥发分,使半焦有较大的比表面积二孔容和开孔率三CO 2的引入促进了煤的热解和挥发分的生成,增大了H 2二CO 二CH 4和C 2H 6等小分子烃类物质逸出,降低了半焦的产率三关键词:CO 2气氛;热解行为;半焦性质中图分类号:TQ 530.2 文献标识码:A Effect of CO 2on pyrolysis behaviors of lignite GAO Song?ping 1,2,3,ZHAO Jian?tao 1,WANG Zhi?qing 1,WANG Jian?fei 1,2,FANG Yi?tian 1,HUANG Jie?jie 1 (1.Institute of Coal Chemistry ,Chinese Academy of Sciences ,Taiyuan 030001,China ; 2.University of Chinese Academy of Sciences ,Beijing 100049,China ; 3.Taiyuan Institute of Technology ,Taiyuan 030008,China ) Abstract :The pyrolysis of Huolinhe lignite under CO 2atmosphere was carried out in a thermobalance and a fast heating?up fixed bed reactor.The distribution of gases ,char yield and its property such as element ,surface structure ,FT?IR spectra were analyzed.By this ,the effect of CO 2on the pyrolysis behaviors was studied.The results show that CO 2gasification of the nascent char ,which destroys the hydrogen?containing char structure ,not only promotes cracking of benzene ring and fracture of hydroxyl ,methyl and methylene groups etc.,but also weakens the interaction between H and char matrix and increases the H fluidity ,leading to the increase in the generation of H radicals.These H radicals can combine with other free radical fragments generated from fracture of the coal macromolecules to produce more volatiles.This will produce the char with a high specific surface and high pore volume and porosity.The introduction of CO 2promotes the coal pyrolysis and generation of volatile ,resulting in decrease in char yield and increase in the evolution amount of H 2,CO ,CH 4and other small molecules hydrocarbons. Key words :CO 2atmosphere ;pyrolysis behaviors ;char property 煤气化技术是煤炭洁净利用和高效转化的重要途径之一,由热解和气化两步构成三作为煤气化过程的第一步,煤的热解过程对煤的气化过程会产生重要的影响,例如热解制得的半焦活性影响煤气化的反应性,热解产品气影响煤气总量二煤气组成和煤气的热值等三因此,研究煤的热解过程,特别是研究在煤气气氛下煤的热解机理对提高煤炭洁净利用和高效转化有重要的意义三在高温热解条件下,反应气氛不仅可以与热解得到的新生半焦二挥发分发生作用,而且反应气氛间也可能相互作用,这些都导致 煤的热解过程变得复杂,进而影响到热解产物的分布以及半焦的性质三因此,反应气氛能显著地影响煤的热解过程三 关于CO 2气氛下煤的热解,前人已经作了一定 研究三与惰性气氛相比,CO 2气氛下,半焦产率下降二气体产率增加,干馏气中H 2和CH 4的体积分数降低,CO 含量明显增加[1]三Duan 等[2]研究了烟煤在CO 2气氛下热解,得出热解温度700~1000℃, CO 2气氛下挥发分产率比N 2气氛下的高,煤热解和CO 2气化反应同时反生三Messenb?ck 等[3]研究第41卷第3期2013年3月 燃 料 化 学 学 报 Journal of Fuel Chemistry and Technology Vol.41No.3Mar.2013

GPS点校正

点校正就是求出WGS-84和当地平面直角坐标系统之间的数学转换关系(转换参数)。在工程应用中使用GPS卫星定位系统采集到的数据是WGS-84坐标系数据,而目前我们测量成果普遍使用的是以1954年北京坐标系或是地方(任意|当地)独立坐标系为基础的坐标数据。因此必须将WGS-84坐标转换到BJ-54坐标系或地方(任意)独立坐标系。 坐标系统之间的转换可以利用现有的七参数或三参数,也可以利用华测测地通软件进行点校正求四参数和高程拟合。 单点校正:利用一个点的 WGS84坐标和当地坐标可以求出3个平移参数,旋转为零,比例因子为1。在不知道当地坐标系统的旋转、比例因子的情况下,单点校正的精度无法保障,控制范围更无法确定。因此建议尽量不要使用这种方式。 两点校正:可求出3个坐标平移参数、旋转和比例因子,各残差都为零。比例因子至少在0.9999***至1.0000****之间,超过此数值,精度容易出问题或者已知点有问题;旋转的角度一般都比较小,都在度以下,如果旋转上百度,就要注意是不是已知点有问题 三点校正:三个点做点校正,有水平残参,无垂直残差。 四点校正:四个点做点校正,既有水平残参,也有垂直残差。 点校正时的注意事项: 1、已知点最好要分布在整个作业区域的边缘,能控制整个区域,并避免短边控制长边。例如,如果用四个点做点校正的话,那么测量作业的区域最好在这四个点连成的四边形内部; 2、一定要避免已知点的线形分布。例如,如果用三个已知点进行点校正,这三个点组成的三角形要尽量接近正三角形,如果是四个点,就要尽量接近正方形,一定要避免所有的已知点的分布接近一条直线,这样会严重的影响测量的精度,特别是高程精度; 3、如果在测量任务里只需要水平的坐标,不需要高程,建议用户至少要用两个点进行校正,但如果要检核已知点的水平残差,那么至少要用三个点;如果既需要水平坐标又需要高程,建议用户至少用三个点进行点校正,但如果要检核已知点的水平残差和垂直残差,那么至少需要四个点进行校正; 4、注意坐标系统,中央子午线,投影面(特别是海拔比较高的地方),控制点与放样点是否是一个投影带;

实验一 华测GNSS手持GPS的基本操作及面积测量

《3S技术》课程实验报告 学生姓名: 学号: 专业: 年级: 指导老师: 赖日文副教授 福建农林大学林学院

实验一手持GPS的基本操作及面积测量 一、实验目的 1、了解GPS的操作原理; 2、掌握手持GPS界面设置; 3、掌握手持GPS的初始化设置; 4、掌握如何采集点、线、面; 5、掌握如何利用手持GPS进行面积和线路周长的测量。 二、GPS系统的组成 GPS由三个独立的部分组成: 1、空间星座部分:21颗工作卫星,3颗备用卫星。 2、地面监控部分:1个主控站,3个注入站,5个监测站。 3、用户设备部分:即GPS接收机,接收GPS卫星发射信号,以获得必要的导航和定位信息,经数据处理,完成导航和定位工作。GPS接收机硬件一般由主机、天线和电源组成。 三、GPS定位原理 GPS的基本定位原理是:卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后,经过计算求出接收机的三维位置,三维方向以及运动速度和时间信息。

四、实验仪器 华测LT500T亚米级手持GNSS接收机 五、实验步骤 1、按钮操作 华测LT500T亚米级手持GNSS接收机 2、主要参数 表1 华测LT500T亚米级手持GNSS接收机主要参数一览表

3、操作步骤 (1)打开MapCloud2.0软件(2)点击新建工程(或打开工程) (3)工程命名及设置 快速工程中,用户可以直接新建工程,也可以打开手簿中已存在的工程。工程列表中显示历史工程记录,选择历史记录后显示选择工程所在路径,清空记录则是清空历史工程列表中的内容。用户可选择历史记录中的工程直接打开,如不选择历史工程,直接点击确定,则跳转为打开工程界面,进入路径选择。打开工程后,进入主界面。主界面中包含了工程管理、地图显示、地图编辑操作、设置等所有操作。

褐煤低温热解及其工艺现状分析

褐煤低温热解及其工艺现状分析 X 张玉宏,王文军 (内蒙古国电能源有限公司电力工程技术研究院,内蒙古呼和浩特 010010) 摘 要:分析了褐煤低温热解的意义,解释了褐煤热解的概念,描述了褐煤低温热解产品的用途,通过国内外褐煤低温热解工艺技术的比较,说明了热解技术的内涵,探讨了目前国内褐煤低温热解技术的现状。 关键词:褐煤低温热解;热解工艺技术;半焦;煤焦油 中图分类号: 文献标识码:ATD849+.2 文章编号:1006—7981(2012)14—0044—02 我国的能源结构是贫油少气富煤,在丰富的煤炭资源储量中,褐煤占有较大的比例。特别是在新疆和内蒙古蒙东地区褐煤储量非常丰富,更重要的是目前褐煤的利用已经成为我国能源利用的一个重要环节。然而褐煤具有含水量大、热值低、易碎、运输难等缺点。因此如何高效地利用褐煤已经成为一个重要的课题。本文就褐煤利用的其中一种途径褐煤低温热解的工艺做一个介绍和分析。1 褐煤低温热解基本理论1.1 褐煤低温热解基本概念 褐煤低温热解是指褐煤在隔绝空气或惰性气氛中,在500-650℃的温度区间,持续加热升温的条件下发生的一系列化学和物理变化,在这一过程中化学键的断裂是最基本的行为,褐煤热解的产物主要是半焦、煤焦油和煤气。褐煤热解的产物的性质分布受煤的性质、加热速率、热解温度等特定条件的影响。 1.2 褐煤热解过程 当煤颗粒被加热后,最初在颗粒内部的热分解反应将产生挥发分和半焦,这称为一次热解反应。一次挥发分中含有气体(如H 2,CO ,CO 2,H 2O ,CH 4和其他小分子碳氢化合物等)和液体产物,焦油一般被定义为常温下以液态形式存在的产物。一般认为芳香团簇结构是焦油的主要来源,而非芳香性气体则来源于煤外围官能团和团簇之间的链接,热解产物通过扩散和对流被输送到颗粒外部。煤颗粒释放出的由热解产生的一次挥发分在颗粒间的高温气相中发生热裂解反应称为二次热解。在二次热解反应中,一次挥发分进一步转变成气体和固体形态的焦炭。1.3 褐煤热解影响因素 褐煤热解过程受众多因素的影响,主要可以分为两类:一是原煤性质,如煤种、煤的粒径和煤中矿物质的组成及含量等;二是热解反应条件,如加热速率、停留时间、热解终温和热解压力等。此外,热解过程还受反应气氛、压力等其他因素影响,各个影响因素在褐煤热解过程中是相互制约、相互作用的。 褐煤热解产品用途分析 褐煤低温热解主要产品是半焦、煤焦油和煤气。半焦产率根据煤种不同和热解工艺的不同,有一定的差别,一般占原煤量的50%左右。半焦热值高于原煤(对褐煤可提高50%-80%),反应活性好。依据原料煤灰分不同,得到的半焦灰分也不同。煤焦油的产率也和煤种以及热解工艺有关,一般占原煤量的5%左右。煤气的产率和品质与热解工艺有很大关系。 半焦的主要用途:燃料,褐煤半焦可远距离运输,与运输同热量褐煤比较,可以节省运力25-30%。气化原料,通过褐煤热解提质可以有效克服其煤质局限,使之成为高质量的气化原料,同时,回收高附加值的焦油产品,实现褐煤资源利用价值最大化。中低灰分半焦制水煤浆(也称水焦浆,用于气化原料等),成浆浓度可以达到60%以上,可用于水煤浆气化;而褐煤的成浆浓度通常在45-50%。加工成无烟燃料或加工成型焦;低灰分半焦可制成活性炭;低灰分半焦制成型焦后,可用作电石原料和铁合金用焦;煤焦油主要用途:煤焦油加氢裂解可以生产汽油(馏分)、柴油(馏分)和燃料油,用途广泛。 热解煤气主要用途:由于采用的热解工艺不同,其可燃气体含量不同,热值也有较大差异。采用固体热载体技术产生的煤气,与焦炉煤气和天然气十分相近,可以直接作为工业原料和民用燃料。直立炉等生产出的热值较低的煤气只能作为工业燃料。3 国内外煤低温热解典型工艺介绍和分析3.1 国外低温热解技术概况 3.1.1 T oscoa1固体热载体热解工艺 T oscoa1工艺是美国T osco 公司基于Tosco —Ⅱ油页岩干馏工艺开发的煤低温干馏方法。用瓷球作为热载体,在热解转炉内进行煤的干馏,属于内热式—低温—中速—固体热载体干馏工艺。该工艺开发的主要目的是对煤提质,增加其热值,并回收高价值气体和液体产品。所产半焦含有足够的挥发分,可用于现有的发电厂而不需改变设备或附加辅助燃料。该工艺的意义在于降低煤炭的运输费用;降低电厂的硫排放量;半焦可用作气化原料或生产型焦; 44 内蒙古石油化工 2012年第14期  X 收稿日期2::2012-04-22

华测 参数求取

华测各种测地通软件点校正方法 一,测地通5.04版本。 首先这里着重介绍5.04版本校正方法,其他版本除了界面不一样都方法完全相同。1,点校正之前一定要先确定控制点的坐标系统以及中央子午线的数值,确定好后,在配置—坐标系参数里面修改好。 2,修改完成后,修改好天线类型以及天线高,去实地采点,如采集控制点K4,K5,K7上的点分别为K4-1,K5-1,K7-1。 3,采集完成后在键入—键入点里面分别键入控制点K4,K5,K7的坐标(如图)

4,点测量—点校正—增加,在网格点选中控制点,GPS点选中该控制点对应测量点。以此增加三组点。完成后点计算(注意:一般水平残差不超过1.5cm,高程残差不超过2cm,三点出水平残差,四点出高程残差)

5,校正结束后点确定会弹出是否替换当前坐标系以及坐标系参数里参数,一般全部点是。这里当前坐标系参数是控制当前任务的参数,而坐标系管理的参数这是一个模版控制所有任务下的参数,一旦坐标系管理参数被修改后,以后新建任务直接调用的坐标系名称即调用了坐标系管理里面该坐标系名称下面所有的参数。

二,ls6.1测地通 1,点工程—坐标系参数修改坐标系以及中央子午线 2,输入控制点并采集完控制点口,在测量—点校正界面如图,选中TGO方法以此增加点,点中下面计算后会出现残差值,打勾会替换坐标系参数。 注意:6.1软件只有一个坐标系管理,如果新建工程想调用该坐 标系可以直接在新建工程时直接套用该工程任务。生成的参数有加锁 功能,默认解锁帐号为admin 密码123456

三,ls7测地通 前面操作过程一样,需要注意的是: 1.当应用点校正参数提示“平面校正中比例异常“、或“残差值过大”时,是根据华测多年经验判断出的校正参数可能不对,这时候建议检查参与点校正的控制点是否输入错、控制点匹配时是否对应错,如果确认没有错误,请继续正常作业。 2. 当点校正添加点对的过程中找不到刚才键入的已知点时,这是因为键入的点坐标系统选择了“本地XYZ”,应该将坐标系统改为“本地NEH” 点校正就是求出WGS-84和当地平面直角坐标系统之间的数学转换关系(转换参数)。 1、测量已知点,找到已知点的实地位置进行测量,如K1、K 2、K 3、K4。 2、测出的四个点坐标分别命名为:1、2、 3、4,四个点必须在同一个BASE下,测量后开始进行点校正。 点击【测量】-【点校正】进入点校正界面,如下图: :添加;:删除;:查询;:计算;:应用 高程拟合方法包括:固定差、平面拟合、曲面拟合、TGO方法:

褐煤固体热载体法快速热解技术简介

褐煤固体热载体法快速热解技术简介 褐煤热解(干馏)是指在隔绝空气(或在非氧化气氛)条件下将褐煤加热,最终得到焦油、煤气和半焦的加工方法。 褐煤热解始于20世纪初,其目的是制取石蜡油和固体无烟燃料,随后发展了以制取发动机液体燃料为目的的工艺,如鲁奇二段炉、三段炉。20世纪50年代,随着世界范围石油、天然气的开发与应用,煤的热解加工发展速度减慢甚至停顿。但在一些褐煤资源丰富的国家,没有间断对褐煤热解的研究与开发。20世纪70年代开始,为了由褐煤和低阶煤制取较高产率的液体产品和芳烃化合物,人们对褐煤热解工艺的研究开发重新重视,一些新工艺接续开发出来。这些新工艺的目标是提高煤的液体产率,普遍使用的方法是加快热解反应的速度或在临氢的条件下进行热解反应,同时新工艺注意提高煤的利用率、提高过程的热效率及注重环境保护等。 褐煤热解工艺按照加热终温、加热速度、加热方式、热载体类型、气氛、压力等工艺条件分为不同类型。 国内外典型的褐煤热解工艺包括:外热立式炉工艺、内热立式炉工艺、美国的Toscoa1工艺、ENCOAL工艺、日本的煤快速热解工艺、德国的LR工艺、澳大利亚的流化床快速热解工艺、前苏联3TX(ETCh)—175工艺、中国的多段回转炉工艺、中国固体热载体新法干馏工艺及其他工艺。 褐煤固体热载体新法干馏工艺(技术)由中国大连理工大学开发,也称褐煤固体热载体法快速热解技术。以下从发展历程、过程原理与产品方案、工艺特点等方面简要介绍。2.2 过程原理与产品方案 褐煤固体热载体法快速热解技术是将褐煤通过与热的载体(热半焦)快速混合加热使褐煤热解(干馏)得到轻质油品、煤气和半焦的技术。 固体热载体法快速热解属于煤的低温干馏过程。煤低温干馏过程仅是一个热加工过程,常压生产即可制得煤气、焦油和半焦,实现了煤的部分气化和液化,所以也称为煤的温和气化或煤的轻度气化过程。与煤的直接液化、间接液化相比,过程相对简单,投资少。 固体热载体法快速热解技术使用粉粒状原料(小于6mm),不怕煤热粉化,尤其适合于褐煤。同时,与其它低温干馏方法相比,固体热载体法快速热解技术多产油品,生产的低温煤焦油质量好,焦油中含有脂肪烃、芳烃和酚类物质,可加工得化学品和燃料油。 褐煤含水多,热值低,应用受到很大限制。但褐煤挥发分高,是热解(干馏)技术处理的理想原料。褐煤固体热载体法快速热解得到优质低温煤焦油的同时,还得到半焦和煤气。半焦热值高于原煤(根据煤种不同一般高20%~50%)。半焦反应活性好。原料煤的灰分不同,得到的半焦灰分也不同。灰分低的半焦可用作高炉喷吹料、烧结粉焦和铁合金用焦粉,也可以加工成洁净的无烟燃料等;灰分高的半焦可用作合成气原料,也可以燃烧发电。固体热载体法快速热解可燃气为中热值煤气,可用作城市煤气、工业燃料或发电,也可以用作工业原料,例如转化制氢。根据不同目标煤固体热载体法快速热解技术可以与其他工艺组成多联产,如固体热载体法快速热解可作为联合循环发电的组成部分,半焦可作为气化原料或锅炉燃料,煤气可用于提高燃气轮机入口温度,提高发电效率,这样既高效洁净发电,又产低温焦油;固体热载体法干馏半焦用作电厂燃料,实现动力煤先提油再发电的目标;固体热载体法干馏半焦气化制合成气,进一步合成化工产品(甲醇、二甲醚、合成油等);固体热载体法快速热解可以与煤焦油加氢组合为成套技术,生产石脑油、柴油和燃料油,固体热载体法快速热解得到的煤气转化制氢,所得氢气用作煤焦油加氢;固体热载体法快速热解还可以与煤提质结合,除了半焦作为提质煤(或其中一部分)外,煤气也可用于煤提质热源。煤热解组合工艺及主要目标产品见图2.1。 图2.1 煤热解组合工艺及主要目标产品

褐煤的提质利用

褐煤的提质利用 陈凯中国矿业大学资源学院江苏徐州221116 摘要:在未来相当长的时期内我国以煤为主要能源供应的格局难以改变,褐煤储量大,但褐煤存在水分高热值低长距离输送经济性差等缺点,在利用之前有必要进行提质处理,本文介绍几种褐煤提质工艺,并分析其特点。 关键词:褐煤提质干燥脱水热解 0引言 褐煤是煤化程度最低的矿产煤俗称柴煤。处于烟煤和泥炭之间的棕黑色、无光泽的低级煤。含有可溶于碱液内的腐殖酸。含碳量在60%~77%之间,密度约为1.1-1.2,挥发成分大于40%。无胶质层厚度。恒湿无灰基高位发热量约为23.0-27.2兆焦/公斤(5500-6500千卡/公斤)。多呈褐色或褐黑色,相对密度1.2~1.45。褐煤水分大,挥发成分高(>40%),含游离腐植酸。褐煤脱水过程除脱去部分水分外,也伴随着一些煤的组成和结构的变化,它主要是由脱水作用和过程引起的。 1褐煤资源分布及其特性 目前,在我国已探明的褐煤保有储量中,以内蒙古东北部地区最多,约占全国褐煤保有储量的3/4; 以云南省为主的西南地区的褐煤储量约占全国的1/5; 东北、华东和中南地区的褐煤仅占全国的5%左右。褐煤是煤化程度最低的煤种,可分为硬褐煤和软褐煤( 俗称土状褐煤) 褐煤孔隙率高,反应性强,煤中含氧量大( 15%~30%) ,大部分以含氧官能团的形式存在,以酚羟基( OH)为主,其次是羧基( COOH) 和羰基( CO) ,甲氧基( OCH2) 较少[5]褐煤含水高( 30%~50%) 灰分高( 15%~30%) 挥发分高( >37%) 发热量低( 12.56~14.65 MJ/kg) ,热稳定性差、易风化碎裂、易氧化自燃、不适于远途运输。 2褐煤提质技术现状 褐煤提质是指褐煤在小于250℃温度脱去部分大部分游离水后的干燥褐煤,用甲苯等有机物提取褐煤中的褐煤蜡、腐植酸的过程。国内外褐煤提质技术大致可分为干燥脱水提质技术、成型提质技术和热解提质技术3大类。 2.1褐煤脱水工艺 褐煤脱水工艺通常可以分为(蒸发)干燥和非蒸发脱水两类。其中非蒸发脱

华测GPS手簿连接SDCORS设置步骤

华测GPS连接SDCORS设置步骤 (此说明只针对LT400手簿) 1、第一步:设置主机工作模式 打开测地通,点击【配置】->【手簿端口配置】,选中【选用蓝牙】,点击【配置蓝牙】,搜索蓝牙,绑定主机,点击【确定】,退出测地通。如果已经绑定过主机,这一步可以省略。 打开HCGpsSet如图标,使用正确的端口,如COM8,选中蓝牙,然后点击打开端口,如下图: 图一 如图所示的区域,首先点击更新,建设设置是否正确,如果不正确更改为如下设置:数据输出方式使用正常模式,接收机工作模式为自启动移动站,自启动发送端口为PORT2+GPRS/CDMA,自启动发送格式使用RTCM3(左边红框区域一定设置为上述选项)。设置一定正确 特别注意:红框标注区域,数据输出方式为:正常模式,接收机工作模式为:自启动移动站;自启动数据发送端口为:Port2+GPRS/CDMA;查分数据格式为:RTCM3;这四项不得出错。

第二步:设置网络,连接网络 1\点击左上角开始按钮,在弹出的菜 单中选择设置,如下图二所示: 图二 2\在弹出的设置中选择系统,然后选择拨号命令,在弹出的窗口中设置如图四所示:在设置初始化命令输入框中,IP之后的那个双引号中输入“一定注意小写输入。然后点击设置,点击打开(GPRS电源),所设置完成。 然后点击OK。

图三图四 图五图六 3\设置拨号连接,如下图所示设置: 如果没有,点击新建,如果有连接名称,可以选中名称,点击编辑,检查设置是否正确,如图七所示:选择调制解调器一定为Serial Cable on COM6,然后点击下一步,进入图八,此处为拨号号码,一定要输入:*99***1#,如果设置完成,点击下一步,然后直接点击完成。拨号设置完成。

100万吨兖矿褐煤热解提油提气技术方案建议书

100wt/a低阶煤分段热解提烃 生产优质油气及缚硫洁净炭 技术与工艺方案建议书 1 低阶煤中低温分段热解提取油气资源的背景和意义 我国能源资源结构特点是缺油少气富煤。截止2012年我国查明石油剩余技术可采储量仅为33.3亿t,天然气4.4万亿m3;而煤炭资源探明储量为1.42万亿t,其中有75%以上是中低阶煤。 开发新工艺技术推动我国低阶煤清洁高效梯级利用已迫在眉睫。先提取煤中业已存在的油气资源,并生产高附加值固体洁净炭,从而形成热解提烃(油气)-洁净炭气化-合成、热解-油气提质-洁净炭燃烧发电等多途径低阶煤清洁高效梯级利用技术路线,是解决我国低阶煤利用的必由之路。若采用低阶煤中低温分段热解提烃技术,在我国目前直接燃烧发电的低阶煤中,每年仅以10亿t 低阶煤先提取油气资源然后再发电计算,就可提取油1亿t左右(相当于原油1.5亿t)、烷烃气产品超过1000亿m3、其余利用余热生产合成气合成甲烷的量接近甚至超过提取烷烃气的量。 采用科学的分段热解中低阶煤技术制取油气,对于弥补我国缺油少气现状、突破油气对外依存度、保障我国能源安全、经济安全、国防安全和国家可持续发展具有重大意义。 一般情况下,低阶煤(多指褐煤、长焰煤等低煤化度煤)与挥发分大于18%的中阶煤的挥发物主要是以烃类物质构成的。在挥发分大于25%的中、低阶煤挥发物中,烃类成分一般占无水基挥发分质量的80%以上。尤其在长焰煤、气煤及更低煤化度的低煤阶煤中,烃类成分大多占无水基煤总质量比的30%左右,高者甚至

可达35%以上。 若工艺得当,即使煤中含有15%左右的烃化合物,都有先提取利用的价值,因此煤中只要含有15%及以上的烃化合物,都应该被视为富烃煤。以适当工艺条件将煤中烃类物质以接近原始成分热解出来(即控制二次裂解),经分离净化后,其中40%(质量比)左右是C1~4气态烃。气态烃经进一步分离可提取高附加值人工天然气SNG,深冷分离生产液态甲烷LNG及民用液化气LPG(主含液化丙烷);还有50%左右是制取优质车用油的轻质焦油及其它轻烃油类。 2015年我国煤炭消费总量39.65亿t,其中直接燃烧近三十亿吨多为富烃煤。用富含烃类成分的富烃煤直接燃烧发电或民用,不仅效率低、污染物与碳排放量大、极大地浪费了宝贵的资源,且大大推高了环保成本和生产成本。如果将其在燃烧前高效提取烃类产品,每年可低成本制取优质动力油近2亿t(约相当3亿t原油)、人工天然气SNG或液化天然气LNG 2000亿m3左右(加合成气合成甲烷则倍增)。而我国2015年的原油产量为2.1亿t,进口量3.3亿t,原油对外依存度突破60%,已连续7年超过50%这一国际公认的安全警戒线;由于天然气燃烧充分、排放低,发达国家都在推进气代油工程,而我国2015年天然气消费量仅为1930亿m3(其中不仅进口比重大,且进口年增幅在15%以上),所以发展SNG势在必行。 目前国内仅有少数几家企业用低阶煤做煤制油或气。但这些企业多沿袭南非沙索集团间接转化工艺,先将煤与其中油气类烃化合物一并裂解或反应为CO和H2,然后再将CO和H2合成烃。用此工艺加工低煤阶煤,其中大量的烃被裂解后再合成烃,不仅其合成物含量远不及原料中业已存在的烃含量高,且污染物尤其是CO2

相关文档