文档库 最新最全的文档下载
当前位置:文档库 › 2012-2013高中数学 3-1-5空间向量运算的坐标表示同步检测 新人教B版选修2-1

2012-2013高中数学 3-1-5空间向量运算的坐标表示同步检测 新人教B版选修2-1

2012-2013高中数学 3-1-5空间向量运算的坐标表示同步检测 新人教B版选修2-1
2012-2013高中数学 3-1-5空间向量运算的坐标表示同步检测 新人教B版选修2-1

3.1第5课时 空间向量运算的坐标表示

一、选择题

1.已知a =(cos α,1,sin α),b =(sin α,1,cos α) ,且a b 则向量a +b 与a -b 的夹角是( )

A .90°

B .60°

C .30°

D .0°

[答案] A

[解析] ∵|a |2

=2,|b |2

=2, (a +b )2(a -b )=|a |2-|b |2=0, ∴(a +b )⊥(a -b ).

2.已知空间四点A (4,1,3),B (2,3,1),C (3,7,-5),D (x ,-1,3)共面,则x 的值为( ) A .4 B .1 C .10 D .11

[答案] D

[解析] AB →=(-2,2,-2),AC →=(-1,6,-8),AD →

=(x -4,-2,0), ∵A 、B 、C 、D 共面,∴AB →、AC →、AD →

共面, ∴存在λ、μ,使AD →=λAB →+μAC →

即(x -4,-2,0)=(-2λ-μ,2λ+6μ,-2λ-8μ),

∴????

?

x -4=-2λ-μ-2=2λ+6μ0=-2λ-8μ

,∴????

?

λ=-4μ=1

x =11

.

3.下列各组向量中共面的组数为( ) ①a =(1,2,3),b =(3,0,2),c =(4,2,5) ②a =(1,2,-1),b (0,2,-4),c =(0,-1,2) ③a =(1,1,0),b =(1,0,1),c =(0,1,-1) ④a =(1,1,1),b (1,1,0),c =(1,0,1) A .0 B .1

C .2

D .3

[答案] D

[解析] ①设a =x b +y c ,则

????

?

1=3x +4y 2=02x +2y 3=2x +5y

,解得?

??

??

x =-1

y =1.

故存在实数x =-1,y =1使得a =-b +c , ∴a ,b ,c 共面.

②中b =-2c ,③中c =a -b . 故②③中三个向量共面.

4.下列各组向量不平行的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0)

D .g =(-2,3,5),h =(16,-24,40) [答案] D

[解析] b =-2a ,d =-3c ,f =0e ,只有D 不存在实数λ,使g =λh .

5.若两点的坐标是A (3cos α,3sin α,1),B (2cos θ,2sin θ,1),则|AB →

|的取值范围是( )

A .[0,5]

B .[1,5]

C .(1,5)

D .[1,25]

[答案] B

[解析] |AB →

|2=(2cos θ-3cos α)2+(2sin θ-3sin α)2=13-12cos θcos α-12sin θsin α

=13-12cos(θ-α)∈[1,25], ∴1≤|AB →

|≤5.

6.已知a =(x,2,0),b =(3,2-x ,x ),且a 与b 的夹角为钝角,则x 的取值范围是( ) A .x <-4 B .-44 [答案] A

[解析] ∵a 、b 的夹角为钝角,∴a 2b <0, 即3x +2(2-x )+02x =4+x <0. ∴x <-4.

又当夹角为π时,存在λ<0,使b =λa ,

∴????

?

3=λx 2-x =2λx =0

,此方程组无解,因此选A.

7.如图所示的空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1棱长为1,B 1E 1=14A 1B 1,则BE 1→等

于( )

A .(0,1

4,-1)

B .(-1

4,0,1)

C .(0,-1

4,1)

D .(1

4

,0,-1)

[答案] C

[解析] B (1,1,0)、E 1(1,34,1),BE 1→

=(0,-14

,1).

8.已知a =(1,2,-y ),b =(x,1,2),且(a +2b )∥(2a -b ),则( ) A .x =1

3,y =1

B .x =1

2,y =-4

C .x =2,y =-1

4

D .x =1,y =-1 [答案] B

[解析] a +2b =(2x +1,4,4-y ), 2a -b =(2-x,3,-2y -2), ∵(a +2b )∥(2a -b ), ∴????

?

2x +1=λ(2-x )4=3λ4-y =(-2y -2)λ

,∴?????

x =12y =-4

9.如图AC 1是正方体的一条体对角线,点P 、Q 分别为其所在棱的中点,则PQ 与AC 1所成的角为( )

A .arctan 2

2 B .arctan 2 C.π

3

D.π2

[答案] D

[分析] 建立空间直角坐标系,求出AC 1→与PQ →的坐标,转化为求AC 1→与PQ →

的夹角. [解析] 设正方体棱长为1,以点A 1为坐标原点,A 1B 1、A 1D 1、A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则P ????12,0,0,Q ???0,1,12,A (0,0,1),C 1(1,1,0),所以PQ →

????-12,1,12,AC

1→=(1,1,-1),故PQ →2AC 1→=-1231+131+12

3(-1)=0,

∴PQ →⊥AC 1→

,即PQ 与AC 1所成的角为π2

.

10.已知向量OA →=(2,-2,3),向量OB →

=(x,1-y,4z ),且平行四边形OACB 对角线的中点坐标为(0,32,-1

2

),则(x ,y ,z )=( )

A .(-2,-4,-1)

B .(-2,-4,1)

C .(-2,4,-1)

D .(2,-4,-1) [答案] A

[解析] 由条件(2,-2,3)+(x,1-y,4z ) =2???

?0,32,-1

2,

∴(x +2,-1-y,3+4z )=(0,3,-1),

∴????

?

x =-2y =-4z =-1

.

二、填空题

11.已知a =(1,0,-1),b =(1,-1,0),单位向量n 满足n ⊥a ,n ⊥b ,则n =________. [答案] ?

????33,33,33 ? ??

??

-33,-33,-33

[解析] 设n =(x ,y ,z ),由条件????

?

x -z =0x -y =0

x 2+y 2+z 2=1

∴x =y =z =

33或-3

3

. 12.已知空间三点A (1,1,1)、B (-1,0,4)、C (2,-2,3),则AB →与CA →

的夹角θ的大小是____________.

[答案] 120°

[解析] AB →=(-2,-1,3),CA →

=(-1,3,-2), AB →

2CA →=-7,|AB →|=14,|CA →

|=14,

∴cos θ=

-7

14314=-12,

∴θ=120°.

13.已知向量a =(-3,2,5),b =(1,-3,0),c =(7,-2,1),则: (1)a +b +c =________; (2)(a +b )2c =________; (3)|a -b +c |2=________. [答案] (5,-3,6) -7 54

[解析] (1)a +b +c =(-3,2,5)+(1,-3,0)+(7,-2,1)=(5,-3,6). (2)a +b =(-2,-1,5),

(a +b )2c =(-2,-1,5)2(7,-2,1)=-7. (3)a -b +c =(3,3,6),|a -b +c |2

=54.

14.已知a ,b ,c 不共面,且m =3a +2b +c ,n =x (a -b )+y (b -c )-2(c -a ),若

m∥n ,则x +y =__________________.

[答案] -4

[解析] ∵a 、b 、c 不共面,m ∥n , ∴

x +23=

-x +y 2

-y -2

1

,∴?

??

??

x =-2y =-2.

三、解答题

15.已知点A (2,3,-1),B (8,-2,4),C (3,0,5),是否存在实数x ,使AB →与AB →+xAC →

垂直?

[解析] AB →=(6,-5,5),AC →

=(1,-3,6),

AB →

+xAC →

=(6+x ,-5-3x,5+6x ),

∵AB →⊥(AB →+xAC →)

∴6(6+x )-5(-5-3x )+5(5+6x )=0, ∴x =-

9651=-3217,∴存在实数x =-3217

, 使AB →与AB →+xAC →

垂直.

16.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是BB 1、DC 的中点. 求证:(1)AE ⊥D 1F ; (2)AE ⊥平面A 1D 1F .

[证明] 设正方体的棱长为1,以DA →、DC →、DD 1→

为坐标向量,建立空间直角坐标系D -

xyz ,如图所示.

(1)易知A (1,0,0)、E (1,1,12)、F (0,1

2,0)、D 1(0,0,1).

∵AE →=(0,1,12),D 1F →

=(0,12,-1).

又AE →2D 1F →

=(0,1,12)2(0,12,-1)=0,

∴AE ⊥D 1F .

(2)DA →=(1,0,0)=D 1A 1→

∴D 1A 1→2AE →

=(1,0,0)2(0,1,12)=0,

∴AE ⊥D 1A 1,

由(1)知AE ⊥D 1F ,且D 1A ∩D 1F =D 1, ∴AE ⊥平面A 1D 1F .

17.已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →

. (1)设|c |=3,c ∥BC →

,求c . (2)求a 与b 的夹角.

(3)若k a +b 与k a -2b 互相垂直,求k . [解析] (1)∵c ∥BC →,BC →

=(-2,-1,2).

∴设c =(-2λ,-λ,2λ),

∴|c |=(-2λ)2+(-λ)2+(2λ)2=3|λ|=3 ∴λ=±1

∴c =(-2,-1,2)或c =(2,1,-2). (2)a =AB →

=(-1+2,1-0,2-2)=(1,1,0)

b =AC →

=(-3+2,0-0,4-2)=(-1,0,2).

∴cos=a2b

|a|2|b|

(1,1,0)2(-1,0,2)

235

=-

1010

. ∴a 和b 的夹角为=π-arccos

1010

. (3)k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4).

又(k a +b )⊥(k a -2b ),则(k a +b )2(k a -2b )=(k -1,k,2)2(k +2,k ,-4)=2k 2+k -10=0,

∴k =2或k =-5

2

.

18.已知空间三点A (0,2,3)、B (-2,1,6)、C (1,-1,5). (1)求以AB →、AC →

为邻边的平行四边形面积;

(2)若|a |=3,且a 分别与AB →、AC →

垂直,求向量a 的坐标. [解析] (1)由题中条件可知 AB →

=(-2,-1,3),AC →

=(1,-3,2),

∴cos〈AB →

,AC →

〉=AB →

2AC

|AB →|2|AC →|

=-2+3+614314=1

2,

∴sin〈AB →,AC →

〉=32

∴以AB →,AC →

为邻边的平行四边形面积

S =|AB →|2|AC →|2sin〈AB →,AC →

〉=7 3.

(2)设a =(x ,y ,z ),

由题意得????

?

x 2+y 2+z 2

=3,-2x -y +3z =0,

x -3y +2z =0.

解得????

?

x =1,y =1,

z =1,

或????

?

x =-1,y =-1,z =-1.

∴a =(1,1,1)或a =(-1,-1,-1)

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

平面向量及空间向量高考数学专题训练

平面向量及空间向量高考数学专题训练(四) 一、选择题(本大题共12小题,每小题分6,共72分) 1.设-=1(a cos α,3), (=b sin )3,α,且a ∥b , 则锐角α为( ) A. 6π B. 4π C. 3 π D. 125π 2.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =?满足,则点P 的轨迹是( ) A. 圆 B. 椭圆 C. 双曲线 D. 抛物线 3.已知向量值是相互垂直,则与且k b a b a k b a -+-==2),2,0,1(),0,1,1(( ) A. 1 B. 51 C. 53 D. 5 7 4.已知b a ,是非零向量且满足的夹角是与则b a b a b a b a ,)2(,)2(⊥-⊥-( ) A. 6π B. 3 π C. 32π D. 65π 5.将函数y=sinx 的图像上各点按向量=a (2,3 π )平移,再将所得图像上各点的横坐标 变为原来的2倍,则所得图像的解析式可以写成( ) A.y=sin(2x+ 3π)+2 B.y=sin(2x -3 π )-2 C.y=(321π+x )-2 D.y=sin(321π-x )+2 6.若A,B 两点的坐标是A(3φcos ,3φsin ,1),B(2,cos θ2,sin θ1),||的取值范围是( ) A. [0,5] B. [1,5] C. (1,5) D. [1,25] 7.从点A(2,-1,7)沿向量)12,9,8(-=a 方向取线段长|AB|=34,则点B 的坐标为( ) A.(-9,-7,7) B. (-9,-7,7) 或(9,7,-7) C. (18,17,-17) D. (18,17,-17)或(-18,-17,17) 8.平面直角坐标系中,O 为坐标原点, 已知两点A(3, 1), B(-1, 3),若点C 满足 =OB OA βα+, 其中α、β∈R 且α+β=1, 则点C 的轨迹方程为 ( ) A.01123=-+y x B.5)2()1(2 2 =-+-y x C. 02=-y x D. 052=-+y x 9.已知空间四边形ABCD 的每条边和对角线的长都等于m ,点E ,F 分别是BC ,AD 的中点,则?的值为 ( ) A.2 m B. 212m C. 4 1 2m D. 432m 10.O 为空间中一定点,动点P 在A,B,C 三点确定的平面内且满足)()(-?-=0,

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

空间向量其运算测试题

高二选修(2—1)第三章3.1空间向量及其运算测试 一、选择题 1 抛物线2 81x y - =的准线方程是 ( ) A . 321=x B . 2=y C . 32 1 =y D . 2-=y 2.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是 ( ) A . 22 1169x y += B . 22 11612x y += C .22 143x y += D .22 134 x y += 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( ) A .平行四边形 B .梯形 C .长方形 D .空间四边形

高中数学-空间向量的基本定理练习

高中数学-空间向量的基本定理练习 课后导练 基础达标 1.若对任意一点O ,且OP =y x +,则x+y=1是P 、A 、B 三点共线的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案:C 2.已知点M 在平面ABC 内,并且对空间任一点O ,OM OM=x + 31+31,则x 的值为…( ) A.1 B.0 C.3 D. 3 1 答案:D 3.在以下命题中,不正确的个数是( ) ①已知A,B,C,D 是空间任意四点,则DA CD BC AB +++=0 ②|a |+|b |=|a +b |是a ,b 共线的充要条件 ③若a 与b 共线,则a 与b 所在的直线的平行 ④对空间任意一点O 和不共线的三点A,B,C,若z y x ++=,(其中x,y,z∈R ),则P,A,B,C 四点共面 A.1 B.2 C.3 D.4 答案:C 4.设命题p:a ,b ,c 是三个非零向量;命题q:{a ,b ,c }为空间的一个基底,则命题p 是命题q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案:B 5.下列条件中,使M 与A 、B 、C 一定共面的是( ) A.OM --= B.MC MB MA ++=0 C.3 13131++++ D.OC OB OA OM +-=2 答案:B 6.在长方体ABCD —A 1B 1C 1D 1中,E 为矩形ABC D的对角线的交点,设A 1=a,11B A =b,11D A =c,则E A 1=____________.

答案:a +21b +21c 7.设O 为空间任意一点,a,b 为不共线向量,OA =a,OB =b,OC =ma+nb,(m,n∈k)若A,B,C 三点共线,则m,n 满足____________. 答案:m+n=1. 8.已知A 、B 、C 三点不共线,对平面ABC 外一点O ,在下列各条件下,点P 是否与A 、B 、C 一定共面? (1)OP =52OA +51OB +5 2OC ; (2)OP=2OA-2OB-OC. 解:(1)OP = 52OA +51OB +52OC . ∵1525152=++,∴P 与A 、B 、C 共面. (2)OP =OC OB OA --22. ∵2-2-1=-1,∴P 与A 、B 、C 不共面. 9.如右图,已知四边形ABCD 是空间四边形,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边CB 、CD 上的点,且CF =32CB ,CG =3 2CD . 求证:四边形EFGH 是梯形. 证明:∵E、H 分别是AB 、AD 的中点, ∴= 21,=2 1, EH =-=21AD -21AB =21(AD -AB )=21BD =2 1(CB CD -) =21(23CG -23CF )=43(-)=4 3. ∴EH ∥FG 且|EH |=43|FG |≠|FG |. ∴四边形EFGH 是梯形. 综合运用 10.如右图,平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11B A =a ,11D A =b ,11A A =c ,则下列向量中与B 1M 相等的向量是( )

高中数学平面向量公式(精选课件)

高中数学平面向量公式1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤

2、向量的数量积不满足消去律,即:由a?b=a? c (a≠0),推不出 b=c。 3、|a?b|≠|a|?|b| 4、由 |a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b ∣=|a|?|b|?sin〈a,b>;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0。...文档交流仅供参考... 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积. a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c。 注:向量没有除法,“向量AB/向量CD”是没有意义的. 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

(完整版)高中数学空间向量训练题

高中数学空间向量训练题(含解析) 一.选择题 1.已知M、N分别是四面体OABC的棱OA,BC的中点,点P在线MN上,且MP=2PN,设向量=,=,=,则=() A.++B.++C.++D.++ 2.已知=(2,﹣1,2),=(﹣1,3,﹣3),=(13,6,λ),若向量,,共面,则λ=() A.2 B.3 C.4 D.6 3.空间中,与向量同向共线的单位向量为() A.B.或 C. D.或 4.已知向量,且,则x的值为() A.12 B.10 C.﹣14 D.14 5.若A,B,C不共线,对于空间任意一点O都有=++,则P,A,B,C四点() A.不共面B.共面C.共线D.不共线 6.已知平面α的法向量是(2,3,﹣1),平面β的法向量是(4,λ,﹣2),若α∥β,则λ的值是()

A.B.﹣6 C.6 D. 7.已知,则的最小值是()A.B.C.D. 8.有四个命题:①若=x+y,则与、共面;②若与、共面,则=x+y;③若=x+y,则P,M,A,B共面;④若P,M,A,B共面,则=x+y.其中真命题的个数是() A.1 B.2 C.3 D.4 9.已知向量=(2,﹣1,1),=(1,2,1),则以,为邻边的平行四边形的面积为()A.B.C.4 D.8 10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E到平面ACD1的距离为() A.B. C.D. 11.正方体ABCDA1B1C1D1中,直线DD1与平面A1BC1所成角的正弦值为() A. B. C.D. 二.填空题(共5小题) 12.已知向量=(k,12,1),=(4,5,1),=(﹣k,10,1),且A、B、C三点共线,则k= . 13.正方体ABCD﹣A1B1C1D1的棱长为1,MN是正方体内切球的直径,P为正方体表面上的动点,则?的最大值为. 14.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,﹣1,﹣4),=(4,

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

空间向量高中数学教案课程

空间向量 考纲导读 1.理解空间向量的概念;掌握空间向量的加法、减法和数乘. 2.了解空间向量的基本定理;理解空间向量坐标的概念;掌握空间向量的坐标运算. 3.掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式; 掌 握 空 间 两 点 间 的距离公式. 理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;掌握空间向量的数量积的坐标形式;能用向量的数量积判断向量的共线与垂直. 第1课时空间向量及其运算 空间向量是平面向量的推广.在空间,任意两个向量都可以通过平移转化为平面向量.因此,空间向量的加减、数乘向量运算也是平面向量对应运算的推广. 本节知识点是:

1.空间向量的概念,空间向量的加法、减法、数乘运算和数量积;(1) 向量:具有 和 的量. (2) 向量相等:方向 且长度 . (3) 向量加法法则: .(4) 向量减法法则: .(5) 数乘向量法则: .3.共线向量 (1)共线向量:表示空间向量的有向线段所在的直线互相 或 .(2) 共线向量定理:对空间任意两个向量a 、b (b ≠0),a ∥b 等价于存在实数λ,使 . (3) 直线的向量参数方程:设直线l 过定点A 且平行于非零向量a ,则对于空间中任意一点O ,点P 在l 上等价于存在R t ∈,使 .4.共面向量 (1) 共面向量:平行于 的向量. (2) 共面向量定理:两个向量a 、b 不共线,则向量P 与向量a 、b 共面的充要条件是存在实数对(y x ,),使P . 共面向量定理的推论: .5.空间向量基本定理 (1) 空间向量的基底: 的三个向量. 2.线性运算律 (1) 加法交换律:a +b = .

高中数学(理)空间向量知识点归纳总结及综合练习

空间向量知识点归纳总结 知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量, a 平行于 b ,记作b a //。 》 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b 不共线,p 与向量,a b 共面的条件是存在实数,x y 使 p xa yb =+。 5. 空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组 ,,x y z ,使p xa yb zc =++。 若三向量,,a b c 不共面,我们把{,,}a b c 叫做空间的一个基底,,,a b c 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数,,x y z ,使 OP xOA yOB zOC =++。 6. 空间向量的直角坐标系: ~ (1)空间直角坐标系中的坐标: (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b =,则112233(,,)a b a b a b a b +=+++, 112233(,,)a b a b a b a b -=---,123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 》

高中数学经典解题技巧和方法平面向量

高中数学经典解题技巧:平面向量 一、向量的有关概念及运算 解题技巧:向量的有关概念及运算要注意以下几点: (1)正确理解相等向量、共线向量、相反向量、单位向量、零向量等基本概念,如有遗漏,则会出现错误。 (2)正确理解平面向量的运算律,一定要牢固掌握、理解深刻 (3)用已知向量表示另外一些向量,是用向量解题的基础,除了用向量的加减法、实数与向量乘积外,还要充分利用平面几何的一些定理,充分联系其他知识。 例1:(2010·山东高考理科·T12)定义平面向量之间的一种运算“⊙”如下,对任意的a=(m,n),b p,q)= (,令a ⊙b mq np =-,下面说法错误的是( ) A.若a 与b 共线,则a ⊙b 0= B. a ⊙b = b ⊙a C.对任意的R λ∈,有()a λ⊙b = (a λ⊙)b D. (a ⊙b )2222()a b a b +?= 【命题立意】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力. 【思路点拨】根据所给定义逐个验证. 【规范解答】选B ,若a 与b 共线,则有a ⊙b 0mq np =-=,故A 正确;因为b ⊙a pn qm =-,,而a ⊙b mq np =-,所以有a ⊙b ≠ b ⊙a ,故选项B 错误,故选B. 【方法技巧】自定义型信息题 1、基本特点:该类问题的特点是背景新颖,信息量大,是近几年高考的热点题型. 2、基本对策:解答这类问题时,要通过联想类比,仔细分析题目中所提供的命题,找出其中的相似性和一致性 二、与平面向量数量积有关的问题 解题技巧:与平面向量数量积有关的问题 1.解决垂直问题:121200,a b a b x x y y a b ⊥?=?+=其中、均为非零向量。这一条件不能忽视。 2.求长度问题:2||a a a =,特别地1122(,),(,),||(A x y B x y AB x =则 3.求夹角问题:求两非零向量夹角的依据 2 22 222cos(,).||||a b a b a b x x y ==++ 例2:1.(2010·湖南高考理科·T4)在Rt ABC ?中,C ∠=90°AC=4,则AB AC ?uu u r uuu r 等于( )

空间向量与立体几何单元测试试卷

五河二中高二数学测试卷(理科) 一、选择题: 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异 面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定 也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为 c z b y a x p ++=.其中正确命题的个数为 ( ) A .0 B .1 C . 2 D .3 2.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( ) A .627 B .637 C .647 D .65 7 3.直三棱柱ABC —A 1B 1C 1中,若c CC b CB a CA ===1,,, 则1A B =u u u r ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 4.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角>

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高二数学空间向量与立体几何单元测试卷一

A A 1 D C B B 1 C 1 图 高二(2)部数学《空间向量与立体几何》单元测试卷一 班级____姓名_____ 一、选择题:(每小题5分,共60分). 1.在正三棱柱ABC —A 1B 1C 1中,若AB = 2BB 1,则AB 1与C 1B 所成的角的大小为( ) A .60° B .90° C .105° D .75° 2.如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=4 1 1B A ,则BE 1 与DF 1所成角的余弦值是 ( ) A . 1715 B .2 1 C . 17 8 D .23 3.如图,A 1B 1C 1—ABC 是直三棱柱,∠BCA =90°,点D 1、F 1分别 是A 1B 1、A 1C 1的中点,若BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是 ( ) A . 10 30 B . 21 C .1530 D .10 15 4.正四棱锥S ABCD -的高2SO =,底边长2AB =,则异面直线BD 和SC 之间的距离 ( ) A . 5 15 B . 5 5 C . 5 5 2 D . 10 5 5.已知111ABC A B C -是各条棱长均等于a 的正三棱柱,D 是侧棱1CC 的中点.点1C 到平面1AB D 的距离 ( ) A . a 42 B .a 82 C .a 423 D .a 2 2 6.在棱长为1的正方体1111ABCD A B C D -中,则平面1AB C 与平面11A C D 间的距离 ( ) A . 6 3 B . 3 3 C . 3 3 2 D . 2 3 7.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC = 2 1 PA ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值 ( ) A . 6 21 B . 3 3 8 C . 60210 D . 30 210 图 图

高中数学空间向量与立体几何单元练习题

《空间向量与立体几何》习题 一、选择题(每小题5分,共50分) 1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a , 11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是 A .- 21a +21b +c B .21a +21b +c C .2 1a - 21b +c D .-21a -2 1 b + c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是 A.OC OB OA OM --=23 B.OC OB OA OM 51 3121++= C.0=+++OC OB OA OM D.0=++MC MB MA 3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ?等于 A.41 B.4 1 - C.43 D.43- 4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.1 5.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A. 213 B.253 C.453 D.4 53 6.下列几何体各自的三视图中,有且仅有两个视图相同的是 A .①② B .①③ C .①④ D .②④ 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 ①正方体 ②圆锥 ③三棱台 ④正四棱锥

A .9π B .10π C .11π D .12π 8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1 D 1 D .异面直线AD 与CB 1所成的角为60° 9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A . 6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为 A.5 B.41 C.4 D.52 二、填空题(每小题5分,共20分) 11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy . 12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥, 1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD 的距离为 . 三、解答题(共80分) 俯视图 正(主)视图 侧(左)视图 2 3 2 2

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

高中数学人教A版选修(2—1)第三章3.1空间向量及其运算测试题(含解析答案)

祈福教育 高二选修(2—1)第三章3.1空间向量及其运算测试题 一、选择题 1.已知向量a =(3,-2,1),b =(-2,4,0),则4a +2b 等于 ( ) A .(16,0,4) B .(8,-16,4) C .(8,16,4) D .(8,0,4) 2.在三棱柱ABC -A 1B 1C 1中,若CA →=a ,CB →=b ,CC 1→=c ,则A 1B → = ( ) A .a +b -c B .a -b +c C .-a +b +c D .-a +b -c 3.在棱长都是1的三棱锥A -BCD 中,下列各数量积的值为1 2的是 ( ) A. BC AB ? B. BD AB ? C.DA AB ? D.AC AB ? 4.在下列条件中,使M 与A 、B 、C 一定共面的是 ( ) A.OM →=2OA →-OB →-OC → B.OM →=15OA →+13OB →+12OC → C.MA →+MB →+MC → =0 D.OM →+OA →+OB →+OC → =0 5.若向量{c b a ,,}是空间的一个基底,向量b a n b a m -=+=,,那么可以与m 、n 构成空间另一个基底的向量是 ( ) A .a B .b C .c D .2a 6.在正方体ABCD -A 1B 1C 1D 1中,给出以下向量表达式:①(A 1D 1→-A 1A →)-AB →;②(BC → + BB 1→)-D 1C 1→; ③(AD →-AB →)-2DD 1→;④(B 1D 1→+A 1A →)+DD 1→. 其中能够化简为向量BD 1→ 的是 ( ) A .①② B .②③ C .③④ D .①④ 7.已知向量a =(1,-1,1),b =(-1,2,1),且k a -b 与a -3b 互相垂直,则k 的值是 A .1 B .15 C .35 D .-20 9 8.若a =(2,-3,1),b =(2,0,3),c =(0,2,2),a ·(b +c )的值为 ( ) A .4 B .15 C .7 D .3 9.已知四边形ABCD 满足:AB →·BC →>0,BC →·CD →>0,CD →·DA →>0,DA →·AB → >0,则该四边形 为 ( )

相关文档
相关文档 最新文档