文档库 最新最全的文档下载
当前位置:文档库 › 高等代数期中考试题

高等代数期中考试题

高等代数期中考试题
高等代数期中考试题

高等代数期中考试题答案

一、填空题(每小题3分,共15分)

1、全体正实数的集合+R ,对加法和数量乘法ab b a =⊕, k a a k = 构成实数域R 上的向量空间,则该空间的零元为______,+∈R a 的负元为______

2、设321,,ααα是线性空间V 的一个线性无关的向量组,则L (321,,ααα)的维数为______.

3、若矩阵1234(,,,)A αααα=经过行初等变换化为1003002401050000-?? ? ? ?- ???

, 那么向量组1234,,,αααα的一个极大无关组是_____________ 其余向量由此极大无关组线性

表示的表示式为 ______

4、若把同构的子空间看成一类,则n 维向量空间的子空间共分成___类

5、设A 是数域F 上的n s ?矩阵且秩r A =)(,??????

? ??=n x x x X 21. 若方程组0=AX 有非零解,则它的基础解系所含解的个数为_______个.

二、单选题(每小题3分,共15分)

1、按照数的加法和乘法,下列集合( )构成实数域R 上的向量空间.

A .整数集;

B .有理数集;

C .正实数集;

D .实数集

2、下列子集( )作成向量空间n R 的子空间。

A .}0|),,,{(2121=a a a a a n

B .},,2,1,|),,,{(21n i z a a a a i n =∈

C .}0|),,,{(121∑==n i i n a a a a

D .}1|),,,{(121∑==n

i i n a a a a

3、下列向量组( )是线性无关的。

A .}0{

B .},,0{βα

C .1221},,,,{αααααk r =其中

D .},,,{21r ααα ,其中任一向量都不能表成其余向量的线性组合。

4、关于向量组极大无关组的结论, 下面有( )个正确.

(Ⅰ) 任何向量组都有极大无关组; (Ⅱ) 任何有限个不全为零的向量组都有极大无关组; (Ⅲ) 若极大无关组存在则唯一; (Ⅳ) 极大无关组存在不唯一, 但彼此等价.

(A)1; (B)2; (C)3; (D)4.

5、3F 的两个子空间{}02),,(3213211=+-=x x x x x x V ,

{}0),,(313212=+=x x x x x V ,则子空间21V V 的维数为( )。

A .一维

B .二维

C .三维

D .零维

三、计算题(本题共3个小题,每小题10分,共计30分)

1、已知3维向量空间V 的一组基321,,ααα,设311ααβ+-=,212ααβ+=,3213αααβ+--=,321,,βββ也是V 的一组基;

(1)求由基321,,βββ到基321,,ααα的过渡矩阵;

(2)求向量32132αααα++=在基321,,βββ下的坐标.

2、设向量组为

1(1,1,2,4)α=-,2(0,3,1,2)α=,3(3,0,7,14)α=

4(1,1,2,0)α=-,5(2,1,5,6)α=

试把12,αα扩充成该向量组的一个极大线性无关组.

3、4F 中,求由齐次方程组?????=+-+=-+-=+-+01113530333045234321

43214321x x x x x x x x x x x x 确定的解空间的基与维数。

四、 证明题(本题共4个小题,每小题10分,共计40分) 1、复数域C 作为实数域R 上的向量空间,与2R 同构。

2、设向量β可以由r ααα,,,21 线性表示,但不能由121,,,-r ααα 线性表示,证明向量组),,,,(121r r αααα- 与向量组),,,,(121βααα-r 等价。

3、每一个n 维向量空间都可以表示成n 个一维子空间的直和。

4、设1V ,2V 是线性空间V 的两个非平凡的子空间,证明:在V 中存在α,使 21,V V ??αα同时成立。

《高等代数》期末试卷B

教育科学系14级小学教育(科学与数学)专业2014—2015学年度春学期 期末考试《高等代数Ⅱ》试卷(B ) 试卷说明:1.本试卷共2页,4个大题,满分100分,120分钟完卷; 2.试题解答全部书写在本试卷上。 班号: 学号 姓名 一、选择题:(每题3分,共15分) 1.当λ=( )时,方程组1231 231 222x x x x x x λ++=??++=?,有无穷多解。 A 1 B 2 C 3 D 4 2.若向量组中含有零向量,则此向量组( )。 A 线性相关 B 线性无关 C 线性相关或线性无关 D 不一定 3.设α是n 阶可逆矩阵A 的属于特征值λ的特征向量,在下列矩阵中,α不是( ) 的特征向量。 A 2()A E + B -3A C *A D T A 4.若A 为n 阶实对称矩阵,P 为n 阶正交阵,则1P A P -为( )。 A 实对称阵 B 正交阵 C 非奇异阵 D 奇异阵 5.设矩阵 A , B , C 均为n 阶矩阵,则矩阵A B 的充分条件是( )。 A A 与 B 有相同的特征值 B A 与B 有相同的特征向量 C A 与B 与同一矩阵相似 D A 一定有n 个不同的特征值 1.已知向量组)4,3,2,1(1=α,)5,4,3,2(2=α,)6,5,4,3(3=α,)7,6,5,4(4=α,则向量=+-+4321αααα 。 2.若120s ααα++ +=,则向量组12,, ,s ααα必线性 。 3.设向量空间1212{(,, )|0,}n n i V x x x x x x x R =++ +=∈,则V 是 维 空间。 4.A ,B 均为3阶方阵,A 的特征值为1,2,3,1B =-,则*A B B += 。 5.设矩阵A 满足条件2560A A E -+=,则矩阵A 的特征值 是 。 6.二次型yz xz xy z y x z y x f 222),,(222---++=的矩阵是____________。 二、填空题:(每题3分,共27分)

高等代数II期末考试试卷及答案A卷

高等代数(II )期末考试试卷及答案(A 卷) 一、 填空题(每小题3分,共15分) 1、线性空间[]P x 的两个子空间的交() ()11L x L x -+= 2、设12,,...,n εεε与12,,...,n εεε'''是n 维线性空间 V 的两个基, 由12,,...,n εεε到12,,...,n εεε'''的过渡矩阵是C ,列向量X 是V 中向量ξ在基12,,...,n εεε下的坐标,则ξ在基12,,...,n εεε'''下 的坐标是 3、设A 、B 是n 维线性空间V 的某一线性变换在不同基下的矩阵, 则A 与B 的关系是 4、设3阶方阵A 的3个行列式因子分别为:()2 1,,1,λλ λ+ 则其特征矩阵E A λ-的标准形是 5、线性方程组AX B =的最小二乘解所满足的线性方程组是: 二、 单项选择题(每小题3分,共15分) 1、 ( )复数域C 作为实数域R 上的线性空间可与下列哪一个 线性空间同构: (A )数域P 上所有二级对角矩阵作成的线性空间; (B )数域P 上所有二级对称矩阵作成的线性空间; (C )数域P 上所有二级反对称矩阵作成的线性空间; (D )复数域C 作为复数域C 上的线性空间。 2、( )设 是非零线性空间 V 的线性变换,则下列命题正确的是:

(A ) 的核是零子空间的充要条件是 是满射; (B ) 的核是V 的充要条件是 是满射; (C ) 的值域是零子空间的充要条件是 是满射; (D ) 的值域是V 的充要条件是 是满射。 3、( )λ-矩阵()A λ可逆的充要条件是: ()()()()0; A A B A λλ≠是一个非零常数; ()()C A λ是满秩的;()()D A λ是方阵。 4、( )设实二次型 f X AX '=(A 为对称阵)经正交变换后化为: 222 1122...n n y y y λλλ+++, 则其中的12,,...n λλλ是: ()()1;A B ±全是正数;()C 是A 的所有特征值;()D 不确定。 5、( )设3阶实对称矩阵A 有三重特征根“2-”,则A 的若当 标准形是: ()()()200200200020;120;120;002002012A B C ---?? ?? ?? ? ? ? --- ? ? ? ? ? ?---?????? ()D 以上各情形皆有可能。 三、 是非题(每小题2分,共10分) (请在你认为对的小题对应的括号内打“√”,否则打“?”) 1、( )设V 1,V 2均是n 维线性空间V 的子空间,且{}1 20V V = 则12V V V =⊕。 2、( )n 维线性空间的某一线性变换在由特征向量作成的基下 的矩阵是一对角矩阵。

高数C期中试卷答案

高数C期中试卷答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

2010-2011高等数学C (二)期中考试试卷(答案) 姓名 学号 班级 成绩 注:该试卷中含有微分方程的题目,不属于本次期中考试内容。 一、选择填空题(每空3分,共36分) 1、30 ln(1) lim sin x x t dt t x x →+-? = 2 ; 解:上式=22 /lim cos 1) 1ln(lim 22 030==-+→→x x x x x x x 等价无穷小代换 2、曲线1 y x =与直线,2y x y ==所围的平面图形的面积为2ln 2 3- 解:积分区域??? ??≤≤≤≤y x y y D 121:,所以所求面积=-=?dy y y S )1(212ln 23- 3、1 21sin x xdx -?= 0 ; 解:奇函数在对称区间上的定积分为零 4、已知函数()f x 可导,(1)2f =,1 0()5f x dx =?,则1 0()xf x dx '?=3- 解:根据分部积分:1 0()xf x dx '?352)()()(1 01 01 0-=-=-==??dx x f x xf x xdf 5、已知22123,,x x x x x x x y xe e y xe e y xe e e --=+=+=+-是某二阶线性非齐次微分方程的三个解,则该方程的通解 为 , 该微分方程对应的二阶线性齐次微分方程为 。

6、方程2 2 14 y x +=所表示的曲面类型是 椭圆柱 面 ; 7、设22(,)f u v u v v u +-=-,则(,)f x y =xy - 8、二重极限22 (,)(0,0)lim x y xy x y →+ 不存在 ; 解:由于2 2220 1lim k k x k x kx x kx y x +=+?→=→,与k 有关,所以极限不存在 9、函数(,)z f x y =在点(,)P x y 偏导数存在是函数在该点连续的 D ; A 充分非必要条件 B 必要非充分条件 C 充要条件 D 无关条件 10、二元函数sin ,0,R (,)20,0R xy x y f x y x x y ?≠∈? =??=∈?,,则(0,3)x f = 不存在 解:(0,3)x f =∞=?-??=?-?→?→?x x x x f x f x x 0 23sin lim )3,0()3,(lim 00 11、设函数2x z y =,则全微分dz =dy xy ydx y x x 1222ln 2-+ 解:dy xy ydx y dz x x 1222ln 2-+= 二、计算题(共52分) 1、(6分) 计算0 -? 解:被积函数在积分区域上连续 所以0 -?2ln 32 3 32 1 24-=-= ? =+dt t t t x 2、(6分)计算2 2 2||2x x dx x -++? 解:利用定积分的奇偶性

高等代数试卷及答案1

高等代数 一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实 数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( )

北京大学高等代数高代II_2014期中试卷

北京大学数学学院期中试题 2013-2014学年第二学期 考试科目高等代数II 考试时间2014年4月28日 姓名学号 一.(24分)在正实数集R+上引入加法, 数乘运算: a⊕b = a b , k b = b k , ? a , b ∈ R+ , ? k∈ Q . 1) 证明: 集合R+ 在以上加法, 数乘运算下构成Q-线性空间; 2) 证明: 在Q-线性空间R+ 中, 由互异的素数p1 , p2, …, p s 组成的向量组一定线性无关; 3) 在Q-线性空间R+ 中, 求向量组6 , 60 , 18/5 ,168, 90/7的 一个极大无关组, 并将向量组每个向量用此无关组线性表出. 二.(16分)已知实矩阵A , B满足条件A 3 = 3 A– I, B = A 2 – 2 A . 1) 证明B可逆并求一个次数≤ 2的多项式g( x ) ∈ R[ x ], 使得B -1 = g( A ) ; 2) 求一个次数≤ 2的多项式h( x ) ∈ R[ x ], 使得A= h( B ) . 三.(12分)设4次齐次对称多项式f ( x1 , x 2, x 3, x 4 ) 在字典排序法下首项为x 12x 22 , 且f ( 0, 1, 1, 1) = 0 , f ( 1, 1, 1, 1) = – 5 . 将f 写成初等对称多项式σ1 , σ2 , σ3 , σ4 的多项式形式.

四.(30分)设A : X AX 是向量空间R 5到自身的线性变换, 这里 A = ∈ M 5, 5 ( R ) . 1) 求 Im A 与Ker A 的维数与基底. 2) 求 Im A + Ker A 与 Im A ? Ker A 的维数与基底. 3) 求商空间 R 5 / Ker A 的维数与一组基. 五.(10分)已知 A 是Q-线性空间V 上的线性变换, 满足条件 A 3 = A 2 . 设 I 是V 上的恒等变换. 证明: V = Ker A 2 ⊕ Ker ( A – I ) . 六.(8分)设p 是素数, f ( x ) = x p – x – 1 是有限域F p 上的多项式. 已知 f ( x ) 在F p 的某个扩域K 上有根 θ , 即存在θ ∈ K , 使得 f ( θ ) = 0 . 1) 证明: f ( x ) 在 K[ x ]中可分解为 f ( x ) = ( x – θ ) ( x – θ + 1 ) ... ( x – θ + p – 1 ) ; 2) 证明: f ( x ) 在 F p [ x ]中不可约. 注: 若域K 包含域F 作为子域, 且F 的乘法单位1F 与K 的乘法 单位1K 相同, 则称域K 是域F 的扩域. ??????? ?????????-----1121021311210001121040222

高数期中试卷A类(2013)

cos x 2013 级《高等数学》第一学期期中考试试题(A 类) 一、单项选择题(每小题 3 分,共 15 分) 1. 当 x → 0 时,与 - 1等价的无穷小是 ( ) (A ) x 4 x 2 x 2 ; (B ) - ; (C ) 4 2 x 2 ; (D ) - 。 2 2. 设a 是常数,则 lim e -a n = ( ) n →∞ (A ) 0 ; (B ) e -1 ; (C )不存在; (D )以上选项都有可能。 3. 设数列{a } 满足 lim a n +1 = A > 0 ,则 ( ) n n →∞ a n (A ){a n } 有界; (B ){a n } 不存在极限; (C ){a n } 自某项起同号; (D ){a n } 自某项起单调。 4. 设 f ( x ) 在 x = x 0 不可导,则在 x = x 0 点一定不可导的是 ( ) (A )e f ( x ) ; (B ) f ( x ) ; (C ) f 2 ( x ) ; (D )cos f ( x ) 。 5. 设 f ( x ) 在闭区间[a , b ] ( a > 0 )上有定义且单调增加。下列命题中 (1)若对于 x 0 ∈(a , b ) , lim x → x 0 f ( x ) 存在,则 f ( x ) 在 x = x 0 点连续; (2)若 f ∈ C [a ,b ],则?x 0 ∈[a , b ] ,使得 f (b ) - f (a ) = 2 f ( x 0 ) ; (3)若 xf ( x ) 在[a , b ] 上单调减少,则 f ( x ) 在[a , b ] 上连续; 正确命题的个数为 ( ) (A ) 0 ; (B ) 1 ; (C ) 2 ; (D ) 3 。 二、填空题(每小题 3 分,共 15 分) 6. 若设函数 f ( x ) 满足2 f (3x ) + f (2 - 3x ) = 6x + 1,则 f ( x ) = 。 7. 设 y = x 3 + 3x + 1,则 = 。 y =1 8. 曲线r = cos 2θ 在θ = π 4 处的切线方程为: 。 9. 已知 y = y ( x ) 由方程 x 2 y = e x - y 所确定,则 dy = 。 dx 10. 若 y = (1 + x 2 ) arctan x ,则dy = 。 三、(每小题 8 分,共 24 分) 11. 用极限定义证明: lim x →+∞ 1 + x = 0 。 12. 设 f ( x ) 在 x = 1 点附近有定义, 且在 x = 1 点可导, f (1) = 0 , f ( sin 2 x + cos x ) f '(1) = 2 ,求 lim 。 x →0 x 2 dx dy 2x + x -2

高等代数试题附答案

科目名称:《高等代数》 姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌ ≌≌≌≌ 一、填空题(每小题5分,共25分) 1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。 2、向 量 组 ()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。 3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。 4、假设??? ? ? ??-----=175131023A 的特征根是 ,特征向量分别 为 。 5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为 二、是非题(每小题2分,共20分) 1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。( ) 2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。( ) 3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。( ) 4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。( )

5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变 换。其中),,,()(24232221x x x x =ξδ。( ) 6、矩阵A 的特征向量的线性组合仍是A 的特征向量。( ) 7、若矩阵A 与B 相似,那么A 与B 等价。( ) 8、n 阶实对称矩阵A 有n 个线性无关的特征向量。( ) 9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是 )(2R M 的 子空间。( ) 10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。( ) 三、明证题(每小题××分,共31分) 1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。 (10) 2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻, 2δ=l 是单位变幻,那么δ是正交变换。(11) 3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥ =+2121W W W W 。(10) 四、计算题(每小题8分,共24分) 1、求矩阵??? ? ? ??---=466353331A 的特征根与特征向量,并求满秩矩阵P 使 得AP P 1-为对角形矩阵。 2、求一个正交矩阵U ,使得AU U '使对角形式,其中

高等代数期末卷及答案

沈阳农业大学理学院第一学期期末考试 《高等代数》试卷(1) 1 ?设 f (x) = x 4 +x ? +4x - 9 ,贝H f (一3) = 69 .. 2?当 t = _2,-2 . 时,f(x)=x 3 —3x+t 有重因式。 3.令f(x),g(x)是两个多项式,且f(x 3) xg(x 3)被x 2 x 1整除,则 f(1)=_0_^ g(1)= 0 . 0 6 2 =23 。 1 1 — -2 0 1 x , 2x 2 2x 3 x 4 二 0 7. 2x 1 x 2 -2x 3 -2x 4 二 0 的一般解为 x( ~'X 2 _'4x 3 ~3x 4 = 0 题号 -一- -二二 -三 四 五 六 七 总分 得分 、填空(共35分,每题5 分) 得分 4.行列式 1 -3 5. ■’4 10" 1 0 3 -1、 -1 1 3 '9 -2 -1 2 1 0 2」 2 0 1 < 9 9 11 <1 3 4 丿 6. z 5 0 0 1 -1 <0 2 1; 0-2 3 矩阵的积

c 亠5 刘=2x3 X4 4 x3, x4任意取值。X2 二-2x^ --x4

、(10分)令f(x),g(x)是两个多项式。求证 当且仅当(f(x) g(x), f(x)g(x))=1。 证:必要性.设(f(x) g(x), f (x)g(x)) =1。(1% 令 p(x)为 f (x) g (x), f (x)g(x)的不可约公因式,(1% 则由 p(x) | f (x)g (x)知 p(x)| f (x)或 p(x) |g(x) o (1%) 不妨设 p(x) | f (x),再由 p(x)|(f(x) g (x))得 p(x) | g(x)。故 p(x) |1 矛盾。(2%) 充分性.由(f (x) g(x), f (x)g(x)^1知存在多项式u(x), v(x)使 u(x)(f(x) g(x)) v(x)f(x)g(x)=1,(2%) 从而 u(x)f(x) g(x)(u(x) v(x) f(x)) =1,(2%) 故(f (x), g(x)) =1 o (1%) ax 「bx 2 2x 3 =1 ax 1 (2 b -1)x 2 3x 3 =1 ax 1 bx 2 - (b 3)X 3 = 2b _1 有唯一解、没有解、有无穷解?在有解情况下求其解。 解: a b 2 1 a b 2 1 a 2b -1 3 1 T 0 b —1 1 0 b J* b+3 2b-1 , b+1 2b-2 ‘ (5%) a 2 - b 0 1 0 b -1 1 0 L 0 0 b+1 2b —2 当b =1时,有无穷解:X 3 = 0, X 2 = 1 - a%,人任意取值; 当a =0,b =5时,有无穷解:x 1 = k,x^ --3,x^ 4 ,k 任意取值;(3%) 当b = T 或a =0且b =二1且b = 5时,无解。(4%) 三、(16分)a,b 取何值时,线性方程组 当a(b 2 T) = 0时,有唯一解: 5-b a(b 1) X 2 2 b+1 x3 = 2b -2 b 1 ;4%) (f(x),g(x)) =1

高等代数05期中试题(含答案)

《高等代数》05-06年度第一学期期中试题 一、单项选择题 1.对任意n 阶方阵A 、B 总有[ ] A. AB = BA B. | AB | = | BA | C. (AB)T =A T B T D. (AB)2=A 2B 2 2. 在下列矩阵中,可逆的是[ ] A. 000010001?? ? ? ??? B. 110220001?? ? ? ??? C. 110011121?? ? ? ??? D. 100111101?? ? ? ??? 3. 设A 是3阶方阵,且|A| = 2-,则| A -1 |等于[ ]. A. 2- B. 1 2 - C. 12 D. 2 4. 设A 是m n ?矩阵,则齐次线性方程组Ax = 0仅有零解的充分必要条件是[ ]. A. A 的行向量线性无关 B. A 的行向量线性相关 C. A 的列向量线性无关 D. A 的列向量线性相关 5.设有m 维向量组12():,,...,n I ααα,则[ ]. A. 当m < n 时,()I 一定线性相关 B. 当m > n 时,()I 一定线性相关 C. 当m < n 时,()I 一定线性无关 D. 当m > n 时,()I 一定线性无关 6.已知1β、2β是非齐次线性方程组Ax b =的两个不同的解,1α、2α是其导出组0Ax =的一个基础解系,1k 、2k 为任意常数,则方程组Ax b =的通解可表成[ ]. A. 12 11212()2 k k ββαββ-+++ B. 12 11212()2 k k ββαββ++++ C. 12 11222 k k ββαα-++ D. 12 11222 k k ββαα+++ 7. 向量组12():,,...,n I ααα,(n>1) 线性无关等价于[ ]. A. 存在一组不全为0的数n k k k ,,,21 ,使其线性组合∑=n k i i k 1 α 不等于0 B. 其中任意两个向量线性无关 C. 任何一个向量均不能用其它向量线性表出 D. 存在一个向量不能用其它向量线性表出 8. 设矩阵11 112 1231A λ?? ? = ? ?+?? 的秩为2,则λ=[ ].

高等数学试卷:答案_高等数学(A)期中

03~09级高等数学(A )(上册)试卷答案 2003级高等数学(A )(上)期中试卷 一、单项选择题(每小题4分,共12分) 1.B 2.A 3.D 二、填空题(每小题4分,共24分) 1. 5 2 2.0=x ,第一类(跳跃)间断点 3.(1)23 432(5(1))2(1)(1)(1)(1) (01)234!-+-+-+-+-+-<x ,x x x sin 6 3 <-. (用函数的单调性来证明) 五、(6分)是一个相关变化率的问题, 2 144 /==t ds m s dt π。 六、(8分) 2>-a 时,有两个相异的实根;2=-a 时,有一个实根;2<-a 时,没有实根。 七、(6分)设3 ()()=F x x f x ,对()F x 在区间[0,1]上用罗尔定理即可得证。 八、(8分) 所求点为( , )22 P a 。 2004级高等数学(A )(上)期中试卷 一. 填空题(每小题4分,共20分) 1. 3=n 2. 2=-a 3. () 10(0)90=f 4.1 (1,)2-- 5. () ()()() ()2 11, 01211--+<<+-x x x θθ 二. 选择题(每小题4分,共16分) 1.C 2.D 3.C 4.D

高等代数试题及答案

中国海洋大学2007-2008学年第2学期期末考试试卷

授课教师命题教师或 命题负责人签字年月日院系负责人签 字年月日 共 2 页第 2 页

中国海洋大学 XXXX-XXXX 学年 第X 学期 期末考试试卷 五(10分)证明:设A 为n 级矩阵,()g x 是矩阵A 的最小多项式,则多项式()f x 以A 为根的充要条件是()g x |()f x . 六(10分)设V 是数域P 上的n 维线性空间,A B ,是V 上的线性变换,且=AB BA .证明:B 的值域与核都是A 的不变子空间. 七(10分)设2n 阶矩阵a b a b A b a b a ??????? ? =? ?? ??????? O N N O ,a b ≠,求A 的最小多项式. 八(10分)设f 是数域P 上线性空间V 上的线性变换,多项式()(),p x q x 互素,且满足 ()()0p f q f =(零变换) 求证:()()()(),ker ,ker V W S W p f S q f =⊕==

中国海洋大学 2007-2008学年 第2学期 期末考试 数学科学 学院 《高等代数》试题(A 卷)答案 一.判断题 1.× 2.× 3.× 4.√ 5.√ 二.解:A =???? ????????1111111111111111, 3|(4)E A λλλ-=-|,所以特征值为0,4(3重). 将特征值代入,求解线性方程组()0E A x λ-=,得4个线性无关的特征向量(答案可以不唯一),再正交单位化,得4个单位正交向量: 11111 ,,,)'2222α=( ,2α=, 3α= ,4'α=. 所以正交阵1 212 102610 2 T ?????? ?=??- ?? ???????? 而40'00T AT ??????=??????. 三.证:(1) ,.A B M ?∈ 验证,A B kA M +∈即可. (2) 令1101 010011 0n E D E -???? ? ??? ??== ????? ?????? O O O ,D 为循环阵, 00n k k k E D E -?? = ??? ,(k E 为k 阶单位阵) 则2 1 ,,,,n n D D D D E -=L 在P 上线性无关.

(完整版)高等代数(下)期终考试题及答案(B卷)

高等代数(下)期末考试试卷及答案(B 卷) 一.填空题(每小题3分,共21分) 1. 22 3[]-2-31,(-1),(-1)P x x x x x 在中,在基下的坐标为 2. 设n 阶矩阵A 的全体特征值为12,,,n λλλL ,()f x 为任一多项式,则()f A 的全体特征值为 . 3.'=n 在数域P 上的线性空间P[x]中,定义线性变换:(,则的值域())()A A f x f x A ()-n P[x]= ,的核(0)= 1A A A 4.已知3阶λ-矩阵A (λ)的标准形为21 0 00 00 0λλλ?? ? ? ?+?? ,则A (λ)的不变 因子________________________; 3阶行列式因子 D 3 =_______________. 5. 若4阶方阵A 的初等因子是(λ-1)2,(λ-2),(λ-3),则A 的若当标准形 J= 6.在n 维欧氏空间V 中,向量ξ在标准正交基12,,,n ηηηL 下的坐标是 12(,,,)n x x x L ,那么(,)i ξη= 7. 两个有限维欧氏空间同构的充要条件是 . 二. 选择题( 每小题2分,共10 分) 1.( ) 已知{(,),,,}V a bi c di a b c d R =++∈为R 上的线性空间, 则dim(V)为 (A) 1; (B) 2; (C) 3; (D) 4 2. ( ) 下列哪个条件不是n 阶复系数矩阵A 可对角化的充要条件 (A) A 有n 个线性无关的特征向量; (B) A 的初等因子全是1次的; (C) A 的不变因子都没有重根; (D) A 有n 个不同的特征根; 3.( ) 设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A

高数上期中试卷及答案

2015-2016学年第一学期高数期中试卷 一、(每小题6分,共12分) 1 、求函数()f x = 的定义域和值域。 解:由02sin ≥x 得: 1 2(21)()2 k x k k x k ππππ≤≤+?≤≤+ 所以定义域为1 {|();}2 D x k x k k Z ππ=≤≤+ ∈ 由12sin 0≤≤x 得:12sin 0≤≤x ,所以值域为]1,0[ 2 、判断函数21,0()0x x f x x +≤?=>在分段点0x =处的左右极限,并据此判断函数在 这点的极限是否存在。 解:0 0/21 lim ()lim lim 2 x x x x f x x ++ +→→→=== 00 lim ()lim(21)1x x f x x - - →→=+= 因为0 lim ()lim ()x x f x f x +-→→≠,所以函数在0x =处的极限不存在。 二、(每小题6分,共12分)1、31 13lim( )11x x x →--- 2、01cos lim sin x x x x →- 解:1、233211113221 lim( )lim lim 11113x x x x x x x x x x →→→+-+-===--- 2、22001cos /21 lim lim sin 2 x x x x x x x →→-== 三、(10分)求2(1)sin x x y e x =-的间断点,并判断间断点的类型。 解:由(1)sin 0()x e x x k k Z π-=?=∈,所以函数的间断点为()x k k Z π=∈ 因为22 200lim lim 1(1)sin x x x x x e x x →→==-,所以0x =是可去间断点 因为2 (0) lim (1)sin x x k k x e x π→≠=∞-,所以(,0)x k k Z k π=∈≠是无穷间断点。

厦门大学《高等代数》期末试题及答案(数学系)

10-11学年第一学期厦门大学《高等代数》期末试卷 厦门大学《高等代数》课程试卷 数学科学学院 各 系 2010 年级 各 专业 主考教师:杜妮、林鹭 试卷类型:(A 卷) 2011.1.13 一、 单选题(32 分. 共 8 题, 每题 4 分) 1) 设b 为 3 维行向量, 123123 V {(,,)|(,,)} x x x x x x b == ,则____。C A)对任意的b ,V 均是线性空间;B)对任意的b ,V 均不是线性空间;C)只有当 0 b = 时,V 是线性空间;D)只有当 0 b 1 时,V 是线性空间。 2)已知向量组 I : 12 ,,..., s a a a 可以由向量组 II : 12 ,,..., t b b b 线性表示,则下列叙述正确的是____。 A A)若向量组 I 线性无关,则s t £ ;B)若向量组 I 线性相关,则s t > ; C)若向量组 II 线性无关,则s t £ ;D)若向量组 II 线性相关,则s t > 。 3)设非齐次线性方程组AX b = 中未定元个数为 n ,方程个数为m ,系数矩阵 A 的秩为 r ,则____。 D A)当r n < 时,方程组AX b = 有无穷多解; B) 当r n = 时,方程组AX b = 有唯一解;C)当r m < 时,方程组AX b = 有解;D)当r m = 时,方程组AX b = 有解。 4) 设 A 是m n ′ 阶矩阵,B 是n m ′ 阶矩阵,且AB I = ,则____。A A)(),() r A m r B m == ;B)(),() r A m r B n == ;C)(),() r A n r B m == ; D)(),() r A n r B n == 。 5) 设 K 上 3 维线性空间 V 上的线性变换j 在基 123 ,, x x x 下的表示矩阵是 111 101 111 ?? ?÷ ?÷ ?÷ è? ,则j 在基 123 ,2, x x x 下的表示矩阵是____。C A) 121 202 121 ?? ?÷ ?÷ ?÷ è? ; B) 1 2 11 22 1 2 11 0 11 ?? ?÷ ?÷ ?÷ è? ; C)11 22 121 0 121 ?? ?÷ ? ÷ ?÷ è? ;D) 1 2 1 2 11 202 11 ?? ?÷ ?÷ ?÷ è? 。 6) 设j 是 V 到 U 的线性映射,dim V ,dim U n m == 。若m n < ,则j ____。B A)必是单射; B)必非单射; C)必是满射;D)必非满射。

大一下学期高等数学期中考试试卷及答案

大一下学期高等数学期中考试试卷及答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大一第二学期高等数学期中考试试卷 一、填空题(本题满分15分,共有5道小题,每道小题3分),请将合适的答案填在空中。 1、已知球面的一条直径的两个端点为()532,,-和()314-,,,则该球面的方程为______________________ 2、函数ln(u x =在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为 3、曲面22z x y =+与平面240x y z +-=平行的切平面方程为 4、2222222(,)(0,0)(1cos())sin lim ()e x y x y x y xy x y +→-+=+ 5、设二元函数y x xy z 3 2+=,则=???y x z 2_______________ 二、选择填空题(本题满分15分,共有5道小题,每道小题3分)。以下每道题有四个答案,其中只有一个答案是正确的,请选出合适的答案填在空中,多选无效。 1、旋转曲面1222=--z y x 是( ) (A ).xOz 坐标面上的双曲线绕Ox 轴旋转而成; (B ).xOy 坐标面上的双曲线绕Oz 轴旋转而成; (C ).xOy 坐标面上的椭圆绕Oz 轴旋转而成; (D ).xOz 坐标面上的椭圆绕Ox 轴旋转而成. 2、微分方程23cos 2x x x y y +=+''的一个特解应具有形式( ) 其中3212211,,,,,,d d d b a b a 都是待定常数. (A).212211sin )(cos )(x d x b x a x x b x a x ++++; (B).32212211sin )(cos )(d x d x d x b x a x x b x a x ++++++; (C).32212211)sin cos )((d x d x d x b x a b x a x +++++; (D).322111)sin )(cos (d x d x d x x b x a x +++++ 3、已知直线π 22122:-=+= -z y x L 与平面4 2:=-+z y x ππ,则 ( ) (A).L 在π内; (B).L 与π不相交; (C).L 与π正交; (D).L 与π斜交. 4、下列说法正确的是( ) (A) 两向量a 与b 平行的充要条件是存在唯一的实数λ,使得b a λ=; (B) 二元函数()y x f z ,=的两个二阶偏导数22x z ??,22y z ??在区域D 内连续,则在该区域内两个二阶混合偏导必相等; (C) 二元函数()y x f z ,=的两个偏导数在点()00,y x 处连续是函数在该点可微的充分条 件;

高等代数试卷及答案--(二)

一、填空题 (共10题,每题2分,共20 分) 1.只于自身合同的矩阵是 矩阵。 2.二次型()()11212237,116x f x x x x x ?? ??= ? ????? 的矩阵为__________________。 3.设A 是实对称矩阵,则当实数t _________________,tE A +是正定矩阵。 4.正交变换在标准正交基下的矩阵为_______________________________。 5.标准正交基下的度量矩阵为_________________________。 6.线性变换可对角化的充要条件为__________________________________。 7.在22P ?中定义线性变换σ为:()a b X X c d σ?? = ??? ,写出σ在基11122122,,,E E E E 下的 矩阵_______________________________。 8.设1V 、2V 都是线性空间V 的子空间,且12V V ?,若12dim dim V V =,则_____________________。 9.叙述维数公式_________________________________________________________________________。 10.向量α在基12,,,n ααα???(1)与基12,,,n βββ???(2)下的坐标分别为x 、y ,且从基(1)到基(2)的过渡矩阵为A ,则x 与y 的关系为_____________________________。 二、判断题 (共10 题,每题1分,共10分) 1.线性变换在不同基下的矩阵是合同的。( ) 2.设σ为n 维线性空间V 上的线性变换,则()1 0V V σσ -+=。 ( ) 3.平面上不平行于某一向量的全部向量所成的集合,对于向量的加法和数量乘法,构成实数域上的线性空间。( ) 4.设1V 与2V 分别是齐次线性方程组120n x x x ++???+=与12n x x x ==???=的解空间,则 12n V V P ⊕= ( ) 5.2 2 11n n i i i i n x x ==??- ??? ∑∑为正定二次型。( ) 6.数域上任意一个矩阵都合同于一对角矩阵。( ) 7.把复数域C 看作复数域上的线性空间,C ξ?∈,令σξξ=,则σ是线性变换。( ) 8.若σ是正交变换,那么σ的不变子空间的真正交补也是σ的不变子空间。( ) 9.欧氏空间中不同基的度量矩阵是相似的。( ) 10.若σ为[]n P x (1n >)中的微分变换,则σ不可对角化。( ) 三、计算题 (共3题,每题10分,共30分)

2016《高等代数(一)》期中考试试题

湖南师范大学XXXX学院 2016-2017学年第一学期数学信统专业2016年级《高等代数(一)》课程期中考试试题课程代码:07031004考核方式:闭卷考试时量:120 分钟试卷类型:D 一、理解题(每小题20分,共20分) 1.陈述一般数域P上的多项式因式分解及唯一性定理,并重点解释你对唯一性 的理解。而后在实数域上再次叙述该定理,并解释此时的不可约多项式有哪些?

二、简答题(下面两题:要求先回答‘对’或‘错’;如果回答‘错’,请给出反举例,如果回答‘对’ 则简单给出理由。每小题10分,共20分) 1. 有人说:对于有理数域上的两个多项式()f x 和()g x ,它们在有理数域上的最大公因式与它们在实数域上的最大公因式是相等的。这种说法对吗?为什么? 解: 2. 有人说:3级行列式 3 3 3 111a b c a b c 为零的充分必要条件是,,a b c 这3个数中至少有两个相等。这种说法对吗?为什么? 解:

1. 在有理数域上将多项式 ()(5)(4)(3)(2)1f x x x x x =+++++ 分解为不可约多项式的乘积。 解: 2. 设b c ≠,计算下面n 级行列式 a b b b c a b b c c a b c c c a 解:

1. 设整数,,a b c 两两不同,以及整系数多项式()f x ,证明: ()1() (()())a b f a f b --;()2如果()f a b =,()f b c =,一定有()f c a ≠。 证: 2. 设两个n 级行列式 432323 523 5 235n a = ,423 061 561 5615n b -= 证明:当4n ≥时,有n n a b =。 证:

《高等代数》(上)期末试卷(A)

《高等代数》(上)期末试卷(A ) 一、填空题(每空3分,共15分) 1.设方阵1112223 3 3b x c A b x c b x c ????=??????,1 112 223 3 3b y c B b y c b y c ?? ??=? ????? ,且2,3A B =-=, 则行列式2A B += . 2.已知A 是一个34?矩阵,且秩()2A =,而102020103B ????=?????? ,则秩()BA = . 3. 多项式2005 20042 322006()(54)31(8112)f x x x x x x ??=--+-+?? 的所有系数之和 = ,常数项= . 4. ()f x 为多项式,用1x -除时余式为3,用3x -除时余式为5,则用(1)(3)x x --除时余式为 . 二、选择题(每题3分,共12分) 1.设n 维向量组12345,,,,ααααα的秩为3,且满足135230,ααα+-= 242,αα=则向量组的一个极大无关组为( ) A . 125,,ααα; B . 124,,ααα; C. 245,,ααα; D. 135,,ααα. 2. A 是m n ?矩阵,B 是n m ?矩阵,则( ) A . 当m n >时,必有行列式0A B ≠; B . 当m n >时,必有行列式0AB =; C . 当n m >时,必有行列式0AB ≠; D . 当n m >时,必有行列式0AB =. 3.设,A B 都是可逆矩阵,则矩阵0A C B ??????的逆矩阵为( ) A . 1 1 10A C B ---?? ????; B . 1110B C A ---?????? ;

相关文档
相关文档 最新文档