文档库 最新最全的文档下载
当前位置:文档库 › 碳纤维制备工艺简介

碳纤维制备工艺简介

碳纤维制备工艺简介
碳纤维制备工艺简介

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

碳纤维制备工艺简介讲解

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

国内外碳纤维生产现状及发展趋势

国内外碳纤维生产现状及发展趋势 碳纤维, 国内外, 趋势, 生产, 发展 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量 生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热 传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各 个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典 型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模 工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相 称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必 须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高, 但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用 途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产 的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕 等工序。

碳纤维技术简介_简版

1炭素纤维技术介绍 1.1炭素纤维生态草处理技术简介 炭素纤维生态草是用于净化受污染水域,修复水环境生态的优良选择,其实现了对环境的零负荷与完全的生物安全。 炭素纤维生态草具有极高的吸附性与生物亲和性,太阳光照射,炭素纤维生态草发出超音波,吸引微生物菌群。这些菌群在其表面形成粘着性活性生物膜。这些微生物以有机污染物为食,通过自身的新陈代谢作用分解水体中的有机污染物。同时很重要的是,以微生物为食的小鱼等其他小生物会聚集在炭素纤维生态草的周围,炭素纤维生态草成为鱼类及其他高级水生动物的优良卵床与养育空间。水体中的生物链,食物链修复回健康状态。水体恢复生命。利用炭素纤维治理水,构建水下森林,给水生生物搭建栖息地,以微生物、小虾小鱼、大鱼为基础的循环生态链逐步建立。 在日本,利用炭纤维技术,成功的修复了受污染的榛名湖,挽救了面临灭绝的当地独有的公鱼以及当地的传统旅游业。在其他240个案例与实验中,炭纤维的这些特性,是都得到证明的。在中国海南三亚市、江苏省苏州市景观河湖水质改善及生态修复项目上得到应用。项目水质指标均达到设计要求,水体生物多样性得到有效改善。 1.2炭素纤维生态草技术特征 a) 高生物附着比表面积 炭素纤维生态草比表面积1000m2/g.利用此特性,其能高效吸收、吸附、截留水中溶解态和悬浮态的污染物,提高水体的透明度,并为各类微生物、藻类和微型动物的生长、繁殖提供良好的着生、附着或穴居条件,最终在炭素纤维上形成薄层的具有很强净化活性功能的“生物膜”。 炭素纤维生态草与其它载体生物附着比表面积的比较

b) 生物膜结构 在炭素纤维表面形成的生物膜一个断面上,由外及里形成了好氧、兼性厌氧和厌氧三种反应区。在好氧区,好氧菌将氨氮转化为硝基氮,并把小分子有机物转化为二氧化炭和水(把可溶的无机磷转化为细胞体内的ATP),在厌氧区,厌氧菌将硝基氮转化为氮气和氧气(把难分解的大分子有机物分解为可降解的小分子有机物)。最终污染基团就被分解转化成逸出水体的N2、CO2和H2O。附着在炭素纤维上的大量微生物群,微生物群难以脱落,其上黏附的污染物难以溶出及扩散,抑制了环境的恶化。在水流的影响下,产生收缩运动,从而促进了污染物质的分解。 c) 专利编织技术,平铺、垂立安装设计 炭纤维人工草场的专利编织组合方式,可以促进海藻及生物类的着床同时形成水体珊瑚礁功能,更有利于孵化、养鱼幼鱼及其他水生动物,躲避大鱼的袭击。平铺形式的西阵带织物状,可以有效的消减底泥污染,抑制底泥内源污染物的释放。悬挂水中放置形式,解决了水体中间层微生物的载体问题。(水表面好氧菌活跃层、底层厌氧菌在底泥内部活跃,水体中间因缺乏微生物载体而微生物活动性不强)。安装设置容易结合景观文化设计,可利用生物浮岛等配合进行景观的绿化与文化内涵的结合。 d) 基于声波效应特性与材料特性基础上的生物亲和性 炭素纤维生态草,经太阳光等射线照射后,发出声波,其波段与微生物感知波段吻合,形成呼应,促使微生物迅速聚集在炭纤维周围。其发出的声波一方面激活微生物,提高微生物膜的活性,提高污染物分解速度;另一方面,通过声波吸引鱼虾贝类,聚集在其周围,形成具有生产者、消费者、分解者的完整生态链。同时炭素纤维柔软且表面形成黏着性的生物膜,是鱼、虾、贝类等水生生物优良的产卵、生息的繁殖场所,经过科学实验观察,其生物卵床功能甚至优于真实水

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维的发展与现状

人员分工情况 资料收集:蔡煜简江婷婷宋爽韵周晓楠张领中英文摘要:蔡煜张领周晓楠 内容编写:发展部分简江婷婷宋爽韵 现状与差距部分蔡煜张领周晓楠排版校对:简江婷婷宋爽韵 宋爽韵 20110815023 简江婷婷 20110815036 蔡煜 20110815045 周晓楠 20110815047 张领 20110815050

碳纤维的发展与现状 学生:蔡煜简江婷婷宋爽韵周晓楠张领指导老师:秦文峰 摘要:简要介绍了碳纤维的性能、发展历史以及在航空航天领域中的应用,同时分析了国内外碳纤维的发展差距,给出了对我国碳纤维发展的建议。 关键词:碳纤维;碳纤维复合材料;应用领域;发展差距;发展建议 Abstract:The brief introduction of the performance and development history and application in the aviation&aerospace field of carbon fiber ,the analysis of the development gap of carbon fiber between home and abroad ,the advises of carbon fiber’s development to our country are given in this paper. Key words:carbon fiber;carbon fiber composites;application territory; development gap;development advises

聚丙烯腈基碳纤维简介及其发展概况

聚丙烯腈基碳纤维简介及其发展概况 摘要:聚丙烯腈基碳纤维为人造合成纤维,是一种力学性能优异的新材料,在航空航天、建筑、体育、汽车、医疗等领域得到广泛的应用。生产碳纤维采用特殊组分且性能优异的专用PAN基纤维即PAN原丝。本文简要介绍国内外PAN基碳纤维的发展概况和现状,PAN基碳纤维的应用,重点介绍了PAN基碳纤维的结构、性能、纺丝、制备等技术,以及分析我国碳纤维与世界先进国家之间的差距及存在的问题且提出一些建设性意见。 关键词:聚丙烯腈基碳纤维纺丝国内外发展比较差距 碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基生产工艺简单,产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的的品种。 一、碳纤维及其发展史 1.1碳纤维的先驱——斯旺和爱迪生 碳纤维的起源可追溯到19世纪60年代,1860年,英国人约瑟夫·斯旺用碳丝制作灯泡的灯丝早于美国人爱迪生。十九世纪后期他俩各自设计出了白炽灯泡.他是研制碳丝的第一人,同时他的利用挤压纤维素成纤技术为后来合成纤维的问世起到了启迪作用。 爱迪生解决了碳丝应用与白炽灯的灯丝问题,他发明的电灯,这也是碳丝第一次得到了实际应用。1910年库里奇发明了拉制钨丝取代了碳丝作为灯丝,从此碳丝的研制工作停止了下来。指导了20世纪50年代碳丝的研制又重新出现在现在的材料科学的舞台上,但研究的目的是为了解决战略武器的耐高温和耐烧耐腐蚀材料,今天的碳纤维已经形成了一个举足轻重的新型材料体系,已广泛应用于航空、军事和民用工业领域,而且仍在强劲发展.1.2碳纤维的三大原料路线 黏胶基碳纤维、聚丙烯腈基碳纤维、沥青基碳纤维,其中以聚丙烯腈基碳纤维应用最为广泛,也是本文将要为大家介绍的。 1.3聚丙烯腈碳纤维的发明者――近藤昭男 近藤昭男从业于大阪工业大学技术实验所,在碳研究室从事于碳素的崩散现象和碳素的崩散碳素胶状粒子的研究。他研究了应运腈纶在一系列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。虽然近藤昭男发明了用PAN原丝制造碳纤维的方法,但英国人瓦特在预氧过程中施加张力牵伸,打通了制取高性能碳纤维的工艺流程,从而牵伸贯穿了氧化和碳化的始终,成为研制碳纤维的重要工艺参数。所以近藤昭男发明了用PAN基原丝制造碳纤维的新方法,瓦特打通了制造高性能PAN基碳纤维新工艺。 1.4从日本东丽公司碳纤维发展历程看PAN基原丝的重要性。 日本东丽公司无论碳纤维的质量还是产量都居世界之首,以该公司研发碳纤维历程给人们一个启迪,即原丝是制取高性能碳纤维的前提,没有质量好的原丝就不可能产出好的碳纤维 东丽公司成立于1926年,1962年开始研制PAN基碳纤维,原丝为民用腈纶,产不出

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维资料总结

读《碳纤维及石墨纤维》总结 一、碳纤维和石墨纤维的发展概况 1.研究碳纤维的先驱: 1860年,英国人约琴夫?斯旺(J. Swan)用碳丝制作灯泡的灯丝,早于美国人爱迪生(T. A. Edsion)。斯旺未能解决灯泡的真空问题,爱迪生解决的真空问题。斯旺提出利用孔口挤压纤维素成纤维技术,为后来的合成纤维提供启示。 2.聚丙烯腈基碳纤维的发明者: 进藤昭男(日本大阪工业技术试验所)从事碳素的崩散现象和崩散素胶状粒子的研究以及反应堆所用碳材料中微量彭元素的去除。 进一步,他研究了民用腈纶在一些列热处理过程中物性和结构的变化,即开始研制PAN基碳纤维。研究结论是PAN纤维需要经氧化处理才能得到碳纤维,确定了制取PAN基碳纤维的基本工艺流程,即氧化和碳化。但未能制造性能好的碳纤维。 英国人瓦特(W. Watt)在预氧化的过程中施加张力牵引打通了制取高性能碳纤维的流程工艺,从此牵伸贯穿于氧化和碳化的始终,成为制造碳纤维最重要的工艺参数。 目前,牵张力已细化和量化,在不同热处理过程中施加适量的牵张力,以满足结构的转化。3.从东丽公司碳纤维发展历程看原丝的重要性: 日本东丽公司在碳纤维的质量和产量均位于世界之首。公司发展启示:原丝是制取高性能碳纤维的前提。 1962年,公司采用民用腈纶为原丝,但生产不出质量较好的碳纤维。 1967年,研究适合制造碳纤维的共聚原丝,把提高PAN(聚丙烯腈)原丝质量放在第一位。 目前主要经营T300(碳纤维,300为拉伸强度3Gpa),M40(石墨纤维,拉伸模量40Gpa)。 1981年,波音公司提出高强度、大伸长的碳纤维需求,制造大型客机的一次结构材料。 1984年,东丽公司成功研制T800,满足波音公司需求。 1986年,研制T1000;1992年,研制了M70J。 目前,T800H已经是制造大飞机(A380和B787)的主要增强纤维。T1000是碳纤维中拉伸强度最高、断裂伸长最大的碳纤维。M70J的拉伸模量最高达到690Gpa,是目前PAN基石墨纤维中最高的纤维。 碳纤维的单丝截面的SEM图从肾形(1976)变为圆形。圆形(2006)的碳纤维成为碳纤维质量的指标之一。 4.我国PAN基碳纤维的研究: 起始于20世纪60年代中期,中科院山西煤炭化学研究所于1976年建成我国第一条生产线。 整经加捻送丝机(100束)->1#预氧化炉170~220℃和牵伸5%->2#预氧化炉220~240℃和牵伸1%->3#预氧化炉240~270℃和牵伸0%->低碳炉400~700℃->高碳炉1250℃->浸胶槽->红外灯烘干->收丝机(100束)。加工后碳纤维的拉伸强度为2.8Gpa,拉伸模量为250Gpa,断裂伸长率为1.5%。 为了提高碳纤维的拉伸强度,当时采用补强处理。实验表明碳纤维的拉伸强度越低其补强效果越

碳纤维生产工序介绍

纱架放丝岗:在恒温恒湿张力平稳的条件下把原丝舒展开送入下一道工序氧化炉。安全注意防止平台跌伤。加湿器的主要作用是除静电、减少丝束间差异。“雾化”“喷淋”的形式,现在停用主要原因是原丝的油剂遇水黏连辊子。 氧化炉为碳化做准备。预氧化过程的目的是是热塑性的PAN线性大分子链转化为非塑性耐热梯形结构,使其在碳化高温下不熔不燃,保持纤维形态,最后转化为乱层石墨结构的碳纤维。四个温区温度为236/242/248/248,上七层下八层共三十层,有效温区长度15米。炉内要求温度均一性,风速均一性。形成温度梯度,由低温到高温逐步氧化,若温度高,氧化太快,纤维皮层很快形成致密的皮芯结构,阻挡氧向内部结构扩散。送风和排风系统主要的3个作用:1、提供预氧化反应所需的氧。2、带走反应热和热解产物。3、使炉内温度均匀。驱动牵伸可以保持原丝取向度,调节线密度。 低温碳化炉低温碳化炉4个温区,加热元件热电偶,升温速率为50℃/H,2#温区两侧位排废口,废气排放口也是废气产生最多的地方。炉温在400—1000℃在这个阶段预氧丝发生剧烈的变化,约有30%~40%的质量热解逸走,600度以前释放 速率较大,预氧丝中结合的氧以CO、CO 2和H 2 O的形式逸走,同时释放大量的HCN 和NH 3约占70%。另外30%在高温段挥发出去,主要是HCN和N 2 ,是小的碳环缩聚成 大的产物。主要控制要点有温度梯度、碳化时间、气体流动、碳化牵伸。炉内保持微正压。 高温碳化炉最高温度1800℃,两端进出口氮气密封,炉内保持微正压。六个温区,加热元件为石墨马弗管。炉口两端非接触迷宫密封装置,氮气(纯度99.9998%)不直进直出要走迷宫,入口处设置氮气预热器,出口段设置氮气冷却、冷却水系统。冷却水由3台冷却水泵提供,两台电动一开一备自动切换,一台柴油泵紧急情况使用。排放的废气主要有含氧小分子、HCN及焦油、N 2 进入DFTO焚烧处理。后处理阳极电解氧化法,该方法的特点是处理时间短。碳纤维作为阳极,阴极为铂板,电解质为硫酸溶液。在直流电场作用下对纤维表面进行处理,适当增大纤维表面极性和粗糙度从而达到改善复合材料界面性能的目的,经过表面处理后极性官能团增加。工艺控制要点:电解液浓度,电流大小。水洗水与纤维运行方向相反,以达到去除纤维表面电解液的目的。然后一干,上浆处理,提高碳纤维与基体树脂的结合力。在纤维表面形成坚韧薄膜,提高纤维的耐磨性,浆剂深入纤维内部使单丝胶合在一起,加大抱合力防止发散。 收丝卷绕最后一道工序也是成品质量把关的一道工序,主要防止毛丝、毛团卷入及时下轴,外观不齐及时发现处理,丝束宽窄不一加捻情况进行调节,成品端面毛丝清理等。

聚丙烯腈碳纤维的工艺流程

聚丙烯腈碳纤维的工艺流程 1.概述 碳纤维是一种力学性能优异的新材料,它不仅具有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是新一代增强纤维。聚丙烯碳纤维是一种以聚丙烯腈(PAN)、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的特种纤维。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小、减震等优异性能,是航空航天、国防军事工业不可缺少的工程材料,同时在体育用品、交通运输、医疗器械和土木建筑等民用领域也有着广泛应用。PAN基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上,成为最主要的品种。 2.制备 聚丙烯腈碳纤维是以聚丙烯腈纤维为原料制成的碳纤维,主要作复合材料用增强体。无论均聚或共聚的聚丙烯腈纤维都能制备出碳纤维。为了制造出高性能碳纤维并提高生产率,工业上常采用共聚聚丙烯腈纤维为原料。对原料的要求是:杂质、缺陷少;细度均匀,并越细越好;强度高,毛丝少;纤维中链状分子沿纤维轴取向度越高越好,通常大于80%;热转化性能好。 生产中制取聚丙烯腈纤维的过程是:先由丙烯腈和其他少量第二、第三单体(丙烯酸甲醋、甲叉丁二脂等)共聚生成共聚聚丙烯腈树脂(分子量高于 6~8万),然后树脂经溶剂(硫氰酸钠、二甲基亚矾、硝酸和氯化锌等)溶解,形成粘度适宜的纺丝液,经湿法、干法或干-湿法进行纺丝,再经水洗、牵伸、干燥和热定型即制成聚丙烯腈纤维。若将聚丙烯腈纤维直接加热易熔化,不能保持其原来的纤维状态。因此,制备碳纤维时,首先要将聚丙烯腈纤维放在空气中或其他氧化性气氛中进行低温热处理,即预氧化处理。预氧化处理是纤维碳化的预备阶段。一般将纤维在空气下加热至约270℃,保温0.5h~3h,聚丙烯腈纤维的颜色由白色逐渐变成黄色、棕色,最后形成黑色的预氧化纤维。这是聚丙烯腈线性高分子受热氧化后,发生氧化、热解、交联、环化等一系列化学反应形成耐热梯型高分子的结果。再将预氧化纤维在氮气中进行高温处理(l 600℃),即碳化处理,则纤维进一步产生交联环化、芳构化及缩聚等反应,并脱除氢、氮、氧原子,最后形成二维碳环平面网状结构和层片粗糙平行的乱层石墨结构的碳纤维。 由PAN原丝制备碳纤维的工艺流程如下:PAN原丝→预氧化→碳化→石墨化→表面处理→卷取→碳纤维。 3.性能 碳纤维有如下的优良特性:①比重轻、密度小;②超高强力与模量;③纤维细而柔软; ④耐磨、耐疲劳、减振吸能等物理机械性能优异;⑤耐酸、碱和盐腐蚀,可形成多孔、表面活性、吸附性强的活性碳纤维;⑥热膨胀系数小,导热率高,不出现蓄能和过热;高温下尺寸稳定性好,不燃,热分解温度800℃,极限氧指数55;⑦导电性、X射线透过性及电磁波遮蔽性良好;⑧具有润滑性,不沾润在熔融金属中,可使其复合材料磨损率降低; ⑨生物相容性好,生理适应性强。

碳素纤维简介

碳素纤维又称碳纤维(Carbon Fiber,简称CF)。在国际上被誉为“黑色黄金”,它继石器和钢铁等金属后,被国际上称之为“第三代材料”,因为用碳纤维制成的复合材料具有极高的强度,且超轻、耐高温高压。 碳纤维主要是由碳元素组成的一种特种纤维,其含碳量随种类不同而异,一般在90%以上。碳纤维具有一般碳素材料的特性,如耐高温、耐摩擦、导电、导热及耐腐蚀等,但与一般碳素材料不同的是,其外形有显著的各向异性、柔软、可加工成各种织物,沿纤维轴方向表现出很高的强度。碳纤维比重小,因此有很高的比强度。 1880年美国爱迪生首先将竹子纤维碳化丝,作为电灯泡内之发光灯丝,开启了碳纤维(Carbon Fiber,简称CF)之纪元。碳纤维用在结构材料,首先问世者,则以美国Union Carbide公司(U.C.C.)为代表,并于1959年将嫘萦纤维为原料,经过数千百度之高温碳化后,得到弹性率约40GPa,强度约为0.7GPa之碳纤维;尔后,1965年该公司又用相同原料于3000℃高温下延伸,开发出丝状高弹性率石墨化纤维,弹性率约500GPa,强度约为2.8GPa。 另外,于日本大阪工业技术试验所之进藤博士,则以Polyacrylonitrile(简称PAN)聚丙烯腈为原料,经过氧化与数千度之碳化工程后,得到弹性率为160GPa,强度为0.7GPa之碳纤维。1962年日本碳化公司(Nippon Carbon Co.)则用PAN为原料,制得低弹性系数(L.M.)之碳纤维。东丽公司亦以PAN纤维为原料,开发了高强度之CF,弹性率约为230GPa,强度约为2.8GPa,并于1966年起有每月量产1吨之规模;同时亦开发了碳化温度2000℃以上之高弹性率CF,弹性率约400GPa,强度约为2.0GPa。于1965年,群马大学大谷教授,利用加热氯乙烯(Vinyl Chloride)得到之沥青(Pitch),经过熔融纺丝、不融化与碳化工程处理后,得到普通级碳纤维;大谷教授亦可利用木质素(Lignin)为原料制作碳纤维。 碳纤维之需求量虽逐渐扩大,但1991年以后冷战结束后,军事用途之使用量萎缩,复因泡沫经济与景气萧条,供需失去平衡,产业受到冲击。然而,美国波音公司新锐机型B777之生产,加上土木、建筑、汽车与复合材料之扩大应用,碳纤维产业逐渐缓步成长中。 2.碳纤维之种类 经高温处理后,其含碳量超过90%以上之纤维材料,称之为碳纤维。碳纤维之种类分类有许多方法,可依原料、特性、处理温度与形状来分类。若依原料可分为纤维素纤维系之嫘萦(Rayon)系与木质(Lignin)系;聚丙烯腈(Polyacrylonitrile)系;沥青(Pitch)系; 酚树脂系与 气相碳纤系等六种。若依特性则分为普通碳纤维;高强度高模数碳纤维与活性碳纤维等三种。普通碳纤维之强力在120㎏/㎜2以下,杨氏模数(Young掇Modulus)在10000㎏/㎜2以下者称之;高强度高模数者,则强力在150㎏/㎜2以上,模数在17000㎏/㎜2以上时称之。 若依加工处理温度分类时,则可分为耐炎质;碳素质与石墨质等三种。耐炎质碳纤之处理加热温度为200~350℃,可供作电气绝缘体;碳素质碳纤之处理加热温度为500~1500℃,可供电气传导性材料用;石墨质碳纤之处理加热温度在2000℃以上,除耐热性与电气传导性提高外,亦具自我润滑性。 若按碳纤维制品之形状分类时,可分为棉状短纤维;长丝状连续纤维;纤维束(Tow); 织物; 毡毯与 编制长形物等。 3.碳纤维之研制 3.1 嫘萦系碳纤维 嫘萦纤维素纤维加热处理时不会熔融,若在无氧状态下的不活性气体(Inert Gas)中加热处理,则极易取得碳纤维。3.2 聚丙烯腈系碳纤维 聚丙烯腈(PAN)系碳纤维之制造工程大致可分为聚丙烯腈纤维之制备;安定化工程(耐炎化);碳化工程; 表面处理与上浆工程; 石墨化工程等五个程序。 3.3 沥青系碳纤维 原油经900℃以上之高温提炼后的残渣中,约含有95wt%之碳质,若以电解法去除其中之硫酸,再经水洗后可得纯度极佳之沥青(Pitch)。 3.4 气相成长碳纤维

碳纤维施工工艺介绍

碳纤维加固混凝土结构施工工艺 碳纤维复合材料具有抗拉强度高、密度小、耐腐蚀性和耐久性好等优点,碳纤维片加固补强混凝土结构的应用研究始于 20 世纪 80 年代美国、日本等发达国家,进入 20 世纪 90 年代中后期我国的许多科研机构和企业也相继进行了这方面的试验研究。 目前,在我国的北京、上海、天津、江苏、福建等许多地区的桥梁和工民建工程中得到了广泛的应用。其中有些是由于意外事故而导致结构或构件的承载能力而需补强加 固的;有些是由于混凝土强度或配筋不足而需补强加固的;有些是由于结构或构件达到或接近使用年限而需加固的;还有部分建筑是未进行抗震设防的,满足不了《建筑抗震鉴定标准》 GB50023-95 要求,需进行抗震加固。中国革命历史博物馆(以下简称“革历博”)就是属于后两种情况,进行综合比较后选择了碳纤维粘贴抗震加固的方式。下面结合“革历博”具体工程实例谈一谈碳纤维加固混凝土结构的 施工工艺。 ?碳纤维片加固简介 ( 1 )特点 ①高抗拉强度、高弹性模量。 ②施工方便,无需任何夹具、模板,能适应各种结构外形的补强而不改变构件外形尺寸,可多层粘贴,并能有效地封闭混凝土的裂缝;

③耐腐蚀及耐久性能好。 ④不增加结构自重。 ( 2 )适用范围。适用于各种形式的钢筋混凝土结构或构 件的加固补强。 ( 3 )加固机理。利用专用环氧树脂将抗拉强度极高的碳 纤维片粘贴于混凝土结构表面,并与之形成整体,共同工作。 ?施工工艺 在碳纤维加固施工前,应尽可能地卸去部分荷载,使碳纤维粘贴施工时结构或构件承受的荷载作用减小到最小程度。其加固施 3.1 混凝土基底处理 ( 1 )裂缝处理。宽度小于 0.2mm 的裂缝,用环氧树脂进 行表面涂抹封闭;大于 0.2mm 的裂缝用环氧树脂灌缝。“革 历博”抗震加固的大梁大部分都有宽度不一的裂缝,最大裂 缝达到 1mm 以上,为此我们对所加固的主梁首先进行了压 力灌胶处理。 ( 2 )将混凝土构件表面的残缺、破损部分清除干净,达 到结构密实部位,使其表面平整。

碳纤维材料介绍

碳纤维材料介绍 碳纤维是一种含碳量在95%以上的高强度、高模量纤维的新型纤维材料。由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处理而得到的微晶石墨材料。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维复合材料抗拉强度一般都在3500Mpa 以上,是钢的7-9倍,抗拉弹性模量为 23000-43000Mpa,也高于钢。 碳纤维复合材料可用作汽车车身、底盘、传动轴、轮毂、板簧、构架和刹车片等制件。目前钢铁材料约占车体重量的3/4,如果汽车的钢材部件全部由碳纤维复合材料置换,车体重量可减轻300kg,燃油效率提高36%,二氧化碳排放量可削减17%。 一、碳纤维的优点 1、比强度高,是最佳的轻质高强车体材料。 2、轴向强度、模量高,无蠕变,制作传动轴。 3、正面碰撞时成无数细小碎片,吸收大量的撞击能(是钢结构4倍)安全性高。 4、兼备纺织纤维的柔软,可加工性强。 5、有机溶剂、酸、碱中不溶不胀,耐蚀性好,寿命长,维修费用低。 6、冷热膨胀系数小,极端气候条件下尺寸稳定性高。

7、活性碳纤维超级电容器可提高能量密度,又可降低成本适用于电动车制动。 8、复合材料容易成型,制得满足空气动力学原理及美观需求的外形曲面。 9、表皮光滑美观,制造车身,可以省去高成本、繁琐的涂装工艺。 10、将不同零件一体成型,便于汽车结构的模块化、整体化制造。 碳纤维在汽车的应用实现了轻量化和刚性需求,达到节能减排、降低油耗的目的,碳纤维材料可以作为未来汽车的主流材料。 二、碳纤维的弊端 1、工艺复杂,主要采用热压罐,真空导入等传统工艺,这种工艺生产效率低、生产周期长、产品造价高,无法满足汽车大批量规模化生产要求。 2、成本相对高昂,碳纤维材料的价格是金属材料的数倍,制约了其在汽车领域的应用与发展。 3、设计人才缺乏,且由于该技术之前较少在国内应用,所以从事过碳纤维量产部件设计的人才非常稀缺。 总之,无论从性能还是环保角度出发,汽车轻量化都已成为一种必然趋势,而采用碳纤维材料是汽车轻量化的必由之路。中国正在大力推进新能源汽车的发展,所以碳纤维材料在新能源汽车领域中的应用前景非常广阔。

碳纤维纸生产工艺

碳纤维纸是使用碳纤维或活性碳纤维及碳纤维或活性碳纤维与其他植物或非植物纤维混合生产的具有特殊性能的功能纸。碳纤维纸中碳纤维是以短纤维无规则的形式存在,各向同性,是利用长纤维复合成形材料无法比拟的。 电热性能 导电性能 多孔性 轻量化、耐高温、耐腐蚀等性能。还可以作为电池电极使用。 用于燃料电池电极的碳纤维纸要具有以下性能:(1)均匀的多孔结构,优异的透气性(2)低的电阻率,赋予其高的电子传导能力(3)结构紧密且表面平整,以减少接触电阻,提高导电性能(4)具有一定的机械强度(5)具有化学稳定性。 碳纤维纸生产的基本工序为:碳纤维纸由一种有机的高分子化合物与碳纤维复合而成,燃料电池的多孔碳电极基体通过浸润热塑性树脂先热压再碳化。其中碳纤维的含量为碳纤维纸的40~90%,炭化温度不低于800℃ 碳纤维纸生产工艺 碳纤维不同于植物纤维,它的表面仅含有少量的基团,在打浆过程中只能产生切断作用,不能产生分丝帚化现象,在纸页成型后纤维间也不会产生氢键。在碳纤维的成纸过程中面临一些不同于植物纤维的难题需要解决,主要集中在分散和成纸强度两个方面。 普通碳纤维纸的抄造 普通的碳纤维纸一般采用湿法抄造,碳纤维的含量在5%~60%,在碳纤维的湿法成形中主要的问题是分散和成形。在实际的碳纤维纸成形实验中发现,碳纤维如果过长,不易分散,容易成团。反之若碳纤维过短,容易分散成均匀的浆液,成形匀度好,但纸页强度低。 在湿法抄造碳纤维工艺中,主要是依靠配抄的植物纤维或者利用胶黏剂使分散的碳纤维实现粘结。普通碳纤维纸已经工业规模生产,并得到实际应用。 高性能碳纤维纸的成形 高性能碳纤维纸一般对碳纤维纸的纯度、均匀性、电阻率、气孔率等提出要求。高纯度的碳纤维纸生产中,因为其他浆料含量少,碳纤维的分散和成形问题更为突出,生产工艺更加复杂。目前高性能的碳纤维纸只有少数几个国家能够批量成熟制造。 一是利用湿法成形,碳纤维要在低浓度条件下实现均匀分散,因此,碳纤维纸要采用低浓成形,浆料浓度要在0.01%左右,滤水速度是现在普通长网和圆网造纸机不能实现的,必须使用斜网纸机。粘结方式主要靠化学胶黏剂进行连结。 斜网纸机上网浓度低,可抄造的纤维长度较长,一般为8~10mm,最长可达30mm,纸机的脱水性能较好,抄纸的匀度好,网部的倾斜角度可在0~30°的范围内调节,抄纸最大定量可达300g`m-2,与长网和圆网纸机相比,斜网纸机存在着明显的优势。 斜网成型器的上网浓度为0.01~0.08%,由于上网浓度很低,所以斜网成形在成形的脱水量很大,并且脱水与成形是同步进行的,纤维是在悬浮状态成形,且成形时间比长网、圆网长,能保证纸页得匀度及透气度。

碳纤维材料的发展及应用

Material Sciences 材料科学, 2018, 8(10), 965-967 Published Online October 2018 in Hans. https://www.wendangku.net/doc/961542967.html,/journal/ms https://https://www.wendangku.net/doc/961542967.html,/10.12677/ms.2018.810113 Development and Application of Carbon Fiber Materials Jianzhong Shi1, Fengjun He2, Jie Zhang1, Donghong Wang1, Jing Yang1 1No. 33 Institute of China Electronics Technology Group Corporation, Taiyuan Shanxi 232152 PLA Troops, Shijiazhuang Hebei Received: Sep. 2nd, 2018; accepted: Oct. 1st, 2018; published: Oct. 8th, 2018 Abstract Carbon fiber material is a new type of material rising in recent years. Because of its excellent physical properties, it is widely used in military, aerospace, aviation and other fields. With the continuous innovation of carbon fiber technology, carbon fiber costs continue to reduce, and car-bon fiber materials are gradually used in people’s daily life. In this paper, the characteristics of carbon fiber materials are introduced, around the development of carbon fiber applications and technology, to illustrate the representative application of carbon fiber materials excellent per-formance and wide use. Keywords Carbon Fiber, Composite Material, CFRP 碳纤维材料的发展及应用 史建中1,何凤军2,张捷1,王东红1,杨静1 1中国电子科技集团公司第三十三研究所,山西太原 2中国人民解放军32152部队,河北石家庄 收稿日期:2018年9月2日;录用日期:2018年10月1日;发布日期:2018年10月8日 摘要 碳纤维材料是近些年来兴起的新型材料,由于其优异的物理特性被广泛用于军事、航天、航空等领域。 随着碳纤维技术的不断创新,碳纤维成本的不断降低,碳纤维材料逐渐应用于人们日常生活中。本文通

相关文档
相关文档 最新文档