文档库 最新最全的文档下载
当前位置:文档库 › 离散数学 集合论期末复习题

离散数学 集合论期末复习题

离散数学  集合论期末复习题
离散数学  集合论期末复习题

集合论期末复习题

1. 求(())P P φ 答:(()){,{}}P P φφφ=

2. 设|

|A n =,求|()|P A 答:|()|2

n

P A =

3. {,{}}________

φφφ-=,{,{}}{}________

φφφ-=

答:{,{}}φφ,{{}}φ

4. 证明:()()()

A B C A B A C ?⊕=?⊕?

证明:

()

[()()]

(~)(~)(~)(~)

(~)(~)(~)(~)[()(~~)][()(~~)][()~()][()~()][()()][()()]()()

A B C A B C C B A B C C B A B C A C B A B A A B C A C B A C A A B A C A C B A A B A C A C A B A B A C A C A B A B A C ?⊕=?-?-=????=?????=???????????=???????=???????=?-???-?=?⊕?

5. 200人中,有67人学数学,47人学物理,95人学生物,26人学数学和生物,28人学数学和物理,27人学生物和物理,50人三门都不学,问:三门都学的人数和单学一门的人数?

解:设三门都学的人数和单学数学、物理、生物的人数分别为x ,y1,y2,y3,则如下图:

(26)(28)167(27)(28)247(26)(27)395

(26)(27)(28)12350200x x x y x x x y x x x y x x x x y y y +-+-+=??

+-+-+=??

+-+-+=??-+-+-+++++=?

求解得到:1132228135

342214123269364y x x y x y y x y y y y x y -==????-=-=?????

-==????++-==??

6. 集合S={0,1,2,3,4,5,6},R 为S 上的关系。R={|x

(1)写出R ,domR ,ranR ,fldR ;(2)写出关系矩阵M R 解:(1

{0,1,0,2,0,3,0,4,0,5,0,6,1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,

4,5,4,6,5,6,2,0,2,1,2,2,3,0,3,1,3,2,3,3,5,0,5,1,5,2,5,3,5,4R =<><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><><>,5,5}

<>

{0,1,2,3,4,5}dom R =,{0,1,2,3,4,5,6}ranR =,{0,1,2,3,4,5,6}fldR =

(2)

0111111111111111110000111111110

0R

M

????????=??????????

7. 设R 为自反关系,求证:R 对称和传递当且仅当若,,,a b a c R

<

><>∈,则

,b c R

<>∈

证明:

""?由于

R 对称,若,,,a b a c R

<

><>∈,则,,,b a

a c R

<><>∈,又由于R 传递,

则,b c

R

<>∈,得证。

""?根据已知,设由,,,a b a a R <><>∈,则,b a R

<

>∈,可知R 对称。

又设,,,a b b c R

<

><>∈,根据对称性,有,,,b a

b c R

<><>∈,再根据已知,得到

,b c R

<>∈,传递性得证。

8. 设12,R R 为非空集合A 上的关系,且12R R ?,验证12()()t R t R ?

证明:任给

1,()

x y t R ∈,由于2

1111

()n

t R R R R =

??? ,则存在s n

,使得

1

,s

x y R ∈,

1,s

x y R ∈?12111211,,,,,,,,,,,s s t t t x t t t t y R --?∈ 使得,又因为

12R R ?,则11212,,,,,,,s x t t t t y R -∈ ,而由于2

22222()

s

n

R R R R t R ????= ,

222222,()

s n

x y R R R R t R ∈????= ,即

2,()

x y t R ∈,得证。

9. 设集合S={1,2,3,4,5},划分d={{1,2},{3},{4,5}},求相应的等价关系R 。

解:

{1,2}{1,2}{3}{3}{4,5}{4,5}

{1,1,1,2,2,1,2,2,3,3,4,4,4,5,5,4,5,5}

R =?????=

10. 已知偏序关系的哈斯图如右图,写出最大元、最小元、极大元、极小元。

解:最大元为x1,最小元不存在;极大元为x1,极小元为x4,x5。

离散数学期末试题

离散数学考试试题(A 卷及答案) 一、(10分)求(P ↓Q )→(P ∧?(Q ∨?R ))的主析取范式 解:(P ↓Q )→(P ∧?(Q ∨?R ))??(?( P ∨Q ))∨(P ∧?Q ∧R )) ?(P ∨Q )∨(P ∧?Q ∧R )) ?(P ∨Q ∨P )∧(P ∨Q ∨?Q )∧(P ∨Q ∨R ) ?(P ∨Q )∧(P ∨Q ∨R ) ?(P ∨Q ∨(R ∧?R ))∧(P ∨Q ∨R ) ?(P ∨Q ∨R )∧(P ∨Q ∨?R )∧(P ∨Q ∨R ) ?0M ∧1M ?2m ∨3m ∨4m ∨5m ∨6m ∨7m 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。则根据题意应有: 甲:?P ∧Q 乙:?Q ∧P 丙:?Q ∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P ,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为: ((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?' R 。则sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。

离散数学期末试题及答案

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ). 5. 设G 是(7, 15)简单平面图,则G 一定是( )图,且其每个面恰由( )条边围成,G 的面数为( ).

离散数学集合论部分常考××题

离散数学常考题型梳理 第2章关系与函数 一、题型分析 本章主要介绍关系的概念及运算、关系的性质与闭包运算、等价关系、相容关系和偏序关系三个重要关系、函数以及函数相关知识等内容。常涉及到的题型主要包括: 2-1关系的概念理解以及关系的并、交、补、差以及复合和逆关系等运算2-2关系自反和反自反、对称和反对称等性质的概念理解与判定;自反、对称和传递闭包运算。 2-3等价关系 2-4偏序关系和哈斯图 2-5 函数的概念和性质 因此,在本章学习过程中希望大家要清楚地知道: 1.有序对和笛卡尔积 (1)有序对:所谓有序对就是指一个有顺序的数组,如< x , y >,x , y的位置是确定的,且< a , b >< b , a >。 (2)笛卡尔积:把集合A,B合成集合A×B,规定: {,|} ?=<>∈∈ 且 A B x y x A y B 由于有序对< x , y >中x,y 的位置是确定的,因此A×B 的记法也是确定的,不能写成B×A 。 笛卡儿积的运算一般不满足交换律。 2.二元关系的概念和表示、几种特殊的关系和关系的运算 (1)二元关系的概念:二元关系是一个有序对集合,设集合A,B ,从集合A 到B的二元关系 R∈ x ∈ < y =且 > } , x {B | y A 记作xRy。 二元关系的定义域:A Ram? R ) (。 ) R Dom? (;二元关系的值域:B 二元关系R 是一个有序对组成的集合.因此,一个二元关系是一个集合,可以用集合形式表示;反过来说,一个集合未必是一个二元关系,仅当集合是由有序对元素组成的,才能当做二元关系。 常用关系的表示法包括了集合表示法、列举法、描述法、关系矩阵法和关系图法。关系矩阵和关系图是有限集合上的二元关系的表示方法。

离散数学复习题及答案

离散数学复习题及答案文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: 5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, t q 答案: ①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →((r ∧s)→q), p, s q 7. 请将下列命题符号化: 所有鱼都生活在水中。 ) ()(R P Q P ∨∧∧?

答案: 令F( x ):x是鱼 W( x ):x生活在水中 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y,都有x+y≥x。 答案: 令P(x):x是正实数 S(x,y): x+y≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: 令P(x):x是人 Q(y): y是课外活动 S(x,y):x参加y 12. 请将下列命题符号化: 某些人对某些药物过敏。 答案:

令P(x):x是人 Q(y): y是药 S(x,y):x对y过敏13. 求) ( )) ( ) ( (y yR y Q x P y? → → ?的对偶式: 答案: 14. 求下列谓词公式的前束范式: 答案: 15. 证明: 答案: 16. 用反证法证明: x(P(x)∧Q(x)) , xP(x) xQ(x) 答案: 17. 证明: 前提: x(C(x)W(x)∧R(x)), x(C(x)∧Q(x)). 结论: x(Q(x)∧R(x)). 答案: (1) x(C(x)∧Q(x)) 前提引入 (2) C(a)∧Q(a) (1)ES (3) C(a) (2)化简规则 (4) x(C(x)W(x)∧R(x)) 前提引入 (5) C(a)W(a)∧R(a) (4)US (6) W(a)∧R(a) (3)(5)假言推理 (7) R(a) (6)化简规则 (8) Q(a) (2)化简规则 ) , , ( )) , ( ) , ( (u y x uQ z y P z x zP y x? → ∧ ? ? ?

离散数学测试(集合论)

《离散数学》单元测试(集合论) 3.1集合的基本概念 1.设A、B、C是集合,确定下列命题是否正确,说明理由。 (1)Ф?Ф (2)Ф∈Ф (3)Ф?{Ф} (4)Ф∈{Ф} (5)如果A∈B与B?C,则A?C (6)如果A∈B与B?C,则A∈C (7)如果A?B与B∈C,则A∈C (8)如果A?B与B∈C,则A?C 2.有n个元素的集合A的幂集ρ(A)的元素个数为多少?求下列集合的幂集合。 (1)Ф (2){Ф} (3){Ф,{Ф}} (4){a,b} (5){a,b,{a,b}} (6){1,{1},2,{2}} 3.2 集合的运算 1.设A,B是两个集合,A={1,2,3},B={2,3,4},则B-A= ,ρ(B)- ρ(A)= 。 2.全集E={a,b,c,d,e},A={a,d},B={a,b,e},C={b,d},求 ,ρ(A)∩ρ(B) A B C= () = 。 3.下列命题正确的是()。 A.φ∩{φ}=φB.φ∪{φ}=φC.{a}∈{a,b,c} D.φ∈{a,b,c} 4.确定下列各式的值: Ф∩{Ф}= {Ф,{Ф}}-Ф= {Ф,{Ф}}-{Ф}= 6.证明下列各等式: A∩(B-A)=Ф A∪(A∩B)=A 3.3 有穷集合的计数问题 掌握文氏图和容斥原理求解有穷集合的计数问题的方法,并会简单应用。以教材的示例为基础。

第4章 二元关系 4.1二元关系的定义、表示方法与特性 1. A 和B 是任意两个集合,若序偶的第一个元素是A 的一个元素,第二个元素是B 的一个 元素,则所有这样的序偶集合称为集合A 和B 的 , 记作A ?B ,即A ?B= 。A ?B 的子集R 称为A 到B 的一个 。若|A|=m , B|=n ,则A 到B 共有 个不同的二元关系。 2. 设集合A ={a,b},B ={x,y},求笛卡尔乘积A ×B,B ×A,,A ×ρ(B)。 3. 证明: (1) (A ∩B)×C=(A ×C)∩(B ×C) (2) (A ∪B)×C=(A ×C)∪(B ×C) 4. 设A={a,b},B={x,y},则从A 到B 的二元关系共有多少个?请分别列出。 5. 设集合A={a,b,c,d},B={1,2,3},R 是A 到B 的二元关系,R={,,,,,},写出R 的关系矩阵和关系图。 6. 设集合 A={1,2,3},A 上的关系R={<1,1>, <1,2>, <2,2>, <3,3>, <3,2>},则R 不具备( )。 A 自反性 B. 反自反性 C. 对称性 D. 反对称性 E. 传递性 7. 设集合A={a,b,c},R 是A 上的二元关系,R={〈a,a 〉,〈a,b 〉,〈a,c 〉,〈c,a 〉},那么R 具备( )。 A 自反性 B. 反自反性 C. 对称性 D. 反对称性 E. 传递性 4.2 关系的运算(合成、逆运算、闭包运算) 1. 集合A={a 1,a 2,a 3},B={b 1,b 2,b 3,b 4},C={c 1,c 2,c 3,c 4}; R 是A 到B 的二元关系,R={,,,,}; S 是B 到C 的二元关系,S={,,,,}。 求复合关系R оS 。 2. 设集合{1,2,,10}A = ,A 上的二元关系R={|x,y ∈A,x+3y=12},试求R n 。 3. 设R ,S 是二元关系,证明:111)(---=R S S R 。 4. 集合},,,{d c b a R =,R 是集合A 上的关系,{,,,,,}R a b b a b c =<><><>,求 )(),(),(R t R s R r ,并分别画出它们的关系图。 4.3 等价关系及划分 1. R 是集合A 上的二元关系,如果关系R 同时具有 性、 性 和 性,则称R 是等价关系。 2. R 是集合A={a ,b ,c ,d ,e ,f }是上的二元关系, R={〈a ,d 〉,〈d ,a 〉,〈a ,e 〉,〈e ,a 〉, }∪I A

离散数学复习题(全)

离散数学复习资料 一、填空 1. 命题“对于任意给定的正实数,都存在比它大的实数”令F(x):x 为实数,y x y x L >:),(则命题的逻辑谓词公式为 。 2. 设p :王大力是100米冠军,q :王大力是500米冠军,在命题逻辑中,命题“王大力不 但是100米冠军,而且是500米冠军”的符号化形式为 。命题“存在一个人不但是100米冠军,而且是500米冠军”的符号化形式为____。 3. 选择合适的论域和谓词表达集合A=“直角坐标系中,单位元(不包括单位圆周)的点集” 则A= 。 4. 设 P (x ):x 是素数, E(x):x 是偶数,O(x):x 是奇数 N (x,y):x 可以整数y 。则谓词 (()(()(,)))x P x y O y N y x ?→?∧ 的自然语言是 对于任意一个素数都存在一个奇数使 该素数都能被整除 。 5. 设个体域是{a,b},谓词公式()()()()x P x x P x ??∨?写成不含量词的形式是 。 6. 谓词(((,)(,))(,,))x y z P x z P y z uQ x y u ???∧→?的前束范式为 。 7. 命题公式)))(((R Q Q P P A →?∧→?∨?的主合取范式为 ,其编码表示为 。 8. 设E 为全集, ,称为A 的绝对补,记作~A ,且~(~A )= ,~E = , ~Φ= 。 9. 设={256},{234},{134}A B C ==,,,,,,,则A-B= ,A ⊕B = ,A ×C = 。 10. 设},,{c b a A =考虑下列子集}},{},,{{1c b b a S =,}},{},,{},{{2c a b a a S =, }},{},{{3c b a S =,}},,{{4c b a S =,}}{},{},{{5c b a S =,}},{},{{6c a a S = 则A 的覆盖有 ,A 的划分有 。 11. 设}2,121{Z x x x x M ∈≤≤=整除,被,}3,121{Z x x x x N ∈≤≤=整除,被,则 =?N M ,=-N M 。 12. 设A={<1,2>,<2 , 4 >,<3 , 3 >} , B={<1,3>,<2,4>,<4,2>},则B A ?= ,B A ο= 。 13. A={1,2,3,4,5,6},A 上二元关系}|,{是素数y x y x T ÷><=,则用列举法 T= ; T 的关系图为 ,T 具有 性质。

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学集合论部分测试题

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R 的性质为(). A.自反的B.对称的 C.传递且对称的D.反自反且传递的 8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={?a , b∈A , 且a +b = 8},则R具有的性质为(). A.自反的B.对称的 C.对称和传递的D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学复习题

一、选择题: 1.下列句子是命题的是( )。 A. 你喜欢我吗? B. 这里的景色真美啊! C. 2x = 9。 D. 明年国庆节是晴天。 2.设P:我们划船,Q:我们跑步。命题“我们不能既划船又跑步”符号化为( )。 ∧) A. ?P∧?Q B. ?(P Q C. ?(P?Q) D. ?(?P∨?Q) 3.下列语句不是 ..命题的是( )。 A.黄金是非金属。 B.要是他不上场,我们就不会输。 C.他跑100米只用了10秒钟,你说他是不是运动健将呢? D.他跑100米只用了10秒钟,他是一个真正的运动健将。 4.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )。 A.P∨Q B.P∧?Q C.P→?Q D.P∨?Q 5.下列句子不是 ..命题的是( )。 A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 6.在命题演算中,语句为真为假的一种性质称为( )。 A. 真值 B. 陈述句 C. 命题 D. 谓词 7.命题公式?(P∧Q)→R的成真指派是( )。 A. 000,001,110 B. 001,011,101,110,111 C. 全体指派 D. 无 8.下列命题中,不正确的是( )。 ∈?,{{?}}} A.{?}{ ∈?,{?}} B.{?}{ C.{?}?{?,{?}} D. ??{?,{?}} 9.命题公式P∧(Q∨? R)的成真指派是( )。 A.110,111,100 B.110,101,011 C.所有指派 D.无 ∨?( )。 10.设P,Q,R是命题公式,则P→R,Q→R,P Q A. P B. Q C. R D. ?R 11.下列是两个命题变元p,q的小项是( ) ∨C.?p q ∨∨ ∧D.?p p q A.p∧?p q ∧B.?p q 12.关于命题变元P和Q的大项M01表示( )。 ∨ C.P∨?Q D.P∧?Q ∧ B.?P Q A.?P Q 13.设P:明天天晴;q:我去爬山;那么“除非明天天晴,否则我不去爬山。”可符号化为( ) ?p→?q C. ?p??q D. ?p→q A. p→?q B. 14.下列命题公式是永真式的是( ) (p→q)∨q D. (p∨p)∧(p→?p) ?(p→q)∧q C. A. (p∧?p)?q B.

离散数学期末试卷A卷及答案

《离散数学》试卷(A 卷) 一、 选择题(共5 小题,每题 3 分,共15 分) 1、设A={1,2,3},B={2,3,4,5},C={2,3},则C B A ⊕?)(为(C )。 A 、{1,2} B 、{2,3} C 、{1,4,5} D 、{1,2,3} 2、下列语句中哪个是真命题 ( A ) A 、如果1+2=3,则4+5=9; B 、1+2=3当且仅当4+5≠9。 C 、如果1+2=3,则4+5≠9; D 、1+2=3仅当4+5≠9。 3、个体域为整数集合时,下列公式( C )不是命题。 A 、)*(y y x y x =?? B 、)4*(=??y x y x C 、)*(x y x x =? D 、)2*(=??y x y x 4、全域关系A E 不具有下列哪个性质( B )。 A 、自反性 B 、反自反性 C 、对称性 D 、传递性 5、函数612)(,:+-=→x x f R R f 是( D )。 A 、单射函数 B 、满射函数 C 、既不单射也不满射 D 、双射函数 二、填充题(共 5 小题,每题 3 分,共15 分) 1、设|A|=4,|P(B)|=32,|P(A ?B)|=128,则|A ?B|=??2???.

2、公式)(Q P Q ?∨∧的主合取范式为 。 3、对于公式))()((x Q x P x ∨?,其中)(x P :x=1, )(x Q :x=2,当论域为{0,1,2}时,其真值为???1???。 4、设A ={1,2,3,4},则A 上共有???15????个等价关系。 5、设A ={a ,b ,c },B={1,2},则|B A |= 8 。 三、判断题(对的填T ,错的填F ,共 10 小题,每题 1 分,共计10 分) 1、“这个语句是真的”是真命题。 ( F ) 2、“张刚和小强是同桌。”是复合命题。 ( F ) 3、))(()(r q q p p ∧?∧→?∨是矛盾式。 ( T ) 4、)(T S R T R S R ??????。 ( F ) 5、恒等关系具有自反性,对称性,反对称性,传递性。 ( T ) 6、若f 、g 分别是单射,则g f ?是单射。 ( T ) 7、若g f ?是满射,则g 是满射。 ( F ) 8、若A B ?,则)()(A P B P ?。 ( T ) 9、若R 具有自反性,则1-R 也具有自反性。 ( T ) 10、B A ∈并且B A ?不可以同时成立。 (F ) 四、计算题(共 3 小题,每题 10 分,共30 分) 1、调查260个大学生,获得如下数据:64人选修数学课程,94人选修计算机课程,58人选修商贸课程,28人同时选修数学课程和商贸课程,26人同时选修数学课程和计算机课程,22人同时选修计算机课程和商贸课程,14人同时选修三门课程。问 (1)三门课程都不选的学生有多少? (2)只选修计算机课程的学生有多少?

离散数学期末测验试题(有几套带答案1)

离散数学期末测验试题(有几套带答案1)

————————————————————————————————作者: ————————————————————————————————日期: ?

离散数学试题(A卷及答案) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明:左端?(?P∧?Q∧R)∨((Q∨P)∧R)?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R)?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R?T∧R(置换)?R 2)?x(A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x))??x?A(x)∨?xB(x)???xA(x)∨?xB(x)??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分) 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E, ?E→(A∧?B), (A∧?B)→(R ∨S)?R∨S 证明:(1) (C∨D)→?E (2) ?E→(A∧?B) ?? (3)(C∨D)→(A∧?B) (4) (A∧?B)→(R∨S) ?? (5) (C∨D)→(R∨S) ? (6) C∨D?? (7) R∨S 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) (2)P(a) (3)?x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)?x(P(x)∧R(x)) (11)Q(y)∧?x(P(x)∧R(x)) 五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C) (15分) 证明∵x∈A-(B∪C)?x∈A∧x?(B∪C)?x∈A∧(x?B∧x?C)?(x∈A∧x?B)∧(x∈A∧x?C)?x∈(A-B)∧x∈(A-C)?x∈(A-B)∩(A-C)∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={<x,y>| x,y∈N∧y=x2},S={| x,y∈N∧y=x2},R*S={|x,y∈N∧y=x2+1},S*R={| x,y∈N∧y=(x+1)2}, 七、若f:A→B和g:B→C是双射,则(gf)-1=f-1g-1(10分)。 证明:因为f、g是双射,所以gf:A→C是双射,所以gf有逆函数(gf)-1:C→A。同理可推f-1g-1:C→A是双射。 因为∈f-1g-1?存在z(∈g-1∧∈f∧<z,x>∈g)?∈gf?<x,y>∈(gf)-1,所以(gf)-1=f-1g-1。 R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。

离散数学集合论部分测试题

离散数学集合论部分综合练习 本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次是集合论部分的综合练习。 一、单项选择题 1.若集合A={a,b},B={ a,b,{ a,b }},则(). A.A?B,且A∈B B.A∈B,但A?B C.A?B,但A?B D.A?B,且A?B 2.若集合A={2,a,{ a },4},则下列表述正确的是( ). A.{a,{ a }}∈A B.{ a }?A C.{2}∈A D.?∈A 3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ). A.{a,{a}}∈A B.{2}?A C.{a}?A D.?∈A 4.若集合A={a,b,{1,2 }},B={1,2},则(). A.B? A,且B∈A B.B∈ A,但B?A C.B ? A,但B?A D.B? A,且B?A 5.设集合A = {1, a },则P(A) = ( ). A.{{1}, {a}} B.{?,{1}, {a}} C.{?,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }} 6.若集合A的元素个数为10,则其幂集的元素个数为(). A.1024 B.10 C.100 D.1 7.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={|x+y=10且x, y∈A},则R的性质为(). A.自反的 B.对称的 C.传递且对称的 D.反自反且传递的 8.设集合A= {1,2,3,4,5,6 }上的二元关系R ={?a, b∈A, 且a +b = 8},则R具有的性质为(). A.自反的 B.对称的 C.对称和传递的 D.反自反和传递的 9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个. A.0 B.2 C.1 D.3 10.设集合A={1 , 2 , 3 , 4}上的二元关系 R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},

离散数学复习题

1.若P :他聪明;Q :他用功;则“他虽聪明,但不用功”可符号化为( ) A. Q P ∨ B. Q P ~∨ C. Q P ~∧ D. Q P ~→ 2.P 、Q 为命题变元,则Q P →的对偶式为( ) A . Q P → B . P Q → C . Q P ~∧ D . P Q ~∧ 3.谓词公式),(y x yP x ??的否定式为( ) A .),(y x P y x ~?? B .),(y x P y x ~?? C .),(y x P y x ~?? D .),(y x P y x ~?? 4.A = {1, 2, 3},R = {| y x A y x =∧∈,}为A 上的一个二元关系,则下列命题中( )为真。 A . R 不是自反的 B . R 不是对称的 C . R 不是传递的 D . R 不是反自反的 5.若A 为集合,则I A 是A 上的( )。 A . 全序关系 B . 偏序关系 C . 半序关系 D . 拟序关系 6.A = {1, 2, 3},在下列A 上的二元关系中,( )不是可传递的。 A . {<1, 2>} B .{<1, 2>, <2, 1>, <1, 1>} C .A A ? D . I A 7.二部图K 2, 3是( ) A. 欧拉图 B. 哈密顿图 C. 非平面图 D. 平面图 8.5阶无向完全图的边数为( ) A. 5 B. 10 C. 15 D. 20 9.下列命题中不正确的是( )。 A. ?∈? B. ??? C. {}?∈? D. {}??? 10.在A = {a , b , c }上可以定义( )个不同的二元关系。 A . 9 B. 18 C . 81 D . 512 12.设G 是简单连通平面图,G 有11个顶点,5个面,则G 有( )条边。 A . 10 B. 12 C . 14 D . 16 13.一个连通无向图,如果它的所有顶点的度数是偶数,则它具有( )。 A. 哈密顿回路 B. 欧拉回路 C. 基本路径 D. 基本回路 14.设A = {a , b , c },A 上的二元关系R ={, , },则关系R 的对称闭包为( ) A. A I R B. R C. {}>

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

最新离散数学期末考试试题配答案

精品文档院术师范学广东技模拟试题 科目:离散数学 120 分钟考试时间: 考试形式:闭卷 姓名:学号:系别、班级: 2分,共10分)一.填空题(每小题__________。?x?y?P(x)∨Q(y) 1. 谓词公式的前束范式是 __)xxQ(?xP(x)????????____,,2. 设全集A?_{4,5}B =__则A∩ {2}__,,?E?1,2,3,4,55,A?21,,32,B_____ __ {1,3,4,5}??BA????b,c}} __________,则3. 设__ , b?,c,b,a,A?Ba???B(A)?)(_____Φ_______。???)(AB()?4. 在代数系统(N,+)中,其单位元是0,仅有_1___ 有逆元。 ne条边,则G有___e+2-n____个面。5.如果连通平面图G有个顶点,二.选择题(每小题2分,共10分) P?(Q?R)等价的公式是(1. 与命题公式) (A)(B)(C)(D)R?P?Q)()?R)R?(QPP?(Q?R?Q)(P??????b?b,?a,aA??a,b,cR?,不具备关系( 2. 设集合上的二元关系,A)性质 (A)(A)传递性(B)反对称性(C)对称性(D)自反性 G??V,E?中,结点总度数与边数的关系是3. 在图( ) ??E?Edeg(v)deg(v)?2deg(v)?Evdeg()?2E(A)(C)(B) (D) iiiiVv?Vv?4. 设D是有n个结点的有向完全图,则图D的边数为( ) n(n?1)n(n?1)n(n?1)/2n(n?1)/2(A)(B)(D)(C) 5. 无向图G是欧拉图,当且仅当( ) (A)G的所有结点的度数都是偶数(B)G的所有结点的度数都是奇数 精品文档. 精品文档 (C)G连通且所有结点的度数都是偶数(D) G连通且G的所有结点度数都是奇数。 三.计算题(共43分) p?q?r的主合取范式与主析取范式。(1. 求命题公式6分) 解:主合取方式:p∧q∨r?(p∨q∨r)∧(p∨?q∨r)∧(?p∨q∨r)= ∏0.2.4 主析取范式:p∧q∨r?(p∧q∧r) ∨(p∧q∧?r)∨(?p∧q∧r) ∨(?p∧?q∧r) ∨(p∧?q∧r)=∑1.3.5.6.7 1000????0111?????Md,A?a,b,c,的上的二元关集2. 设合系R关系矩阵为求 ??R0000????1000??)tR(),(RsRr()(),(),(rRsRtR),的关系图。R的关系矩阵,并画出分)10(,

离散数学集合论练习题

、选择题 1设B = { {2}, 3, 4, 2},那么下列命题中错误的是(). A. {2} B C. {2} B 2. 若集合A={ a, b, { 1, 2 }} , B={ A. B A,且BA C. B A,但B A 3. 设集合A = {1, a },则P(A)=( A . {{1}, { a}} C. { ,{1}, { a}, {1, a }} 4?已知A B={1,2,3}, A C={2,3,4},若2 A. 1 C B. 2 C 5.下列选项中错误的是() A . B . 6. 下列命题中不正确的:是() A .x {x}-{{ x}} C .A {x} x ,则x A且x A 7. A, B 是集合,P(A),I P (B)为其幕集, 且 A . B .{ } C . 8. 空集的幕集P()的基 数; 是( A . 0 B .1 C . 3 B,U() C . 3 C D .4 C C .{ } D . { } B .{x} {x} {{ x}} D .A B A B A B ,则P(A) P(B)() {{ }} D.{ ,{ }} ) D . 4 9. 设集合A = {1 , 2, 3, 4, 5, 6 }上的二元关系R ={ a , b 具有的性质为(). A.自反的 C.对称和传递的 B .对称的 D .反自反和传递的 集合论练习题 B . {2, {2}, 3, 4} B D. {2, {2}} B 1, 2},则( ). B . B A,但B A D . B A,且B A ). B . { ,{1}, { a}} D . {{1}, { a}, {1, a }} a , b A ,且a +b = 8},贝U R

离散数学复习题及答案

1. 写出命题公式 ﹁(P →(P ∨ Q ))的真值表。 答案: 2.证明 答案: 3. 证明以下蕴涵关系成立: 答案: 4. 写出下列式子的主析取范式: 答案: 5. 构造下列推理的论证:p ∨q, p →r, s →t, s →r, t q 答案: ) ()(R P Q P ∨∧∧?) ()(R P Q P ∨∧?∨??) )(())(R Q P P Q P ∧?∨?∨∧?∨??) ()()()(R Q R P P Q P P ∧?∨∧?∨∧?∨∧??) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) ()()(P R Q P R Q Q R P ?∧∧?∨∧∧?∨?∧∧?∨) ()()(Q R P R P Q R P Q ∧∧?∨?∧∧?∨∧∧??) (Q R P ?∧∧?∨) ()(Q P Q P Q P ?∧?∨∧??Q) P (Q)(P P) (Q P)P (Q)(Q Q)P (P) Q)P ((Q)Q)P (P) Q (Q)P (Q P ?∧?∨∧?∧∨∧?∨?∧∨?∧??∧∨?∨?∧∨??∨?∧∨???Q Q P P ?∨∧?)() ()(R P Q P ∨∧∧?

①s →t 前提 ②t 前提 ③s ①②拒取式I12 ④s →r 前提 ⑤r ③④假言推理I11 ⑥p →r 前提 ⑦p ⑤⑥拒取式I12 ⑧p ∨q 前提 ⑨q ⑦⑧析取三段论I10 6. 用反证法证明:p →((r ∧s)→q), p, s q 7. 请将下列命题符号化: 所有鱼都生活在水中。 答案: 令 F( x ):x 是鱼 W( x ):x 生活在水中 ))((W(x)F(x)x →? 8. 请将下列命题符号化: 存在着不是有理数的实数。 答案: 令 Q ( x ):x 是有理数 R ( x ):x 是实数 Q(x))x)(R(x)(?∧? 9. 请将下列命题符号化: 尽管有人聪明,但并非一切人都聪明。 答案: 令M(x):x 是人 C(x):x 是聪明的 则上述命题符号化为 10. 请将下列命题符号化: 对于所有的正实数x,y ,都有x+y ≥x 。 答案: 令P(x):x 是正实数 S(x,y): x+y ≥x 11. 请将下列命题符号化: 每个人都要参加一些课外活动。 答案: ))) ()((())()((x C x M x x C x M x →??∧∧?)) ,()()((y x S y P x P y x →∧??

相关文档 最新文档