文档库 最新最全的文档下载
当前位置:文档库 › 基于ProE和ADAMS的苹果采摘机械手的仿真分析

基于ProE和ADAMS的苹果采摘机械手的仿真分析

基于ProE和ADAMS的苹果采摘机械手的仿真分析
基于ProE和ADAMS的苹果采摘机械手的仿真分析

本科生毕业论文(设计)

题目: 基于Pro/E和ADAMS的苹果采摘机械手的仿真分析姓名:

学院:

专业:

班级:

学号:

指导教师: 职称: 教授

2013 年5 月20 日

南京农业大学教务处制

目录

摘要 (2)

关键词 (2)

Abstract (2)

Keywords (2)

1 引言 (4)

1.1 选题的背景 (4)

1.1.1 本课题的研究意义及概况 (4)

1.1.2 采摘机械手应用前景 (4)

1.2 课题的研究内容及方法 (5)

1.2.1 课题的研究内容 (5)

1.2.2 课题的研究思路 (5)

2 苹果采摘机械手的建模 (6)

2.1 苹果的生长特性介绍 (6)

2.2 苹果采摘机械手方案的选择 (6)

2.2.1 第一种方案的分析 (6)

2.2.2 第二种方案的分析 (7)

2.2.3 第三种方案的分析 (8)

2.2.4 第四种方案的分析 (9)

2.2.5 确定本课题方案 (10)

2.3 机械手结构的设计 (11)

2.3.1 三维建模软件 (11)

2.3.2 创建装配体 (12)

2.4 传动机构的结构简图及分析 (13)

3 机械手的仿真分析 (15)

3.1 仿真分析软件介绍 (15)

3.2 模型导入及建立约束 (15)

3.2.1 模型的导入 (15)

3.2.2 实体质量属性的添加 (16)

3.2.3 模型约束的建立 (16)

3.3 机械手的仿真 (17)

3.4 仿真结果的后处理 (17)

3.4.1 绘制仿真曲线及进行优化分析 (17)

3.4.2 产生仿真结果的动画AVI文件 (19)

4 结论 (20)

4.1 主要工作及成果 (20)

4.2 展望 (20)

致谢 (21)

参考文献: (22)

基于Pro/E和ADAMS的苹果采摘机械手的仿真分析

摘要:本文介绍了国内外农业机器人的发展概况和采摘机械手的应用前景。通过对多种不同结构机械手的优缺点分析,提出了一种结构简单、操作方便的机械手结构。利用三维建模软件Pro/Engineer进行机械手各零部件的设计,并将其组装成一个完整的机械手。将机械手装配图导入仿真分析软件ADAMS中进行机械手的仿真。运用求解器模块Adams/Solver进行机械手的静力学、运动学和动力学运算。利用后处理模块Adams /Postprocessor进行仿真视频和各种数据曲线的输出。通过对仿真结果的分析,对苹果采摘机械手的研究方向提出了展望。

关键词:机械手; Pro/E;三维建模; ADAMS;仿真;

Simulation of Apple Picking Manipulator based on Pro/E and

ADAMS

Abstract: This paper introduced the overview of the development of agricultural robots and the prospect of picking manipulat. By comparing the structure of different robots, analyzing the advantages and disadvantages, a kind of manipulat has been put forward which has a simple structure is easily operated. All the parts of the robot manipulat were designed, assembled with the help of Pro / Engineer. After leading the assembling drawing into the simulation software of ADAMS, the simulation was made through Adams/View. The statics, kinematics, dynamics computation were carried out with Adams / Solver. The simulation videos Curve Data of simulation were obtained with the help of Adams / Postprocessor. By analyzing the results of the simulation, the prospect of apple picking manipulat research was given.

Keywords:manipulator;Pro/E; M-3DM; ADAMS; simulation

1 引言

1.1 选题的背景

1.1.1 本课题的研究意义及概况

果品采摘作业是水果生产链中最耗时、最费力的一个环节。采摘作业季节性强、劳动强度大、费用高,因此保证果实适时采收、降低收获作业费用是农业增收的重要途径。由于采摘作业的复杂性,采摘自动化程度仍然很低。目前,国内水果采摘作业基本上都是人工进行,其费用约占成本的50%~70%,并且时间较为集中。采摘机器人作为农业机器人的重要类型,其作用在于能够降低工人劳动强度和生产费用、提高劳动生产率和产品质量、保证果实适时采收,因而具有很大发展潜力。

21 世纪是农业机械化向智能化方向发展的重要时期。随着农业生产的规模化、多样化和精确化,农业生产作业要求逐渐提高,许多作业项目(如蔬菜和水果的挑选与采摘、蔬菜的嫁接等)都是劳动密集型工作,再加上时令的要求,保证作业质量成为关键问题;同时,工业生产发展迅速,农业劳动力将逐渐向社会其他产业转移;随着人口的老龄化和农业劳动力的减少,农业生产成本也相应提高,这样大大降低了产品的市场竞争力[1]。

国外农业机器人发展迅速。自1983年第1台西红柿采摘机器人在美国问世以来,采摘机器人的研制和开发得到了快速发展(如图1所示)。法国、荷兰等国家相继立项研究了采摘苹果、柑橘、西红柿、西瓜和葡萄等智能机器人。日本近年在收获机器人的研究方面进展很快,目前已经研制出番茄、黄瓜、葡萄、柑橘等水果和蔬菜收获机器人,但技术不太成熟,还没有真正实现商业化。我国在农业机器人领域的研究始于20世纪90年代中期,上海交通大学机器人研究所的曹其新、刘成良等人完成了智能化联合收割机样机的研制。南京农业大学沈明霞和浙江工业大学张立斌等人正在进行农业机器人视觉方面的研究。2001年,张瑞合等运用双目立体视觉的方法研究了番茄收获中果实的精确定位问题。采摘机器人是未来智能农业机械化的发展方向,具有广阔的应用前景[2]。

图1 水果采摘机器人图2 番茄采摘机械手结构简图

1.1.2 采摘机械手应用前景

机械手又称操作机,是指具有和人手臂相似的动作功能,并使工作对象能在空间内

移动的机械装置,是机器人赖以完成工作任务的实体.在收获机器人中,机械手的主要任务就是将末端执行器移动到可以采摘的目标果实所处的位置。日本冈山大学研制出一种具有7个自由度的西红柿收获机械手[3](如图2所示)。收获作业是一项劳动强度大、消耗时间长、具有一定危险性的作业。研究开发适合目前生产实际的果蔬果实收获机器人不仅可以在很大程度上减轻劳动强度、提高生产效率, 而且具有广阔的市场应用前景[4]。果蔬收获是一个季节性强的劳动密集型工作,由于劳动力的高龄化和人力资源越来越缺乏,采用机器人进行果蔬的自动化收获变得越来越迫切. 但由于收获机器人的工作环境往往是非结构性的、未知的和不确定的,因此给机器人的实际应用带来了很大的困难. 要成功地实现机器人的智能化收获,必须要在机器人的本体设计、果实的自动化识别和定位、机器人运动规划和控制技术等方面进行深入的研究[5]。本课题的研究主要是运用Pro/E软件设计出一种结构简单小巧的苹果采摘机械手模型,然后导入到ADAMS 机械系统动力学自动分析软件中。利用已有的模块对此机械手进行多项内容的模拟仿真。因此,收获作业所必需的采摘机械手的仿真分析同样具有非常广阔的应用前景。

仿真设计集多种设计方法于一体, 在虚拟的环境下, 综合运用多种设计方法, 通过添加运动、约束、力、碰撞等, 对该机械进行运动和动力仿真模拟, 不仅能在虚拟的环境中看到机械手的运动方式, 并且用动画、图形、数据等多种形式输出零部件的轨迹、速度、加速度、作用力、反作用力等运动和动力参数, 获得的设计数据和真实的情况基本一致, 克服了传统设计在农业机械手设计中的弊端, 使农业机械手的设计能达到很高的要求[6]。

1.2 课题的研究内容及方法

1.2.1 课题的研究内容

本课题研究的主要内容是在已有的研究成果的基础上,了解苹果采摘机械手结构设计的基本方法,基本原理及遵循的规则等。通过三维制图软件Pro/E设计出结构简单、操作便捷、经济效益好等方面的要求。由于机械结构直接决定机器人运动的灵活性和控制的复杂性,所以机器人必须紧凑,行走、转弯灵活,同时还要保证机器人运动平稳和灵活避障. 设计末端执行器时,要求准确快速切除果实并确保不损伤果实. 同时,还必须进行机构的运动学和动力学分析,运用优化的观点来设计机器人结构[7]。

在对所设计的苹果采摘机械手进行仿真的基础上,还可以通过对仿真结果进行分析,以对机械手加以改进,为以后实物的制造给予指导性作用。评价机械手的结构性能参数主要有工作空间、可操作度、位置多样性、冗余度等。末端执行器必须根据对象的物理属性来设计,包括形状、尺寸、动力学特性(如抓取力、切割力、弹性变形、光特性、声音属性、电属性等) ;水果的化学和生物特性也必须考虑.末端执行器的性能评估指标一般有:抓取范围、水果分离率、水果损伤率等。

1.2.2 课题的研究思路

1.研究苹果的生长特性和采摘方式。

2.分析国内外已有苹果采摘机械手的结构形式及其优缺点。

3.使用三维建模软件Pro/E,将自己设计的机械手用Pro/Engineer进行建模,并构建初步的运动约束。

4.将Pro/E设计的苹果采摘机械手三维图形保存为ADAMS能够识别的文件,该过程

是实现ADAMS对机械手进行仿真的基础,也是对机械手进行分析、优化的关键所在。

5.运用仿真分析软件ADAMS中模块对机械手进行各项仿真,如手指开合的角度,角速度,稳定性,运动轨迹等。

6.输出仿真结果并进行一些简单的分析,提出了改进方案。

2 苹果采摘机械手的建模

2.1 苹果的生长特性介绍

苹果是蔷薇科苹果属植物的果实,该属约25种,苹果是栽培最广泛的果树。苹果是梨果的一种,由子房和子房外围的组织发育而成。苹果树多为异花授粉,有2~4%的花座果较为理想。虽然成熟苹果的大小、形状、颜色和酸度因品种和环境条件的不同而差异很大,但通常圆形,直径50~100毫米,带红色或黄色。苹果是落叶乔木,有较强的极性,通常生长旺盛,树冠高大,树高可达15米,栽培条件下一般高3~5米左右。树干灰褐色,老皮有不规则的纵裂或片状剥落,小枝光滑。单叶互生,椭圆,叶缘有锯齿。果实为仁果,颜色及大小因品种而异。喜光,喜微酸性到中性土壤。最适于土层深厚、富含有机质、心土为通气排水良好的沙质土壤。

苹果自花结实力差,栽植时必须配置授粉树。由于顶端优势和芽的异质性综合作用的结果,苹果通常具有较强的干性和明显的层性。因品种间的萌芽力和成枝力有差异,其层性的明显程度也不同。苹果是世界性果品,由于其生态适应性较强,果品营养价值高,耐贮性好,供应周期长,世界上相当多的国家都将其列为主要消费果品而大力推荐[8]。现以红富士苹果树为例,简单介绍苹果树的生长特性:

(1)生长旺盛.红富士苹果成冠块,枝量大,新梢旺,萌芽率高,成枝力强,剪口下可形成长枝3~6个;萌芽早,副梢多,副梢自然抽生率较高。

(2)早果丰产。红富士苹果腋花芽较多,前期腋花芽可占总花芽的20%左右;结果初期长果枝和腋花芽占一定比例,但很快转为以短果枝结果为主,矮砧树尤为明显,五年生M7砧长富6短果枝比例达89%[9]。

由以上苹果的生长特性及栽培方式,实现苹果的机械化采摘仍然面临较大的挑战。国外已有一些国家开展了苹果采摘机器人的研究工作。法国、韩国相继开展了苹果收获机器人研究,并试做了样机。下面将国内外常见的机械手结构作分析比较。

2.2 苹果采摘机械手方案的选择

2.2.1 第一种方案的分析

针对苹果的外形,采用两个直动手指,手指内侧附有一层橡胶材料,以保证抓起苹果具有足够的摩擦力,同时减少抓取过程中对苹果表面的损害。采用正反螺纹杆的转动来实现手部的夹紧和分离。当机械手夹住苹果时,启动电机以扭转果梗的方式实现苹果与树枝的分离,机构简图如图3所示。

在设计时,夹持机构的驱动机构是正反螺纹杆。对于苹果的分离,将夹持机构、光杆、正反螺纹杆和驱动电机用支架连接起来,通过电机6使整个支架旋转,在手部抓紧苹果后扭转果柄,这种扭断果柄的方式不会造成树枝的晃动。

本方案具有以下特点:1、夹持缓慢, 采用内附橡胶材料夹持装置来夹持果实, 减少了水果与机械手接触过程中冲击、挤压等作用而造成的苹果的机械损伤;2、采用两

个电机分别实现不同的功能,效率较高。

缺点只要表现在:1、成本较高,灵活性较差。2、两个电机作业,控制难度较大,要求采摘人员具有较高的专业能力,通用性差; 3、末端执行机构体积过大、质量过重、要求机械手运动空间较大。

图3 方案一的结构简图

1、末端夹持机构

2、正反螺纹杆

3、光杆

4、电机一

5、轴承一

6、电机二

7、轴承二

8、支架

2.2.2 第二种方案的分析

本方案仍然采用电机控制来实现手指的夹持工作,在分离水果的时候也同样采用扭断果梗的方式。其机构简图如图4所示。

本方案的工作过程主要是:当活塞向后运动时,推动齿条向后运动,根据齿条与齿轮的啮合关系,两个手指平移并实现夹紧果实;当活塞向前运动时,手指平移松开。在手指的外轮廓固定连接一个微型电机,用它来驱动手指转动,实现果柄的扭断。

本方案具有以下几个特点:

1、本方案对微型电机的要求非常严格,需要电机的重量足够轻,尺寸足够小,以最大限度的减少手指在运动过程中与果枝的碰撞。

2、通过活塞杆和齿条带动两个齿轮转动,齿轮与手臂的连接采用固定连接的方式,形成双支点回转机构,易于保证较高的采摘率和成功率。

3、采用电动和气动共同工作,可以实现进给和后退速度快,动作可靠准确,效率较高,但缺点是整体结构体积大,不利于避障。

图4 方案二的结构简图

1、电机

2、手臂

3、左齿轮

4、活塞杆

5、右齿轮

6、齿条

7、轴承

2.2.3 第三种方案的分析

在上述方案的基础上,本方案仍然采用滑槽的方式实现手指的开合。苹果的分离采用割断的方式实现,当两手指夹持苹果后,在电机的驱动下,双面刀片在手指指尖部位进行转动,以割断果柄。其机构简图如图5所示。

其工作过程主要是:活塞杆前后运动,两个手指绕支架上的轴转动,实现苹果的抓取。抓住水果后,启动电机,驱动刀片绕手指在手指包裹区域的外围旋转,以割断苹果的果梗。

本方案有以下特点:

1、本方案的末端执行器的苹果分离方式是切割果柄,与扭断果梗的方式有很大的区别,这省略了电机带动整个手部转动扭断果梗这一复杂的过程。

2、驱动刀片的电机要求较高,要求具有较大的输出扭矩,不利于避障,并且如果刀片不够锋利就不能顺利割断果梗,刀片需要经常更换或维护。

3、该方案具有较好的通用性,可应用于包括柑橘、梨、桃等多种水果的采摘。

4、本方案的末端执行器结构简单,可靠性较好,智能控制简单,成本较低廉。手部外侧加电机降低了进给过程中的蔽障能力。

图5 方案三的结构简图

1、手指

2、滑槽

3、销轴

4、气缸

5、活塞杆

6、转轴

7、直流电机

8、刀片

2.2.4 第四种方案的分析

由本课题的研究内容和研究目的,需要设计一个结构紧凑,行动性和轻便性好,易于控制,灵活性和通用性都较好的末端执行器。第四种方案可满足以上要求,并且该结构在综合了上述的一些机械手的优缺点的基础上,采用平行四边形的传动架构,采用滑槽的形式有利保证传动的平稳性,对于苹果在实际的采摘具有更现实的意义,其结构简图如图6所示。

工作过程主要是:活塞杆向后运动时,手指在连杆的作用下沿着滑槽方向向内作平动,即可完成夹持果实。随着旋转电机的转动,夹紧苹果的机械手绕电机轴方向转动,实现果梗的扭断。

本方案具有以下特点:

1、引入了包括连杆,滑槽,销轴等基本机构,动力分别以液压和电动实现,实现了采摘机械手整体结构的紧凑性和灵活性。

2、扭断果梗的过程中,电机带动手部机构和苹果共同转动,由于整个末端执行器体积小,质量较轻,所以排除了空间方位上的忧虑,运动较灵活。

3、采用的零件较多,结构较复杂,对各部件之间的配合与精度有一定的要求。

基于自动化的苹果采摘机器人

龙源期刊网 https://www.wendangku.net/doc/941338953.html, 基于自动化的苹果采摘机器人 作者:刘国栋杨孟杰张应红孙元广 来源:《科学与财富》2019年第20期 摘要:苹果是具有长久的季节性的水果,且人工采摘的劳动强度大,风险高,成本高。 解决人工采摘苹果的问题需要将农业与工业智能化的结合。为此设计一种五自由度,满足工作空间的基于自动化的苹果采摘机器人。该机器人通过工业摄像机、红外线探头采集外部环境信息,并传递到电源控制模块,从而控制以步进电机、舵机的源动力的驱动,进一步控制各个机械臂和机械手的转动调节,实现对苹果的自动化的采摘。 关键词:采摘苹果;自动化;工业摄像机;机械手 引言:随着农业生产的多样化和精确化、规模化,农业生产作业要求也正在逐渐提高,加速农业现代化进程,实施智能化农业,广泛应用农业机器人,提高资源利用率和农业产出率,降低劳动强度,提高经济效率将是现代农业发展的必然趋势。对于降低人工劳动强度和采摘成本、保证苹果适时采收,研究满足工作空间的自动化采摘机器人对实现农业自动化和提高经济效益具有重大的意义。 1.苹果采摘机器人的机械结构设计 1.1机器人的方案设计: 采摘机器人的机械结构图主要由底座、腰部,大臂,肘部,小臂,末端机械手等主要部分组成,其总体结构简图1.1所示。该机器人与传统的工业机器人类似,具有五个自由度的工作空间,分别是自由度1(腰部回转),自由度2(大臂旋转),自由度3(小臂旋转),自由 度4(肘回转),自由度5(机械手旋转)。 1.2移动平台方案的确定: 在确定设计方案以后对机器人的移動载体采取分析并进行选择。 (1)履带式移动平台特点及存在问题 特点 a. 转向半径小,可实现原地转向。 b.支撑地面的面积大,下陷度小,滚动阻力大,越野机动性能好;在松软或者潮湿的土地环境中具有较好的越障能力。 c.履带支撑面上有很多履齿,行走时不容易打滑,附着性能好;。

机械制造的有关机械手手臂伸缩课程设计

机械类综合课程设计 题目名称工业机械手设计 (手臂伸缩部 分) 专业班级 学号 学生姓名 指导教师 完成时间

目录 一、机械手设计任务书 (2) 1.1课程设计目的 (2) 1.2设计内容和要求 (2) 二、手臂的设计 (4) 2.1、手臂伸缩的设计计算 (4) 2.1.1、F 摩的计算 (5) 2.1.2、F 密 的计算 (6) 2.1.3、F回的计算 (7) 2.1.4、F 惯 的计算 (7) 2.2、确定液压缸的结构尺寸 (7) 2.2.1、液压缸内径的计算 (7) 2.3、活塞杆的计算 (10) 2.3.1、活塞杆的尺寸 (10) 2.3.2、活塞杆的稳定性校核 (10) 2.3.3、大柔度杆的临界力 K F (11) 2.3.4、缸筒材料的选择. (12) 2.3.5、油缸端盖的连接方式及强度计算 (12) 2.4、底板的设计计算说明 (13) 2.5、导向杆的结构设计 (15) 2.5.1、导向机构的作用 (15) 2.5.2、导向杆的外型尺寸及材料 (15) 三、液压控制系统设计 (15) 3.1、系统要求 (16) 3.2、油缸的选择 (16) 3.2.1、确定流量 (16) 3.2.2确定泵的动力 (16) 3.2.3、选择泵的型号为YBX—25[8]P45-106 (17) 3.2.4、油泵电机的选择 (17) 3.2.5、液压元件的选择 (17) 3.3、辅助元件选择 (18) 3.4、系统液压图 (19) 3.4.1、确定现场器件的动作顺序 (19) 3.4.2现场器件与PLC的连线 (20) 3.4.3、梯形图与程序指令表 (21) 3.4.3、梯形图与程序指令表 (22) 四、设计主要内容 (25) 五、参考文献 (26)

全自动摘果机的设计与创新设计

摘要 摘果机技术毫无疑问是未来的战略性高技术,充满机遇和挑战。目前,国际上摘果机市场大概有80亿至100亿,其中工业摘果机占的比重最大。2025年,整个摘果机市场将达到500亿,服务摘果机从原来的300多万台增加到1200多万台,特种摘果机(如:农业摘果机、排爆摘果机、医疗摘果机等)的呼声也越来越高。另外,微软等IT企业,丰田、奔驰等汽车公司,甚至还有家具、卫生洁具企业都纷纷参与摘果机的研制。 本课题来源农业相关摘果机——摘果机。随着摘果机技术的发展国内外开始探索相关技及先进成果应用在农业领域,其中果实采摘收割摘果机是农业领域中相对大的比重,相关摘果机随着技术进步及相关经验的成熟会为人们解放劳动力、提高工作效率等方面有不可估量的前景。 本文运用大学所学知识,设计了一款轮式摘果机,本摘果机通过轮式底部结构可自由行进并用5轴式机械臂结构可有效采摘果树上的苹果。为进一步探索苹果采摘相关摘果机的研发提供了相关经验及依据,并对进一步论证相关技术有了实验的摘果机。 关键字:摘果机、农业,苹果采摘,轮式摘果机 I

Robotics is undoubtedly a strategic high-tech future, full of opportunities and challenges. Currently, the international market, there are about robot 8 to 10 billion, which accounts for the largest proportion of industrial robots. 2025, the entire robot market will reach 50 billion, the service robot from the original more than 300 million units to 12 million units,Special robot (eg: agricultural robots, EOD robots, medical robots, etc.) are increasingly vocal. In addition, Microsoft and other IT companies, Toyota, Mercedes-Benz and other car companies, and even furniture, sanitary ware enterprises have involved in the development of the robot. The sources of agriculture-related topics robot - apple picking robots. With the development of robot technology at home and abroad began to explore the application of relevant technologies and advanced achievements in the field of agriculture, where the fruit harvest picking robot is agriculture relatively large proportion of the relevant robot as technology advances and experience of mature people will liberate labor force improve work efficiency and so have immeasurable prospects. In this paper, the university is knowledge, designed a wheeled robot apple picking, apple picking this wheeled robots can travel freely and bottom structure with a 5-axis robot arm structure can effectively picking apples fruit trees. To further explore the development of apple picking robot provides relevant and in accordance with relevant experience, and further related technology demonstration experiments with robots. Key words: Robot,Agriculture,Apple picking ,Wheeled robot

【CN209954695U】一种苹果采摘机械手【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920257102.X (22)申请日 2019.02.28 (73)专利权人 西北农林科技大学 地址 712100 陕西省咸阳市杨凌示范区西 农路22号 (72)发明人 杨福增 樊攀 雷小燕 孙景彬  孟宠  (51)Int.Cl. B25J 15/10(2006.01) B25J 15/02(2006.01) (ESM)同样的发明创造已同日申请发明专利 (54)实用新型名称 一种苹果采摘机械手 (57)摘要 本实用新型提供了一种苹果采摘机械手,在 能够满足苹果采摘、抓取稳定的前提下,能解决 现有的苹果采摘机械手结构复杂、生产成本高等 技术问题。该采摘机械手配有两关节手指,手指 由螺旋弹簧固定后安装于掌盘,每根手指由两个 指节、一个驱动连杆和一个从动连杆组成,驱动 连杆上的腱绳贯穿掌盘后垂直固定在升降圆盘, 升降圆盘另一端通过腱绳连接驱动电机。通过电 机驱动、腱绳传动,带动手指聚拢,实现由一个电 机同时驱动3个手指完成对苹果的包络抓取。权利要求书1页 说明书3页 附图4页CN 209954695 U 2020.01.17 C N 209954695 U

权 利 要 求 书1/1页CN 209954695 U 1.一种苹果采摘机械手,其特征在于:包括有两关节手指、螺旋弹簧、掌盘(9)、腱绳(10)、滑轮(13)和驱动电机(12),所述两关节手指分别通过指节支座(8)支撑于所述掌盘 (9);所述腱绳(10)一端连接手指、另一端贯穿掌盘(9)后垂直固定在升降圆盘(15);腱绳 (10)一端固定升降圆盘(15)中心、另一端连接所述滑轮(13);滑轮(13)装配于驱动电机(12)的转轴;驱动电机(12)固定于底座(11)。 2.根据权利要求1所述的一种采摘机械手,其特征在于:所述两关节手指设置有近指节(6)、远指节(1)、驱动连杆(4)和从动连杆(2),近指节(6)、驱动连杆(4)中部铰接孔及指节支座(8)共同铰接,近指节(6)和驱动连杆(4)之间设有螺旋弹簧Ⅰ(3),驱动连杆(4)和掌盘(9)之间设有螺旋弹簧Ⅱ(7),从动连杆(2)与驱动连杆(4)一端铰接,远指节(1)两端分别与近指节(6)和从动连杆(2)铰接。 3.根据权利要求2所述的一种采摘机械手,其特征在于:所述掌盘(9)上均布三个指节支座(8),所述驱动连杆(4)上有3个铰接孔,两个端孔之间有35°夹角,设置为弯曲的连杆,其中一端与从动连杆(2)铰接,另外一端与腱绳(10)连接。 4.根据权利要求3所述的一种采摘机械手,其特征在于:所述掌盘(9)上均布三个小孔,腱绳(10)通过掌盘(9)上均匀分布3个小孔垂直下落后与升降圆盘(15)固定。 5.根据权利要求4所述的一种采摘机械手,其特征在于:升降圆盘(15)下表面几何圆心处设置有一个螺栓孔,腱绳(10)一端通过螺栓与螺栓孔固定,另外一端垂直下落与滑轮(13)上的凹槽均匀缠绕,下落方向与升降圆盘(15)中心轴重合,与所述滑轮(13)相切,滑轮(13)固定在驱动电机(12)的转轴上。 6.根据权利要求1或2所述的一种采摘机械手,其特征在于:近指节(6)和远指节(1)内侧表面覆盖软硅胶垫,减少抓取过程中对苹果的损伤,并且近指节(6)和远指节(1)上的压力传感器(5)可以对夹持力进行反馈。 7.根据权利要求6所述的一种采摘机械手,其特征在于:所述驱动电机(12)的转速根据电机脉冲频率控制,所述压力传感器(5)获取各个手指的接触力,当手指表面压力传感器(5)达到设定的抓取力,信号反馈给驱动电机(12),驱动电机(12)停止运动,实现苹果抓取。 8.根据权利要求1或2或4所述的一种采摘机械手,其特征在于:所述手指、支撑杆、指节支座(8)、掌盘(9)、升降圆盘(15)、底座(11)均选用3D打印ABS塑料。 2

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本

液压挖掘机工作装置在ADAMS中的运动仿真解 析参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

液压挖掘机工作装置在ADAMS中的运动仿真解析参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 虚拟样机技术在使用过程中为液压挖掘机设计提供了 有效的方法和手段,在使用过程中受到了条件限制,较少 的单位会对运行学进行仿真研究,降低了色剂方案可行 性。文章基于动力学仿真软件ADAMS建立起了挖掘机工 作装置虚拟系统,更好的完成了前期处理工作,使得建模 正确性更高。 液压缸顺序工作的运动仿真分析 1.1.基于尺寸确定 当液压的挖掘机工作装置尺寸以及基本结构都确定下 来之后,该挖掘机的工作范围也基本确定下来。简单理解 就是挖掘机铲斗齿尖轨迹的包络图得以确定。在包括图

中,有些部分区间靠近的比较紧密,有的会深入到挖掘机停点底部下,这一个位置虽然还可以挖掘到,但是在挖掘过程中会引起土壤坍塌,从而影响机械运行稳定,使得施工安全性受到影响。在以上动臂液压缸、斗杆液压缸和铲斗液压缸运动仿真分析过程中,选择的挖掘机工作顺序和方式一般都是在装置范畴内,这里讲解的顺序指的是,挖掘工作进行时,各个油缸都是根据一定顺序进行收缩或者伸出。例如:挖掘进行时,需要先下降动动臂,再收回斗杆,这个动作完成之后,在使用铲斗进行挖掘。 1.2.顺序工作运动仿真实现的路线 仿真路线是,在斗杆液压缸、动臂液压缸、铲斗液压缸上进行设置,一般在不同的时间段内,它的运动驱动函数都不同,需要进行调节处理,使得各缸在相应的工作极限范围内相互运行,这样就可以获得挖掘机的工作范围。可以在液压缸移动副约束处添加移动驱动,改变运动方

苹果采摘装置的研究与探讨

苹果采摘装置的研究与探讨 【摘要】苹果采摘装置适用于苹果成熟后的苹果采摘,智能化机械化的采摘模式解放了劳动力,提高了采摘效率,本装置利用无线遥控技术,搭载移动平台,安装末端执行装置即机械手,实现了苹果采摘过程中的机械化,利于农业机器人的研发应用。 【关键词】苹果采摘;机械手;传感器 Abstract:Apple picking device is suitable for mature apple picking,intelligent mechanization picking mode liberated the labor force,improve the picking efficiency,this device using the wireless remote control technology,with a mobile platform,installation of the manipulator end point device,realized in the process of apple picking mechanization,agricultural research and application of the robot. Key words:Apple picking;Manipulator;The sensor 引言 21世纪以来,随着我国城镇化的社会进程,原始的农业劳动力逐渐减少,转向其他行业,而水果采摘在农业生产中有很多弊端:第一是采摘中需要大量人力;第二是采摘是相对耗时长的一个生产环节;第三,采摘水果大都集中在一个时段;第四,人工采摘水果果实需要弯腰或者爬高,具有一定的危险性。随着我国科技水平和农业机械化水平的逐步提高,用机械手来采摘水果果实成为可能,这样不仅解放了农村劳动力,而且更加安全,方便。 国内外研究现状:随着科技的进步,近年来,国外在果蔬采摘机器人的研究方面取得不少成果,但由于技术,市场和价格多方面因素的影响,此类研究工作基本停顿,国内研究此类型的方面起步晚,相对来说成果少,对苹果的采摘方面研究还很缺乏。随着农业产业化发展进程加快,其种植越来越规模化,然而苹果的采摘大部分还处于人工作业的情况,这大大降低了采摘效率,提高了成本,而且苹果高度不一,人工采摘费时费力,容易疲劳,发生危险,所以对苹果采摘设备的研究有重要意义[1]。 本文以苹果为研究对象,讨论苹果采摘装置,最终目标是确保顺利采下苹果,提高劳动效率,解放生产力。设计一种实用的苹果采摘机械手,用于采摘苹果果实。该机械手结构轻巧,操作灵活简便。并且可以运用传感器和单片机实现智能采摘。 1.苹果采摘机械手的方案设计 1.1 移动平台选取

[机械制造行业]液压机械手

(机械制造行业)液压机 械手

机械手的组成 机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。各系统相互之间的关系如方框图2-1所示。 机械手的组成方框图 (一)执行机构 包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。 1、手部 即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手部。 夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。 手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。常用的指形有平面的、V形面的和曲面的:手指有外夹式和内撑式;指数有双指式、多指式和双手双指式等。 而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较多,常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。 吸附式手部主要由吸盘等构成,它是靠吸附力(如吸盘内形成负压或产生电磁力)吸附物件,相应的吸附式手部有负压吸盘和电磁盘两类。

对于轻小片状零件、光滑薄板材料等,通常用负压吸盘吸料。造成负压的方式有气流负压式和真空泵式。 对于导磁性的环类和带孔的盘类零件,以及有网孔状的板料等,通常用电磁吸盘吸料。电磁吸盘的吸力由直流电磁铁和交流电磁铁产生。 用负压吸盘和电磁吸盘吸料,其吸盘的形状、数量、吸附力大小,根据被吸附的物件形状、尺寸和重量大小而定。 此外,根据特殊需要,手部还有勺式(如浇铸机械手的浇包部分)、托式(如冷齿轮机床上下料机械手的手部)等型式. 2、手腕 是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)。 3、手臂 手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置. 工业机械手的手臂通常由驱动手臂运动的部件(如油缸、气缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、气压或电机等)相配合,以实现手臂的各种运动。 手臂可能实现的运动如下: 手臂在进行伸缩或升降运动时,为了防止绕其轴线的转动,都需要有导向装置,以保证手指按正确方向运动。此外,导向装置还能承担手臂所受的弯曲力矩和扭转力矩以及手臂回转运动时在启动、制动瞬间产生的惯性力矩,使运动部件受力状态简单。 导向装置结构形式,常用的有:单圆柱、双圆柱、四圆柱和V形槽、燕尾槽

苹果采摘机的设计【25页加9400字】

前言 苹果原产欧洲中部、东南部,中亚西亚以及中国新疆。苹果(Apple),是常见的水果之一。苹果树属于蔷薇科,落叶乔木,叶椭圆形,有锯齿。其果实球形,味甜,口感爽脆,且富含丰富的营养,是世界四大水果之冠。苹果通常为红色,不过也有黄色和绿色。苹果是一种低热量食物,每100克只产生60千卡热量。苹果中营养成份可溶性大,易被人体吸收,故有“活水”之称,其有利于溶解硫元素,使皮肤润滑柔嫩。 中国是世界上最大的苹果生产国和消费国,苹果种植面积和产量均占世界总量的40%以上,在世界苹果产业中占有重要地位。苹果消费市场主要为鲜果和加工制品,鲜食的比例高达90%,加工制品仅占10%左右。为保证苹果的品质,适时采摘是我国苹果产业的重中之重。采摘工作量繁重与劳动力的缺乏使得适时采摘变得越来越困难。 采摘作业季节性强、劳动强度大、费用高,果品采摘作业是水果生产链中最耗时、最费力的一个环节。故此保证果实适时采收、降低收获作业费用是农业增收的重要途径。采摘作业非常复杂,目前,国内水果采摘作业基本上都是人工进行,其费用约占成本的50%-70%,并且时间较为集中。采摘机作为农业机器的重要类型,其作用在于能够降低工人劳动强度和生产费用、提高劳动生产率和产品质量、保证果实适时采收,因而具有很大发展潜力。 关键词:农业机械;机械手;输送机构;苹果;农业机械

目录 1引言-------------------------------------------------------------------------------------------------------------------------------------------------- - 1 - 1.1题来源及研究的目的和意义 -------------------------------------------------------------------------------------------------------- - 1 - 1.2本课题国内外研究现状--------------------------------------------------------------------------------------------------------------- - 1 - 1.3本课题需要重点研究的关键的问题及解决的思路 --------------------------------------------------------------------------- - 3 - 1.4完成本课题需要的工作条件及解决的办法 ------------------------------------------------------------------------------------- - 4 - 1.5 方案及进度计划------------------------------------------------------------------------------------------------------------------------ - 4 - 2.机械的总体设计------------------------------------------------------------------------------------------------------------------------------ - 4 - 2.1苹果采摘机工作流程 ------------------------------------------------------------------------------------------------------------------ - 6 - 2.2机械手臂设计---------------------------------------------------------------------------------------------------------------------------- - 7 - 3.苹果采摘机械动力控制机构的设计 ---------------------------------------------------------------------------------------------- - 11 - 3.1输送机构传动方式 ------------------------------------------------------------------------------------------------------------------- - 11 - 3.2V带传动的失效形式及设计准则-------------------------------------------------------------------------------------------------- - 11 - 3.3V带传动设计步骤和传动参数选择 ---------------------------------------------------------------------------------------------- - 11 - 3.4齿轮箱齿轮结构----------------------------------------------------------------------------------------------------------------------- - 12 - 4. 苹果采摘机械行走机构的选择 --------------------------------------------------------------------------------------------------- - 16 - 4.1行走机构 -------------------------------------------------------------------------------------------------------------------------------- - 17 - 5.苹果采摘机输送装置的选择 --------------------------------------------------------------------------------------------------------- - 17 - 5.1带式输送机 ----------------------------------------------------------------------------------------------------------------------------- - 17 - 5.2 装筐输送机构 ------------------------------------------------------------------------------------------------------------------------- - 17 - 6.部位仿真模拟分析 ------------------------------------------------------------------------------------------------------------------------ - 18 - 总结 ------------------------------------------------------------------------------------------------------------------------------------------------ - 21 - 致谢 ------------------------------------------------------------------------------------------------------------------------------------------------ - 22 - 参考文献------------------------------------------------------------------------------------------------------------------------------------------- - 23 -

苹果采摘机器人仿生机械手静力学分析与仿真

苹果采摘机器人仿生机械手静力学分析与仿真 崔鹏;陈志;张小超 【期刊名称】《农业机械学报》 【年(卷),期】2011(042)002 【摘要】A humanoid manipulator applying to the end effector of an apple picking robot was introduced. Substituting a tendon-actuated manipulator for the simple gripper can improve the adaptability for the end effector to catch apples in intricate surroundings. To realize the open-loop control of the tendon-actuated manipulator, the relationship model of the actuating force and grasping force is necessary. By simulation, the model was established in this paper. Under the same actuating force, the grasping force of the tendon-actuated humanoid manipulator was related to the parameters of mechanism. The virtual grasping force was determined by the length and thickness of fingers. The distribution of grasping force was determined by the lengthy proportions of the phalanges. The original angle between the fingers determined the radius range of the apples. As the radius of apples increased, the virtual grasping force decreased. Frictions could homogenize the distribution of grasping force as well as enlarge the virtual force.%提出了一种应用于苹果采摘机器人末端执行器的仿生机械手.采用腱传动式仿生机械手取代了简单的夹具,提高了末端执行器在复杂环境中抓取苹果的适应性.建立了腱传动式机械手开环控制的驱动力和抓握力间的力学模型.

(完整版)Adams运动仿真例子--起重机的建模和仿真

1起重机的建模和仿真,如下图所示。 1)启动ADAMS 1. 运行ADAMS,选择create a new model; 2. modal name 中命名为lift_mecha; 3. 确认gravity 文本框中是earth normal (-global Y),units文本框中是MKS;ok 4. 选择setting——working grid,在打开的参数设置中,设置size在X和Y方向均为20 m,spacing在X和Y方向均为1m;ok 5. 通过缩放按钮,使窗口显示所有栅格,单击F4打开坐标窗口。 2)建模 1. 查看左下角的坐标系为XY平面 2. 选择setting——icons下的new size图标单位为1

3. 在工具图标中,选择实体建模按钮中的box按钮 4. 设置实体参数; On ground Length :12 Height:4 Depth:8 5. 鼠标点击屏幕上中心坐标处,建立基座部分 6. 继续box建立Mount座架部件,设置参数: New part Length :3 Height:3 Depth: 3.5 设置完毕,在基座右上角建立座架Mount部件 7. 左键点击立体视角按钮,查看模型,座架Mount不在基座中间,调整座架到基座中间部位:

①右键选择主工具箱中的position按钮图标中的move按钮 ②在打开的参数设置对话框中选择Vector,Distance项中输入3m,实现Mount 移至基座中间位置 ③设置完毕,选择座架实体,移动方向箭头按Z轴方向,Distance项中输入2.25m,完成座架的移动 右键选择座架,在快捷菜单中选择rename,命名为Mount 8. 选择setting—working grid 打开栅格设置对话框,在set location中,选择pick 选择Mount.cm座架质心,并选择X轴和Y轴方向,选择完毕,栅格位于座架中心

机械手结构设计

机械手结构设计Newly compiled on November 23, 2020

轻型平动搬运机械手的设计及运动仿真 摘要 随着工业自动化发展的需要,机械手在工业应用中越来越重要。文章主要叙述了机械手的设计计算过程。 首先,本文介绍机械手的作用,机械手的组成和分类,说明了自由度和机械手整体座标的形式。同时,本文给出了这台机械手的主要性能规格参量。 文章中介绍了搬运机械手的设计理论与方法。全面详尽的讨论了搬运机械手的手部、腕部、手臂以及机身等主要部件的结构设计。 最后使用软件对机械手的手部实现运动仿真。 关键词:机械手;运动仿真;液压传动;液压缸; 目录 中文摘要 (1) 英文摘要 (2) 主要符号表 (5) 1 绪论 (1) 前言 (1) 工业机械手的简史 (1) 工业机械手在生产中的应用 (3) 建造旋转零件(转轴、盘类、环类)自动线 (3) 在实现单机自动化方面 (3) 铸、锻、焊热处理等热加工方面 (3) 机械手的组成 (4)

执行机构 (4) 驱动机构 (4) 控制系统分类 (5) 工业机械手的发展趋势 (5) 本文主要研究内容 (6) 本章小结 (6) 2机械手的总体设计方案 (7) 机械手基本形式的选择 (7) 机械手的主要部件及运动 (7) 驱动机构的选择 (8) 机械手的技术参数列表 (8) 本章小结 (8) 3 机械手手部的设计计算 (9) 手部设计基本要求 (9) 典型的手部结构 (9) 机械手手抓的设计计算 (9) 选择手抓的类型及夹紧装置 (9) 手抓的力学分析 (10) 夹紧力及驱动力的计算 (11)

手抓夹持范围计算 (12) 机械手手抓夹持精度的分析计算 (13) 弹簧的设计计算 (14) 本章小结 (16) 4 腕部的设计计算 (17) 腕部设计的基本要求 (17) 腕部的结构以及选择 (17) 典型的腕部结构 (17) 腕部结构和驱动机构的选择 (18) 腕部的设计计算 (18) 腕部设计考虑的参数 (18) 腕部的驱动力矩计算 (18) 腕部驱动力的计算 (19) 液压缸盖螺钉的计算 (20) 动片和输出轴间的连接螺钉 (21) 本章小结 (22) 5 臂部的设计及有关计算 (23) 臂部设计的基本要求 (23) 手臂的典型机构以及结构的选择 (24)

苹果采摘简易机械手

苹果采摘简易机械手设计说明书 一、引言 近年来,随着农业产业机构的调整,林果生产已经成为很多地区经济发展和农民增收的支柱产业,随着种植面积的不断扩大,果园规模化发展和规范化管理的要求日益提高,从而果园机械化日益重要。果园收获机械的发展,可以减轻果农的劳动强度,提高生产效率,节约劳动成本,提高经济效益。由于我国果园作业机械研究起步较晚,基础相对较差,因此,果园作业机械化程度和欧美等国家还是存在差距。所以,针对我国各地林果生产特点研究相应的作业机械,对林果产业的发展有重要意义。 我国是世界第一大水果生产国,也是世界第一大水果消费国。水果种植业的迅速发展提升了果园机械的市场需求。采摘作业所用劳动力占整个生产过程所用劳动力的33%~50%,目前我国的水果采摘绝大部分还是以人工采摘为主。采摘作业比较复杂,季节性很强,若使用人工采摘,不仅效率低、劳动量大,而且容易造成果实的损伤,如果人手不够不能及时采摘还会导致经济上的损失。使用采摘机械不仅提高采摘效率,而且降低了损伤率,节省了人工成本,提高了果农的经济效益,因此提高采摘作业机械化程度有重要的意义。随着现代农业机械化生产,大面积的种植果树,农民朋友的农产品获得丰收,果实的采摘问题也凸显而出,在面对果树高而无法采摘造成了苹果的摔落,因而这些苹果无法上市进行出售,为解决高空采摘苹果难,故设计此苹果采摘简易机械手来解决此问题。 二.项目设计的内容 (1)果蔬收获机器人作业环境和工作对象的特殊性 工业领域是机器人技术的传统应用领域.由于在工业生产中,机器人的工作位置 和障碍往往都能够事先预知,因此机器人的性能能得到很好的体现。和工业机器人相

ADAMS机构设计与分析

曲柄滑块机构的仿真与分析: 图中件1、2、为齿轮,按圆柱建模,其中齿轮2半径350mm、厚度50mm;齿轮1半径150mm、厚度40mm;件3连杆(宽150mm;厚60mm)、件4长方体滑块(长600mm、宽300mm、高400mm),要求整个模型与栅格成对称状态。其中:齿轮1材料密度为7.8 10-3kg/cm2;连杆3质量Q=65kg,惯性矩Ixx=0.132kg.m2,Iyy=6.80kg.m2,Izz=6.91kg.m2;滑块4材料为铝。 绘图步骤简介: 步骤1:启动ADAMS/View程序 1)选择MD Adams>Adams-view MD 2010 2)在打开的对话框中选择create a new model 。 3)选择start in 后在单击,在自己指定的工作目录下新建的一个文件夹,以保存样机模型。 4)在model name栏中输入模型名称:model_lixiang 5)在gravity选项栏中选择earth normal(-global Y)。 6)在units文本框设定为MMKS—mm、kg、N、s、deg 。 7)单击ok按钮。如图:

步骤2:设定建模环境 1)选择settings>working grid,按图所示进行设置工作栅格大小及间距。 2)单击ok按钮,可看到工作栅格已经改变。 3)在主工具箱中选择,显示view控制图标。 4)按F键或在主工具箱中单击,可看到整个工作栅格。 步骤3:样机建模 1、创建设计点 1)在集合建模工具集中,单击点工具图标 2)在主工具箱的选项栏中选择添加到零件上add to ground。 3)在建模视窗中,先点击ground,再选择该点,点击右键,打开修改点对话框,修改坐标为A(-800,-20,20),重复此过程,依次创建点B(-300,0,25)、C(0,0,0)、D(1000,0,0) 2、创建驱动齿轮1 1)在集合建模工具集中,单击圆柱工具图标、。 2)在主工具箱的选项栏中选择新零件new part 3)在长度选项输入40mm、半径选项输入150mm,如图(1)。 4)在建模视窗中,点击点(-800,-20,20),水平拖动鼠标至点的右边点击,创建圆柱体5)旋转圆柱体与屏幕垂直:鼠标放在圆柱体左端附近,点击右键,选择标记点marker菜单,

机械手文献综述汇总

燕山大学 本科毕业设计(论文)文献综述 课题名称:顺序动作机械手 学院 (系): 机械工程学院年级专 业: 机电控制 学生姓 名: 杨忠合 指导教 师: 郑晓军 完成日 期: 2014.03.25

一、课题国内外现状 目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。 国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定成绩。目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG 的产品系统总重已突破100KG。更重要的是将机械手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。 二、研究主要成果 机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。 搬运机械手仿真设计和制作,机械手的机械结构主要包括由两个电磁阀控制的气缸来实现机械手的上升下降运动及夹紧工件的动作,两个

基于Adams的凸轮机构运动仿真教程

基于adams的凸轮机构运动仿真 摘要:虚拟样机技术是一种崭新的产品开发技术,其中ADAMS软件是目前最著名的虚拟样机分析软件之一。本文阐述了虚拟样机技术和ADAMS软件的特点及其应用,以凸轮机构为研究对象,对其进行动力学分析。主要运用我们学习过的机械原理等理论知识对机构进行运动学和动力学的相关理论计算;利用ADAMS软件在图形显示方面的优势,采用其基本模块ADAMS/View(界面模块)进行一系列建模、运动分析和动态模拟仿真工作,验证模型的正确性,并对机构在整个周期内的可行性进行计算分析,记录相应信息,输出所需要的位置、速度、加速度等曲线与理论结果比较,充分展现虚拟样机技术的优越性,为虚拟样机技术的深入研究打下基础。 关键词:ADAMS;凸轮机构;运动学分析;仿真 引言 凸轮机构的应用十分广泛,在生产机械中应用凸轮机构可以较容易的实现不同的工作要求。特别是实现间歇式的运动过程!但是,目前对于该类模型的动态仿真很少。本例主要就推程、回程等要求进行预设。力图通过adams实现对该凸轮机构的构建以及后续的仿真,并尝试进行一定的机构优化。 1.研究内容 这里,我主要研究内容为理论凸轮设计在adams中的设计及其动态仿真。后续,根据输出的相应的速度、加速度曲线等将进行一定的设计优化。力图真实还原凸轮机构在设计中的真实过程。 2.工作原理 凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。通过对凸轮轮廓进行不同的设计,可以实现从动件不同形式的运动。以此来满足机械设计中对于运动的精细控制过程。 3.动力学建模 (1)建模前期准备 情景设想:某公司需要设计一凸轮机构实现对物料的间歇夹紧过程。其给出相应数据如下。 注:其他的暂 不作要求。 (2)设计

相关文档
相关文档 最新文档