文档库 最新最全的文档下载
当前位置:文档库 › 法拉第效应 指导书

法拉第效应 指导书

法拉第效应 指导书
法拉第效应 指导书

法拉第效应实验

1845年,法拉第(M.Faraday)在实验中发现,当一束线偏振光通过非旋光性介质时,如果在介质中沿光传播方向加一外磁场,则光通过介质后,光振动(指电矢量)的振动面转过一个角度θ,如图1所示,这种磁场使介质产生旋光性的现象称为法拉第效应或者磁致旋光效应。

自从法拉第发现这一效应以后,人们在许多固体、液体和气体中观察到磁致旋光现象。对于顺磁介质和抗磁介质,光偏振面的法拉第旋转角θ与光在介质中通过的路程l以及外加磁场磁感应强度在光传播方向上的分量成正比,即有:

θ(1)`

=

l

?

V?

B

其中V为费尔德(Verdet)常数。对于不同介质,偏振面旋转方向不同,习惯上规定,偏振面旋转绕向与磁场方向满足右手螺旋关系的称为“右旋”介质,其费尔德常数0

>

<

V。

V;反向旋转的称为“左旋”介质,费尔德常数0

与旋光物质的旋光效应不同,对于给定的物质,法拉第效应中光偏振面的旋转方向仅由磁场的方向决定,而与光的传播方向无关,利用这一特点,可以使光在介质中往返数次而使旋转角度加大。

法拉第效应的简单解释是:线偏振光可以分解为左旋和右旋的两个圆偏振光,无外加磁场时,介质对这两种圆偏振光具有相同的折射率和传播速度,通过l距离的介质后,对每种引起了相同的相位移,因此透过介质叠加后的振动面不发生偏转;当有外磁场存在时,由于磁场与物质的相互作用,改变了物质的光特性,这时介质对右旋和左旋圆偏振光表现出不同的折射率和传播速度。二者在介质中通过同样的距离后引起不同的相位移,叠加后的振动面相对于入射光的振动面发生了旋转。这是唯象模型的解释,有关经典理论多年解释可以参考附录内容。法拉第效应发现后一百多年,并未获得应用,直到六十年代,由于激光和光电子

技术的兴起,法拉第效应得到了广泛的应用,用它做成的功能器件主要有:磁光调制器、磁光隔离器、磁光开关、磁光环行器等等。

实验仪器结构

1-氦氖激光器 2-控制主机 3-电磁铁 4-偏振检测 5-会聚透镜6-干涉滤光片 7-法布里-珀罗标准具 8-成像透镜 9-读数显微镜10-光功率计选配件:CCD摄像器件、图像采集卡、塞曼效应实验分析软件、监视器。

实验内容

1.观察光的偏振现象,研究光的波动性;

2.观察并理解法拉第磁光偏转现象,研究偏转角度与磁感应强度、介质厚度以及材料本身特性之间的关系,计算材料的费尔德常数,深层次理解光的电磁波特性;

实验过程

(一)实验前仪器连接及调整:

1. 氦-氖激光器通过底部四个定位孔和调节架相配合,旋动调节架上的调节旋

钮,可以使激光器的高度平稳调节;

2. 电磁铁放在转台上,通过限位槽和基准线来定位,以致使电磁铁的转动中心

正好和磁间隙中心重合;

3. 导轨置于电磁铁横向放置时磁芯中心孔的延长线上,注意应离开转台一段距

离,以使电磁铁转动时不碰到导轨,调节滑块后部制动旋钮,使滑动均匀、顺利,通过激光的准直性调节各光学元件,使之同轴,本实验讲义推荐光学

元件安置顺序:刻度盘——聚光透镜——

A

5461干涉滤光片——法布里-珀罗

标准具——成像透镜——读数显微镜;

4. 按照面板提示连接好主机各线,光度计上通过一话筒线和刻度盘上的光电转

换盒相连,接通电源,分别调节磁感应强度测量和光度计至零点,注意,调节时应使输入信号为零,即磁感应强度测量应使探头远离磁场,光度计应使光电转换盒通光量为零。

(二)法拉第效应实验

1. 调节氦-氖激光器底部的调节架,使激光器发出的准直光完全通过电磁铁中心

的小孔(完成法拉第效应实验,电磁铁纵向放置);

2. 调节刻度盘的高度,使激光器光斑正好打在光电转换盒的通光孔上,此时旋

动刻度盘上的旋钮,可以发现光度计读数发生变化;

3. 调节样品测试台,并旋动测试台上的调节旋钮,使冕玻璃玻璃样品缓慢转动

升起,此时光应完全通过样品;

4. 旋动刻度盘上的旋钮,使刻度盘内偏振片的检偏方向发生变化,因氦-氖激光

器激光管内已经装有布儒斯特窗,故不加起偏器,氦-氖激光器出射的光已经是线偏振光,所以转动刻度盘,必定存在一个角度,使光度计示值最小(光度计可以调节量程,以使测量更加精确),即此时激光器发出的线偏振光的偏

θ;

振方向与检偏方向垂直,通过游标盘读取此时的角度

1

5. 开启励磁电源,给样品加上稳定磁场,此时可以看到光度计读数增大,这完

全是法拉第效应作用的结果。再次转动刻度盘,使光度计读数最小,读取此θ;

时的角度值

2

6. 关闭氦-氖激光器电源,旋下玻璃样品,移动样品测试台,使磁场测量探头正

好位于磁隙中心,读取此时的磁感应强度测量值B;用游标卡尺测量样品厚

θ,可以求出该样品度(冕玻璃样品厚度参考值5mm),根据公式:d

B

=

?

V?

的费尔德常数。

附录:

法拉第效应实验原理

实验现象

加布儒斯特窗的氦-氖激光器发出的线偏振光,纵向通过电磁铁中心的小孔,

并穿过处于磁隙中样品(本实验仪中采用冕玻璃),进入配有光电转换的检偏装置,未加磁场时,可以通过偏振正交消光,此时光度计显示值最小,这可以用来观察光的偏振现象;加磁场后,可以明显的发现光的偏振方向发生改变,表现为光度计显示值增大,通过再次消光,可以测出加磁场后偏振面转过的角度。并且可以观察到在磁场不同时,偏转角大小也不同,这即是本实验仪观察到的法拉第效应。与一般的旋光效应相比,法拉第磁致旋光的区别是偏振面的旋转方向与光的传播方向无关,而只与所加磁场的方向有关,这一点可以通过实验仪明显验证。 原理解释

这里我们假设电子运动的速度比光速小的多,不必考虑相对论效应;还假设

外磁场的变化频率比光的频率小的多,这样可以将B 看作不随时间改变的常数;

并且只考虑光波的电场部分而忽略光波的磁场,因为在非相对论下电磁波的磁场

对电荷的作用力远比电场的小。于是,电子在光波和外磁场作用下的运动方程为:

??

? ???+=+B dt r d E m e r dt r d 2022ω (1) 式中e 是电子电荷,m 是电子质量,B 是外磁场的磁感应强度,E 是光波的电场

强度,r 是电子的位置坐标。在法拉第效应实验中,光波沿z 轴传播,光波电场

方向与z 轴垂直,在这里所讨论的情况中,电子在y x -平面上运动,

y x e y e x r +=

式中x e 和y e 分别为x 轴方向和y 轴方向的单位矢量。(1)式可以分解为x 轴方向

和y 轴方向的两个分量:

x E m e x dt dy B m e dt

x d =+-2022ω (2) y E m e y dt

dx B m e dt y d =++2022ω (3) 合并整理得到:

)()()()(202

2y x iE E m e iy x iy x dt d B m e i iy x dt d +=+++++ω (4)

)()()()(2022y x iE E m e iy x iy x dt d B m e i iy x dt

d -=-+---ω (5) 令

?????-=+=y x l

y x r iE E E iE E E 其中r E 和l E 分别对应于右旋圆偏振光和左旋圆偏振光,而)(iy x +和)(iy x -相当于电子分别向右和向左旋转。方程式(4)和(5)分别对应于电子的右旋运动和左旋运动。令

???-=+=iy x r iy x r l

r 代入(4)和(5)两式,得到

???????=+-=++l l l l r r r r E m e r dt dr B m e i r dt d E m e r dt dr B m e i r dt d 202

22022ωω 这两个方程式分别是电子右旋和左旋的运动方程。设入射光在进入磁光材料前是线偏振光,在0=z ,即材料端点的光振动:

???==0cos 0y

x E t E E ω 进入磁光物质后分解成右旋圆偏振光和左旋圆偏振光:

???

????==--)

(0)(022z k t i l z k t i r l r e E E e E E ωω 式中l k 和r k 分别是左旋圆偏振光和右旋圆偏振光在磁光介质中的波矢。 解方程式得到

ωωωB m e m eE r r --=22

002/ (6) 与r r 相当的感生电偶极矩为

ωωωB m

e m E Ne Ner P r r --==220022/ (7) N 是单位体积中电偶极子数目。

B m

e r 2=ω (8) 它和频率的量纲相同,称为拉摩频率,事实上它是在轨道上做圆周(或椭圆)运

动的电子在外磁场B 的作用下的进动频率。拉摩频率比光的频率(约1410赫兹)

小得多,例如在1.0=B 特斯拉的磁场作用下:

)(104.129Hz r r ?==π

ων 将(8)式代入(7)式,得到

ωωωωr r m

E Ne P 22/22002--= (9)

由于ωω<

??? ??+≈??????++=+ωωωωωωωωωωr r r r 2121)(2222

2 于是

220220)(2r r ωωωωωωω+-≈--

代入(9)式

22002)(2/r r m

E Ne P ωωω+-=

假设我们考虑的磁光材料是一种气体,可以得到折射率r n :

2

2002)(11r r m Ne n ωωωε+-+= (10) 用同样的方法可以得到:

22002)

(11l l m Ne n ωωωε+-+= (11)

实际上所用的大多数磁光材料是固体,可以得到:

2200222)(1321

r r r m Ne n n ωωωε+-=+- (12) 对于l n 也有相类似的一个公式。不过无论气体还是稠密介质,在磁光效应的情况下总有两个不同的折射率l n 和r n ,它们分别对应于左旋和右旋圆偏振光。

线偏振光进入磁光介质后就分解成左旋圆偏振光和右旋圆偏振光,两者折射率略有不同,经过长度为d 的媒质,两者位相差为:

)(2l r n n d -=λ

πδ (13) 当光从介质另一端出射时,振动面旋转角度为: )(2l r n n d -==

λπδ

θ

塞曼效应

1-3 塞曼效应 实验目的和要求: 了解塞曼效应的重要意义和原理;学习调节光路,学习使用高分辨气压扫描式法布里- 珀罗标准具(F-P)和光谱测量技术;观测和研究Hg 放电灯的546.1nm 光谱线在外磁场作用下的塞曼分裂现象和谱线的超精细结构;根据实验结果研究原子能级结构,获得有关分裂能级的参量。 教学内容: 1.计算Hg 灯546.1nm 光谱线在磁场作用下分裂的各子谱线的条数、偏振方向、波数变化,和相对强度,作出能级分裂图和光谱分裂示意图。 2.调节光路的准直和共轴,调节F-P 标准具的平行度;观察F-P 标准具产生的等倾干涉圆 环随F-P 内空气折射率的变化;通过气压扫描,用光电倍增管扫描测量546.1nm 光谱 线的强度随气压的变化,要求达到高分辨率,观测到超精细结构。 3.加垂直观测方向的磁场,观察F-P 后干涉圆环的分裂、分裂环的相对强度和偏振状态;用气压扫描测量546.1nm 谱线分裂出的9 条光谱,测量不同偏振状态下的光谱。4.分析塞曼分裂谱,计算各分裂子谱线的波数差和相对强度,并与理论值作比较,求荷质比;从塞曼分裂谱中分析得到原子能级的J 量子数和g 因子。 实验过程中可能涉及的问题(有的问题可用于检查学生的预习情况,有的可放在实验室说明牌上作提示,有的可在实验过程中予以引导,有的可安排为报告中要回答的问题,有的可作为进一步探索的问题。不同的学生可有不同的要求。) 塞曼效应是如何产生的?原子在外磁场下的能级分裂由哪些因素决定?根据你的理 论计算,在1T 磁场的作用下,Hg546.1nm光谱线分裂成几条谱线?分裂谱线的偏振态为什么不同?分裂谱线的相对强度是多少?分裂谱线的波数差为多少cm-1? 本实验通过什么方法分辨测量这么窄的光谱分裂?F-P 的自由光谱范围如何定义,在实验中有什么作用?用气压扫描式F-P 标准具实现高分辨光谱测量的实验条件有哪些(光路,平行度,准直,光电倍增管前加小孔光阑… )?随着F-P 内气压即空气折射率的变化,为什么可以观测到分 裂谱线重复出现?如何把实验测量结果中光强随气压的变化,标定转化为,光强随谱线波数的变化?此种标定的前提条件是什么?如何尽量减少相邻谱线的互相影响?如果谱线的裂距和强度与理论计算有偏差,可能是什么原因造成的? 实验装置说明: 1.光源及磁场:Hg 灯与电源(注意Hg 灯上高压的安全),电磁铁与电源(注意电磁铁发热效应,Hg 灯为何需置于磁场中心?) 2.光谱测量:透镜、偏振片和干涉滤光片(各起什么作用?);气压扫描式F-P 标准具、成像透镜和带小孔光阑的光电倍增管(各起什么作用,如何调节,观察到的光学 现象?) 3.控制和数据采集:气压扫描控制器(注意在升压状态下测量), 光电倍增管电源系统(注意屏蔽背景光后加高压使用),计算机数据采集(实验测量的是什么物理量?) 实验的主要内容和问题: 1.Hg 灯置于电磁铁中央,在垂直磁场方向观测光谱(平行磁场方向的塞曼分裂光谱会有什么不同?测量方案上有何不同?) 2.调节整体光路,使Hg 灯像、等倾干涉圆环的中心、以及观测点的中心达到准直、共心、共轴。(为什么有这些要求?如何逐步调节并判断?)

旁观者效应实验

实验地点: 繁华的街口 实验人数: 三人以下简称A.B.C 实验过程: (1)A乔装成路人,走在街口的时候假装突然发病,慢慢坐在地上,然后呼救。 (2)此时C在一隐蔽处,用DV机记录在A假装发病倒地过程中及接下来一段时间里,路人对A发生这一情况所做出的反应。 (3)一段时间过后,B乔装成路人,在走过A时,上前询问A的情况,并进行救助。(4)C在一旁用DV机记录在B做出上前询问及救助后,路人又是怎样的反应。 实验现象: 现象一:在A乔装成路人并在街口发病后,过往的众多路人并未上前进行救助或是拨打110,120等急救电话,期间有路人驻足观看,回头张望,抑或视而不见。 现象二:在B上前询问进行救助的行为发生后,有一个路人也走上前询问,接着跟多的路人上前围观和帮助。 实验结论: 现象一和现象二可以分别称为责任分散效应和从众效应。 责任分散效应也称为旁观者效应,是指对某一件事来说,如果是单个个体被要求单独完成任务,责任感就会很强,会作出积极的反应。但如果是要求一个群体共同完成任务,群体中的每个个体的责任感就会很弱,面对困难或遇到责任往往会退缩。因为前者独立承担责任,后者期望别人多承担点儿责任。“责任分散”的实质就是人多不负责,责任不落实。 正是由于在紧急状态下有其他目击者在场,才使旁观者无动于衷。旁观者效应,他们解释道,不是在于旁观者的“病态”人格,而是在于旁观者对其他观察者的反应。旁观者数量越大,旁观者效应越明显。总体来说,当紧急情形出现时,如果只有一人在场,约有半数的人会伸手相救;如果知道还有另外一个人在场,援助者只有33%;如果知道还有更多的人在场,援助者只有22%。 人们常常要以别人为参照物来定位自己,通过观察别人来判断自己是否正确,所以这就导致了多人在场时反应会变慢。同时每个人都以为别人会做,自己就不做了,或者抱着罚不责众的心态,所以也就没有人会上前帮助或报警了。 从众效应作为一个心理学概念,是指个体在真实的或臆想的群体压力下,在认知上或行动上以多数人或权威人物的行为为准则,进而在行为上努力与之趋向一致的现象。从众效应既包括思想上的从众,又包括行为上的从众。从众是一种普遍的社会心理现象,从众效应本身并无好坏之分,其作用取决于在什么问题及场合上产生从众行为,具体表现在两个方面:一是具有积极作用的从众正效应; 二是具有消极作用的从众负效应。 积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围并使个体达到心理平衡,反之亦然。 正是由于B的救助行为给旁人的引导,所以更多的人上前救助。

最新06 法拉第实验

06法拉第实验

实验法拉第效应 1845电法拉第(Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向加上一个磁场,就会观察到光经过样品后偏振面转过一个角度见(图1-10-1),亦即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。 法拉第效应有许多方面的应用,它可以作为物质结构研究的手段,如根据结构不问的碳氢化合物其法拉第效应的表现不同来分析碳氢化合物;在半导体物理的研究中,它可以用来测量载池子的有效质量和提供能带结构的知识;在电工技术测量中,它还被用来测量电路中的电流和磁场;特别是在激光技术中,利用法拉第效应的特性,制成了光波隔离器或单通器,这在激光多级放大技术和高分辨激光光谱技术中都是不可缺少的器件。此外,在激光通讯、激光雷达等技术中,也应用了基于法拉第效应的光频环行器、调制器等。 本实验要求了解法拉第效应的经典理论,并初步掌握进行磁光测量的基本方法。 一实验原理 (一)法拉第效应实验规律: 1.当磁场不是非常强时,法拉第效应中偏振面转过的角度θ,与沿介质厚度方向所加磁场的磁感应强度B及介质厚度L成正比,

即(1-10—1) 或(1-10—2) 式巾比例常数V叫做费尔德常数。 几乎所有的物质都存在法拉第效应。在不同的物质偏振面旋转的方向可能不向。设想磁场B是由绕在样品上的螺旋线圈产生的。习惯上规定:振动面的旋转方向和螺旋线圈中电流方向一致,称为正旋(V>0);反之,叫做负旋(V<0)。V由物质和工作波长决定,它表征物质的磁光特件。 2.对于每一种给定的物质,法拉第旋转方向仅由磁场方向决定。而与光的传播方向无关(不管传播方向与B同向或反向)。这是法拉第磁光效应与某些物质的固有旋光效应的重要区别。固有旋光效应的旋光方向与光的传播方向有关。对固有旋光效应而言,随着顺光线和逆光线方向观察,线偏振光的振动河的旋向是相反的,因此,当光波往返两次穿过固有旋光物质时,则会一次沿某一方向旋转,另一次沿相反方向旋执结果是振动面复位,即振动面没有旋转。而法拉第效应则不然,在磁场方向不变的情况下,光线往返穿过磁致旋光物质时,法拉第转角将加倍,即转角为2θ。利用法拉第旋向与光传播方向无关这一特性,可令光线在介质中往返数次,从而使效应加强。 3.与固有旋光效应类此法拉第效应包有旋光色散,即费尔德常数V随波长λ而变。一束白色线偏振光穿过磁致旋光物质,紫光的振动面要比红先振动面转过的角度大。这就是旋光色散。 实验表明,磁致旋光物质的费尔德常数V随波长λ的增加而减小。旋光色散曲线又称法拉第旋转谱。 (一)法拉第效应的旋光角 一束平面偏振光可以分解为两个不同频率等振幅的左旋和右旋圆偏振光,如(图1—10—2)。设线偏振光的电矢量为E,角频率为ω,可以把E看作左旋圆偏振光和右旋圆偏振光ER之和,通过磁场中的磁性物质(以 下简称介质)时, 的传播速度为VL,的传播速度为,通过长度D的介质后, 和之间产生相位差

法拉第效应实验报告

法拉第效应 一.实验目的 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度F θ与光波在介质中走过的路程l 及介质中的磁感应强度在光的传播方向上的分量H B 成正比,这个规律又叫法拉第一费尔得定律,即 F H VB l θ= ()1 比例系数V 由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(0V >)反之叫负旋(0V <)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B 的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: ()1 22t V K λλ-=- ()2 这里K 是透射光波长t λ,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长λ无关。这种V 值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B ,则在电子上将引起径向力M F ,力的方向决定于光的旋转方向和磁场方向。因此,电子所受的总径向力可以有两个不同的值。轨道半径

从众效应

从众效应 【从众效应】“也称乐队花车效应”,也就是我们通常所说的“随大流”,是指当个体受到群体的影响,包括引导或施加的压力时,会怀疑并改变自己原来的想法、判断以及行为,并且朝着与群体大多数人一致的方向变化。从众效应可以是因为对方“人多势众带来的气场上的压迫感”,也包括有对方“有权威性或者领导性”,迫于对这些非本直接和客观因素的影响而从众。 比如,在大学课堂上教授拿出一个瓶子,说是某种名贵的精油,在点燃后,教室里有同学说闻到了花香,还有同学说是玫瑰花香,后来几乎所有人都闻到玫瑰花香。最后,教授说这只是一瓶普通的自来水。所以,第一个说闻到玫瑰花香的同学也许是一种联想导致的错觉,而后边说闻到玫瑰花香的同学是追随他人所产生的趋同性,如果说第一位同学是心理暗示起了作用,那么后边的一众同学是受了从众心理的影响。而这种从众心理效应本质上没有侵害任何一方的利益,所以最后同学们呵呵一笑,这个课题小测式就结束了。 众效应产生的原因 1.当个体在群体中,为了适应环境,融入集体,个体会倾向于跟从大众的一致性喜好。 2.当个体担心自己偏离群体,不想被突出,被独立,于是选择从众。 3.当个体对某个问题、事件缺乏自己独立见解时,或者对自己的答案不确定时,个体特别容易倾向于对照群体其他大多数的意见,选择从众。 4.当个体对群体认可度高,经常会过滤自己的观点,出现盲目从众。 5.还有,当群体中有权威人物时,个体也会倾向于相信群体的意见,看法,于是也陷入从众效应。 再深入的分析,有些从众行为也只是表现上的从众 1?表面服从,内心也接受,所谓口服心服;

2?口服心不服,出于无奈只得表面服从,违心从众; 3?完全随大流,谈不上服不服的问题。 与其人云亦云,不如独立思考 研究表明,女性比男性容易从众,幼儿,青少年比成人容易从众,缺乏自信的比自信的人容易从众。 顺便分析一下类似的一个心理学效应——责任分散效应。 它属于群体心理学的领域,在某个场景或某个事件中,单个个体的责任感会很强,会对情况做出积极的反应,如果是处于群体中,个体责任感就会减弱很多,往往会不采取行动或比较懈怠,它也叫做旁观者效应。例如:在某个紧急的情况下,某人有危险或者境地,如果只有一个人在场,他往往会采取行动,施于援手,因为此时他的责任感很强。不想因为对于事情置之不理感到内疚或者负罪,而当处于群体中时,责任就被分散,他会想反正还有其他人,不单只有我,这种情况就造成就集体冷漠,三个和尚没水喝就源于心理学效应。 其实从众也有它的积极影响,当人在情境不确定的时候,其他人的行为最具有参考价值,具备行为参照的功能。特别在职场中,新人往往选择与同事保持一致,这样可以更容易的被团队接受。另外,在团队凝聚力方面,也表现出从众的行为可以更受团队认同。 一群幼小的沙鸥,无忧无虑地嬉戏在绿色的湖水中。一只勇敢的小沙鸥尝试着,挣扎着,试图展开翅膀飞向蓝天。它一次次不停地扑摔着,挣扎着,失败着,其余的沙鸥只是看着,突然间,那只沙鸥成功了,自由地翱翔于天际。在那只飞的沙鸥引领下,第二只、第三只沙鸥开始了同样的尝试……突然有一天,所有的沙鸥都学会了飞翔。 所以,积极的从众效应可以互相激励情绪,做出勇敢之举,有利于建立良好的社会氛围和完成群体目标,能使个体达到心理平衡,增强内心的安全感和自信心,还有助于学习他人的智慧经验,扩大视野,克服固执己见、盲目自信修正自己的思维方式等。

法拉第效应实验报告

法拉第效应 【摘要】实验利用励磁电流产生磁场,首先测量磁场和励磁电流之间的关系,利用磁 场和励磁电流之间的线性关系,用电流表征磁场的大小,用消光的方法测定ZF6样品的旋光角和磁场的关系,用倍频法测量MR3样品的旋光角和磁场的关系。最后让偏振光分别两次通过MR3样品,区分自然旋光和法拉第旋光,验证法拉第旋光的非互易性。 关键词:法拉第旋光、旋光角、倍频法、消光法。 引言 法拉第效应1845年由法拉第发现。法拉第效应可用于混合碳水化合物成分分析和分子结构研究。近年来在激光技术中这一效应被利用来制作光隔离器和红外调制器。由于法拉第效应的其他性质,他还有其他更多的应用。 法拉第效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱研究中,可借以得到关于激发能级的有关知识;在激光技术中可用来隔离反射光,也可作为调制光波的手段。 法拉第旋光在强磁场下具有非互易性,这种非互易的本质在微波和光的通信中是很重要的。许多微波、光的隔离器、环行器、开关就是用旋转角大的磁性材料制作的。 原理 当线偏振光穿过介质时,若在介质中加一平行于光的传播方向的磁场,则光的振动面将发生旋转,这种磁致旋光现象是1845年由法拉第首先发现的,故称为法拉第效应。振动面转过的角度称为法拉第效应旋光角。实验发现 θ=VBL (1)其中θ为法拉第效应旋光角;L为介质的厚度;B为平行与光传播方向的磁感强度分量;V称为费尔德(Verdet)常数。 一般约定,当光的旋转方向与产生磁场的电流的方向一致时,称法拉第旋转是左旋,v>0;反之则叫右旋,v<0。 法拉第效应与自然旋光不一样,不具备一般的光学过程可逆,对于给定的物质,旋转 的方向只由磁场的方向决定,和光的传播方向无关,这叫做法拉第效应的“旋光非互易性”。 法拉第效应的原理 一束平行于磁场方向传播的平面偏振光(表示电场强度矢量),可以看着是两束等幅的左旋和右旋圆偏振光的叠加,不加外磁场时,他们通过距离为的介质后,由于介质 对他们具有相同的折射率和传播速度,所以他们产生的相位移相同,不发生偏转;当有外磁场时,由于磁场使物质的光学性质改变,这两束光具有不同的折射率和传播速度,产生不同的相位移: (2) (3)

浅谈课堂气氛中的从众效应

浅谈课堂气氛中的从众效应 摘要:在现实生活中,课堂气氛已经成为许多家长和孩子衡量学校教育质量的一个关键指标。通过对现实生活中课堂的研究以课堂气氛为出发点发现其中存在的从众效应与课堂气氛的好坏有着密切的联系,以综述的方法探讨了课堂气氛中从众效的原因及其对课堂气氛的积极和消极作用,并提出如何对课堂气氛中的从众效应进行调控,对目前的课堂教学有实际意义。 关键词:课堂气氛从众效应作用 调控 中小学教学通常都是在课堂内进行的,因此课堂气氛是促进或抑制学生学习的重要因素,关系到学生的学习积极性和学习成绩的好坏。许多教育实践表明良好的课堂气氛能使学生情绪高昂,智力活动呈最佳状态,还会使学生得到一种愉快成功的体验,并陶冶情操保持一种积极的学习心态。因此,心理学家通过实验研究从不同角度分析了影响课堂气氛的因素,但并没有系统的从众的角度来研究。教育学家认为个别学生的态度与情感并不构成课堂气氛,当多数学生具有一致的态度与情感时就会形成具有优势的课堂气氛。因此,存在于班级的从众效应是影响课堂气氛的一个重要因素,在参考各种文献和名家观点的基础上分析从众效应对课堂气氛的影响,从现实的角度来考察从众与课堂气氛的关系,对当代课堂教学有重要意义。 1 课堂气氛 课堂气氛,又称班风,通常指伴随师生之间的人际互动而形成的某些占优势的态度和情感的综合状态。在实际教学中,我们经常看到不同类型的课堂气氛,有的课堂气氛积极热烈,有的则拘谨沉默,死气沉沉。即使是同一个课堂在不同的任课老师的指导下也是大不相同。实践表明,学生之间的相互感染可以影响课堂气氛,其中隐含着一种心理学效应——从众效应。 班级是一个特殊的群体,在这群体中有一定的社会交往结构,有多种人际关系、社会气氛、行为规范等等,日常的课堂教学正是在这样一个相对封闭的教学系统中进行,学生处于这种封闭的集体环境中很容易彼此影响形成群体压力。当课堂上大部分同学都积极回答问题时,其余的同学迫于群体压力或为了与群体保持一致也积极思考这样全班就会形成积极和谐的课堂气氛,在这种气氛下就会不

塞曼效应实验

塞曼效应实验 作者杨桥英 指导老师杨建荣 绪论 塞曼效应实验是近代物理中的一个重要实验,它证实了原子具有磁矩和空间量子化,可由实验结果确定有关原子能级的几个量子数如M,J和g因子的值,有力地证明了电子自旋理论。对于教学和学习来说本文所讨论的实验方案的结合使用,不但可以使我们对塞曼实验的原理有更深层次的触动,加深我们对于塞曼效应原理的理解,而且可以使我们对计算机及相应的软件开发在实验中的应用有所了解。 塞曼效应是原子的光谱线在外磁场中出现分裂的现象。塞曼效应是1896年由荷兰物理学家塞曼发现的。他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学、电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场[]1。 1.实验原理 1.1原子的总磁矩与总角动量的关系 原子的总磁矩由电子磁矩和核磁矩两部分组成,由于核磁矩比电子磁矩小三个数量级以上,所以可只考虑电子的磁矩这一部分。原子中的电子做轨道运动时产生轨道磁矩,做自旋运动时产生自旋磁矩。根据量子力学的结果,电子轨道角动量P L 和轨 道磁矩μ L 以及自旋角动量P S 和自旋磁矩μ S 在数值上有下列关系:

最新法拉第旋光效应实验报告资料

法拉第旋光效应实验报告 一.实验目的: 1.了解和掌握法拉第效应的原理; 2.了解和掌握法拉第效应的实验装置结构及实验原理; 3.测量法拉第效应偏振面旋转角与外加磁场电流I的关系曲线。二.实验仪器: LED 发光二极管(或白光光源和滤波片),偏振片,透镜,直流励磁电源,导轨,偏振片,集成霍尔元件,稳压电源等。三.实验原理和操作步骤: 天然旋光现象。 当线偏振光通过某些透明物质(如石英、糖溶液、酒石酸溶液等)后.其振动面将以光的传播方 向为轴旋转一定的角度,这种现象称为旋光现象。1811 年阿拉果首先发现石英有旋光现象,以后 毕奥(J. B. Biot)和其他人又发现许多有机液体和有机物溶液也具有旋光现象。凡能使线偏振光 振动面发生旋转的物质称为旋光物质,或称该物质具有旋光性。 图3.1 石英的旋光现象 如图3.1 所示,1P 和2P 分别为起偏器和检偏器(正交)。显然,在没有旋光物质时,2P 后面的视场是暗的。当在1P 和2P 之间加入旋光物质后2P 后的视场将变亮,将2P 旋转某一角度后,视场又将变暗。这说明线偏振光透过旋光物质后仍然是线偏振光,只是其振动面旋转了一个角度。 振动面旋转的角度称为旋光度,用?表示。 线偏振光通过旋光晶体时,旋光度?和晶体厚度 d 成正比,即 d α ? = (3.1)式中,α是比例系数,与旋光晶体的性质、温度以及光的频率有关,称为该晶体的旋光率。 不同的旋光物质可以使线偏振光的振动面向不同的方向旋转.人们对旋光方

向作下述约定: 迎着光传播方向观察,若出射光振动面相对于入射光扳动面沿顺时针方向旋转为右旋;沿逆时针方向旋转称为左旋.在图 3.1 中,若在1P 前加一个白色光源,由于不同波长的光旋转角度不同,因此到达2P 时有一部分光能透过去,有些光透不过去,有些能部分透过去,所以2P 后的视场是彩色的,旋转2P 其法拉第旋光效应25色彩会发生变化,这种现象叫做旋光色散。 2. 旋光现象的菲涅耳解释。 菲涅耳提出了一种唯象理论来解释物质的旋光性质。线偏振光可以分解为左旋圆偏振光和右旋圆偏振光。左旋圆偏振光和右旋圆偏振光以相同的角速度沿相反方向旋转,它们合成为在一直线上振动的线偏振光。在旋光物质中左旋圆偏振光和右旋圆偏振光传播的相速度不相同。假定右旋圆偏振光在某旋光物质中传播速度比左旋圆偏振光的速度快,在旋光物质出射面处观察,于右旋圆偏振光速度快,因此右旋圆偏振光振幅旋转过的角度较大,在出射面处,两圆偏光合成的线偏振光PE 的振动方向比起原来(进入旋光物质前)的振动方向0 PE 来,顺时针方向转过角度θ,这就是右旋。当材料中左旋圆偏振光的相速度较大时.就是左旋光材料。 3. 磁致旋光。 前面介绍的是物质的天然旋光性,实际上,有些物质本身不具有旋光性,但在磁场作用下就有旋光性了,就是前面介绍的法拉第旋光效应,也叫磁致旋光效应。磁致旋光中振动面的旋转角?和样品长度L 及磁感应强度B 成正比,即有VLB = ?(3.2)式中V 是—个与物质的性质、光的频率有关的常数,称为维尔德(Verdet)常数。某些物质的维尔德磁致旋光也有左右之分.我们规定:当光的传播方向和磁场方向平行时迎着光的方向观察,光的振动面向左旋转(逆时针),则维尔德常数为正。旋光现象的唯象解释 近代物理实验讲义 4. 磁致旋光的经典唯象解释。 可以用唯象模型来说明磁致旋光效应。电子在左旋圆偏振光和右旋圆偏振光的电场作用下作左旋和右旋圆周运动,电子运动平面与磁场垂直。电子在磁场中受到洛仑兹力,其方向向着电子轨道中心或背着轨道中心,视速度的方向而定注意:电子本身带负电荷。在洛仑兹力向着轨道中心的情况中,电子受到的向心力增加,电子旋转速率增大。在洛仑兹力背向轨道中心的情况中,电子旋转变慢。电子旋转快慢的变化影响了圆偏振光电场矢量旋转角速度。当光从磁光媒质出射时重新合成线偏振光。由于在媒质中左旋和右旋的速率不同,合成偏振光的振动面转过了一个角度。从图上可以看出,电子旋转速率变化只决定于磁场方向与电子旋转方向,而与光的传播方向无关。值得注意的是,天然旋光的旋转方向与光的传播方向有关,而磁致旋光的旋转方向与光的传播方向无关,而决定于外加磁场的方向。如图 3.5 所示,若将出射光再反射回晶体,则通过天然旋光晶体的线偏光沿原路返回后振动面将回复原位,而通过磁致旋光晶体的线偏光将继续旋光,其振动面与原振动面夹角更大。磁致旋转现象是由于外磁场存在时物质的原子或分子中的电子进动而引起的。这种进动的结果,使物体对顺时针与逆时针的圆偏振光产生不同的折射率。因此方向不同的圆偏振光的传播速度不同,引起了振动面的旋转。 四.

社会心理学--从众心理

从众心理 从众心理即指个人受到外界人群行为的影响,而在自己的知觉、判断、认识上表现出符合于公众舆论或多数人的行为方式,而实验表明只有很少的人保持了独立性,没有被从众,所以从众心理是大部分个体普遍所有的心理现象。由一个人或一个团体的真实的或是臆想的压力所引起的人的行为或观点的变化。“羊群效应”是指管理学上一些企业的市场行为的一种常见现象。 经济学里经常用“羊群效应”来描述经济个体的从众跟风心理。因此,“羊群效应”就是比喻人都有一种从众心理,从众心理很容易导致盲从,而盲从往往会陷入骗局或遭到失败。 (1)由于“羊群行为”者往往抛弃自己的私人信息追随别人,这会导致市场信息传递链的中断。但这一情况有两面的影响:第一,“羊群行为”由于具有一定的趋同性,从而削 弱了市场基本面因素对未来价格走势的作用。(2)如果“羊群行为”超过某一限度,将诱发另一个重要的市场现象一一过度反应的出现。(3)所有“羊群行为”的发生基础都是信息的不完全性。因此,一旦市场的信息状态发生变化,如新信息的到来,“羊群行为”就会瓦解。这时由“羊群行为”造成的股价过度上涨或过度下跌,就会停止,甚至还会向相反的方向过度回归。这意味着“羊群行为”具有不稳定性和脆弱性。 由于信息相似性产生的类羊群效应由于信息不完全产生的羊群效应 从众效应 引发大学生从众效应最值得注意的是“班级效应”和“宿舍效应” 班级效应”、“宿舍效应”在班风、舍风中的作用,由此可见一斑。反之,庸俗的从众行为往往会导致班风、舍风消极落后。 大学校园的从众行为,既有积极方面,又有消极方面。优化群体结构,利用从众行为的积极影响,防止其消极作用,具有重要的意义。 从众行为的过分普遍,反映了部分大学生自我意识弱化,独立性较差,缺乏个体倾向性的世界观、人生观、价值观,这是从众行为中消极现象抬头的主要原因,即使从众行为出现积极效应,但一旦失却这种从众氛围,又很容易不知所措,找不到自己努力的方向,走向社会后的迷悯、失落,实际上这是从众现象最直接的后遗症。 此外,一味从众也容易导致大学生心理障碍的发生。意味着自己失去了一片晴朗的天空,抛却了一片属于自己的领地。盲目从众意味着部分大学生丢失了以个体色彩的思维和行动编织的草帽,在喧哗与骚动中麻木自己,“创新意识“在头脑中只成了四个机械的汉字,所接受的高等教育也锈蚀成了斑驳的条条框框,毕业证书和学位证书只成了人生进程中的标志,却难以成为升华人生的动力。大学生,摆脱从众的盲目色彩,用独立的思想和明晰的脚印使自己主动融入集体的行列,这样,你将拥有一个真正属于自己的人生。

法拉第效应与磁光调制实验

法拉第效应与磁光调制实验 1845年,法拉第(M.Faraday)在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(Verdet)对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 法拉第效应有许多重要的应用,尤其在激光技术发展后,其应用价值越来越受到重视。如用于光纤通讯中的磁光隔离器,是应用法拉第效应中偏振面的旋转只取决于磁场的方向,而与光的传播方向无关,这样使光沿规定的方向通过同时阻挡反方向传播的光,从而减少光 于激光多级放大和高分辨率的纤中器件表面反射光对光源的干扰;磁光隔离器也被广泛应用Array激光光谱,激光选模等技术中。在磁场测量方面,利用法拉第 效应驰豫时间短的特点制成的磁光效应磁强计可以测量脉冲 强磁场、交变强磁场。在电流测量方面,利用电流的磁效应和 光纤材料的法拉第效应,可以测量几千安培的大电流和几兆伏 的高压电流。 磁光调制主要应用于光偏振微小旋转角的测量技术,它是 通过测量光束经过某种物质时偏振面的旋转角度来测量物质 的活性,这种测量旋光的技术在科学研究、工业和医疗中有广 泛的用途,在生物和化学领域以及新兴的生命科学领域中也是 重要的测量手段。如物质的纯度控制、糖分测定;不对称合成 M.Faraday(1791-1876) 化合物的纯度测定;制药业中的产物分析和纯度检测;医疗和 生化中酶作用的研究;生命科学中研究核糖和核酸以及生命物质中左旋氨基酸的测量;人体血液中或尿液中糖份的测定等。 一、实验目的 1. 用特斯拉计测量电磁铁磁头中心的磁感应强度,分析线性范围。 2. 法拉第效应实验:正交消光法检测法拉第磁光玻璃的费尔德常数。 3. 磁光调制实验:熟悉磁光调制的原理,用倍频法精确测定消光位置;精确测量不同样品 的费尔德常数。 二、实验原理 1、法拉第效应 实验表明,在磁场不是非常强时,如图1所示,偏振面旋转的角度θ与光波在介质中走 d B成正比,即: 过的路程及介质中的磁感应强度在光的传播方向上的分量 θ (1) = VBd 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔德(Verdet)常数。附录中,表1为几种物质的费尔德常数。几乎所有物质(包括气体、液体、固体)都

塞曼效应实验

塞曼效应实验 【实验目的】 1.掌握观测塞曼效应的方法,加深对原子磁矩及空间量子化等原子物理学概念的理解。 2.观察汞原子546.1nm 谱线的分裂现象及它们偏振状态,由塞曼裂距计算电子荷质比。 3.学习法布里-珀罗标准具的调节方法。 4.学习CCD 器件在光谱测量中的应用以及通过计算机自动处理光谱数据的实验方法。 【实验原理】 1.背景简介 1896年,荷兰物理学家塞曼(P.Zeeman(1865-1943))发现当光源放在足够强的磁场中时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的类别而不同,后人称此现象为塞曼效应。塞曼效应是继英国物理学家法拉第(M.Faraday(1791-1863))1845年发现磁致旋光效应,克尔(John Kerr)1876年发现磁光克尔效应之后,发现的又一个磁光效应。 法拉第旋光效应和克尔效应的发现在当时引起了众多物理学家的兴趣。1862年法拉第出于"磁力和光波彼此有联系"的信念,曾试图探测磁场对钠黄光的作用,但因仪器精度欠佳未果。 塞曼在法拉第的信念的激励下,经过多次的失败,最后用当时分辨本领最高的罗兰凹面光栅和强大的电磁铁,终于在1896年发现了钠黄线在磁场中变宽的现 象,后来又观察到了镉蓝线在磁场中的分裂。 塞曼在洛仑兹的指点及其经典电子论的指导下,解释了正常塞曼 效应和分裂后的谱线的偏振特性,并且估算出的电子的荷质比与几个 月后汤姆逊从阴极射线得到的电子荷质比相同。 塞曼效应不仅证实了洛仑兹电子论的准确性,而且为汤姆逊发现 电子提供了证据。还证实了原子具有磁矩并且空间取向是量子化的。 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖。直到 今日,塞曼效应仍旧是研究原子能级结构的重要方法。 早年把那些谱线分裂为三条,而裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位mc eB L π4/=)。正常塞曼效应用经典理论就能给予解释。实际上 P.Zeeman(1865-1943)

法拉第效应

法拉第效应 1845年8月,英国科学家法拉第发现原来没有旋光性的重玻璃在强磁场作用下产生旋光性,使偏振光的偏振面发生偏转。磁致旋光效应后来称为法拉第效应。法拉第效应有许多应用,特别是在激光技术中制造光调制器、光隔离器和光频环行器,在半导体物理中测量有效质量、迁移率等。 一、实验目的 1. 了解法拉第效应的原理; 2. 观察线偏振光在磁场中偏振面旋转的现象,确定维尔德(Verdet )常数; 3. 验证偏振面旋转角度、光波波长和磁场强度间的关系。 二、实验器材 12v/100w 卤素灯、法拉第效应实验仪、光电器件及平衡指示仪、 三、实验原理 介质因外加磁场而改变其光学性质的现象称之为磁光效应。其中,光通过处于磁场中的物质时偏振面发生旋转的效应较为重要,我们称这种偏振面的磁致旋转效应为法拉第效应(Faraday effect )。它与克尔效应一起揭示了光的电磁本质,是光的电磁理论的实验基础。法拉第在寻找磁与光现象的联系时首先发现了线偏振光在通过处于磁场当中的各向同性介质时其偏振面发生旋转的现象。在磁场不是非常强时,偏振面的旋转角度?? 与介质的厚度S 及磁感应强度在光的传播方向上的分量B 成正比 VBS =?? (1) 比例系数V 成为维尔德(Verdet )常数,它取决于光的波长和色散关系,一般物质的维尔德常数比较小,表1给出了几种材料的维尔德常数V 。 法拉第效应与自然旋光不同。在法拉第效应中对于给定的物质,光矢量的旋转方向只由磁场的方向决定,而与光的传播方向无关,即当光线经样品物质往返一周时,旋光角将倍增。 线偏振光可看作两个相反偏振量σ+和σ –的圆偏振光的相干叠加,从原子物理知识可知,磁场将使原子中的振荡电荷产生旋进运动,旋进的频率等于拉莫尔频率,即ωL =B m e ?,这里e 和m 分别为振荡粒子的电荷和质量,B 为磁场强度。线偏振光的σ+和σ –分量有不同的旋进频率,分别为L ωω- 和L ωω+,相应的折射率n +和n -,相速度v +和v - 都不同,而在 表1.几种材料的维尔德常数V

塞曼效应实验讲义

塞曼效应讲义 教学方式及时间安排 讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200 分钟,4个学时。 一、实验的目的: 1.过观查塞曼效应现象,了解塞曼效应是由于电子的轨道磁矩与自旋磁矩共同受到外磁 场作用而产生的。证实了原子具有磁矩和空间取向量子化的现象,进一步认识原子的内部结 构。并把实验结果和理论进行比较。 2.掌握法布里—珀罗标准具的原理和使用,了解使用CCD 及多媒体计算机进行实验图 象测量的方法。 19世纪伟大的物理学家法拉第研究电磁场对光的影响,发现了磁场能改变偏振光的偏 振方向。1896年荷兰物理学家塞曼(Pieter Zeeman )根据法拉第的想法,探测磁场对谱线 的影响,发现钠双线在磁场中的分裂。 洛仑兹跟据经典电子论解释了分裂为三条的正常塞 曼效应。由于研究这个效应,塞曼和洛仑兹共同获得了1902年的诺贝尔物理学奖。他们这 一重要研究成就,有力的支持了光的电磁理论,使我们对物质的光谱、原子和分子的结构有 了更多的了解。至今塞曼效应仍是研究能级结构的重要方法之一。 一、塞曼效应的原理 当发光的光源置于足够强的外磁场中时,由于磁场的作用,使每条光谱线分裂成波长很 靠近的几条偏振化的谱线,分裂的条数随能级的类别而不同,这种现象称为塞曼效应。 正常塞曼效应谱线分裂为三条,而且两边的两条与中间的频率差正好等于eB/4πmc ,可用经 典理论给予很好的解释。但实际上大多数谱线的分裂多于三条,谱线的裂矩是eB/4πmc 的 简单分数倍,称反常塞曼效应,它不能用经典理论解释,只有量子理论才能得到满意的解释。 1.原子的总磁矩与总动量距的关系 塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果。在 忽略核磁矩的情况下,原子中电子的轨道磁矩μL 和自旋磁矩μS 合成原子的总磁矩μ,与电子 的轨道角动量P L ,自旋角动量P S 合成总角动量P J 之间的关系,可用矢量图1来计算。 已知: μL =(e /2m )P L P L = π 2h )1(+L L (1) μS =(e/m )p s P S =π2h )1(+S S (2) 式中L, S 分别表示轨道量子数和自旋量子数,e, m 分别为电子的电荷和质量。 由于μL 和P L 的比值不同于μS 和P S 的比值,因此,原子的总磁矩μ不在总角动量P J 的延 长线上,因此μ绕P J 的延线旋进。μ只在P J 方向上分量μJ 对外的平均效果不为零,在进行矢 量迭加运算后,得到有效μJ 为: J μ=g m e 2P J (3) 其中g 为朗德因子,对于LS 耦合情况下 g=1+ )1(2)1()1()1(++++-+J J S S L L J J (4)

VCO压控振荡器实验报告

VCO压控振荡器实验报告 目录章节 设计要求及方案选择 (2) 框内电路设计(EWB仿真) (5) 总电路叙述 (10) 器件表 (12) 总电路图 (13) 问题及修改方案 (13) 体会 (14) 参考书目及文献资料 (17) 附录:总电路图 (17)

设计要求及方案选择 1.设计内容 V/F转换(VCO压控振荡器) 2. 设计要求 输入0—10V电压,输出0—20KHz脉冲波(或者0—10KHz 对称方波)。绝对误差在正负30Hz以内。 3. 设计方案 (1)RC压控振荡器

(2)双D触发器式的VCO电路 图片来源CIC中国IC网 如图所示为双D触发器式的VCO。电路输出一个占空比50%的方波信号,而消耗的电流却很小。当输入电压为5~12V 时,输出频率范围从20~70kHz。首先假设IC-A的初始状态是Q=低电平。此时VDl被关断,Vi通过Rl向Cl充电。当Cl 上的电压达到一定电平时,IC-A被强制翻转,其Q输出端变成高电平,Cl通过VDl放电。同时,IC-A的CL输入端也将变成低电平,强制IC-A再翻回到Q=低电平。由于R2和C2的延时作用,保证了在IC-A返回到Q为低电平以前,把Cl的电放掉。IC-A输出的窄脉冲电流触发IC-B,产生一个占空比为50%的输出脉冲信号。

(3)具有三角波和方波输出的压控振荡器 图片来源CIC中国IC网 如图所示为具有三角波和方波输出的压控振荡电路。该电路是一个受控制电压控制的振荡器。它具有很好的稳定性和极好的线性,并且有较宽的频率范围。电路有两个输出端,一个是方波输出端,另一个为三角波输出端。图中,A1为倒相器,A2为积分器,A3为比较器。场效应管Q1用来变换积分方向。比较器的基准电压是由稳压二极管D1、D2提供,积分器的输出和基准电压进行比较产生方波输出。电阻R5、R6用来降低Q1的漏极电压,以保证大输入信号时Q1能完全截止。电阻R7、R8和二极管D3、D4是为了防止A3发生阻塞。

组织行为学大纲

《组织行为学》课程教学大纲 课程名称:组织行为学课程代码:18223120 课程类型:核心课程 学分:3 总学时:48 理论学时:48实验(上机)学时: 先修课程:无适用专业:人力资源管理 一、课程性质、目的和任务 《组织行为学》是人力资源管理等专业的专业基础课程。要求学习者掌握组织行为学的理念、原理和基本方法,为进一步学习该专业的专业课程打好基础,也是参加人力资源管理师考试的基础理论之一。在教学中除去介绍基本的原理外,对于该专业的学生要特别强调通过案例分析讨论、实际联系等环节,使同学们理解理论与实践的关系,掌握组织行为学的专门方法和技术,并提高分析问题和实际操作能力。 二、教学基本要求 1、知识、能力、素质的基本要求 将课堂教学、案例教学、课程研讨、模拟演练等有机地结合起来,以提高教学效率和教学效果。在教学过程中,既要注重基本理论、基本概念和基本方法;又要特别注重通过实际案例的分析和研讨,使学生了解理论与实际的结合,培养学生实际应用能力;还要通过教师与学生的双向交流,提高学生的学习积极性。 2、教学模式基本要求 增加案例教学的比重,文字教材、音像教材中都要突出典型案例的剖析。同时安排必要的作业和实验,给学生接触实际、动手分析的机会。日常的面授辅导应着重于重点的归纳、难点的剖析以及作业讲解。建议布置适量的作业题,以综合练习和案例分析的形式为主。对本课程的教学,一般适合采用以下方法和形式:教师讲述、学生讨论、组织学生进行角色扮演等模拟实验和到企业、事业单位调查实习,并写出调查报告。 3、考核方法基本要求 考试课以学期末的统一闭卷考试为主,评定成绩时期末考试占60%,平时成绩占20%。期中成绩占20%,考查课的期末考试由课任老师安排在最后一次课随堂考试,此外还需安排一次期中考试,开闭卷均可。 三、教学内容及要求 第1章组织行为学概述 本章内容: 第一节组织行为学的概念 第二节组织行为学的学科特点及形成与发展 第三节组织行为学的研究方法 学习目标: 了解:组织行为学的定义,包括:研究对象、研究方法和研究目的。

法拉第效应实验报告

法拉第效应实验报告 法拉第效应 1.初步了解法拉第效应的经典理论。 2.初步掌握进行磁光测量的方法。 二.实验原理 1.法拉第效应 实验表明,偏振面的磁致偏转可以这样定量描述:当磁场不是很强时,振动面旋转的角度升与光波在介质中走过的路程i及介质中的磁感应强度在光的传播方向上的分量B H成正比,这个规律又叫法拉第一费尔得定律,即*=VBH I min i 比例系数V由物质和工作波长决定,表征着物质的磁光特性,这个系数称为费尔得常数,它与光频和温度有关。几乎所有的物质都有法拉第效应,但一般都很不显著。

不同物质的振动面旋转的方向可能不同。一般规定:旋转方向与产生磁场的螺线管中电流方向一致的,叫正旋(V 0 )反之叫负旋(V .0)。 法拉第效应与自然旋光不同,在法拉第效应中,对于给定的物质,偏振面相对于实验室坐标的旋转方向,只由B的方向决定和光的传播方向无关,这个光学过程是不可逆的。光线往返一周,旋光角将倍增。而自然旋光则是可逆的,光线往返一周,累积旋光角为零。与自然旋光类似,法拉第效应也有色散。含有三价稀土离子的玻璃,费尔德常数可近似表示为: 2 2 」 V =K ■- t 2 这里K是透射光波长、,有效的电偶极矩阵元,温度和浓度等物理量的函数,但是与入射波长'无关。这种V值随波长而变的现象称为旋光色散。 2.法拉第效应的经典理论 从光波在介质中传播的图像看,法拉第效应可以这样理解:一束平行于磁场方向传播的平面偏振光,可以看作是两柬等幅的左旋和右旋偏振光的叠加,左旋和右旋是相对于磁场方向而言的。介质中受原子核束缚的电子在人射光的两旋转电矢量作用下,作稳态的圆周运动。在与电子轨道平面相垂直的方向上加一个磁场B,则在电子上将引起径向力F M,力的方向决定于光的旋转方向

法拉第效应实验

法拉第效应初探 (顾从真 复旦大学物理系06级) 摘要 本文简要概括了法拉第效应的历史、原理、步骤以及不同条件下的现象的记录分析和数据处理。 关键词 法拉第效应,磁光效应,旋光介质,偏振 引言 1845年,法拉第(Michael Faraday )在探索电磁现象和光学现象之间的联系时,发现了一种现象:当一束平面偏振光穿过介质时,如果在介质中,沿光的传播方向上加上一个磁场,就会观察到光经过样品后偏振面转过一个角度,即磁场使介质具有了旋光性,这种现象后来就称为法拉第效应。法拉第效应第一次显示了光和电磁现象之间的联系,促进了对光本性的研究。之后费尔德(V erdet )对许多介质的磁致旋光进行了研究,发现了法拉第效应在固体、液体和气体中都存在。 实验部分 实验目的 了解法拉第效应经典理论,初步掌握进行磁光测量的基本方法,对法拉第效应的现象和成因进行分析。 实验原理 一束平面波穿过介质,如果介质中沿光的传播方向加一个磁场,会观察到光经过样品后偏振面转过一个角度,符合公式, VBL θ= θ为法拉第效应旋光角;L 为穿过介质的厚度;B 为平行与光传播方向的磁感强度分量;V 是比例系数,由工作物质和波长决定,表征物质磁光特性,称为费尔德(Verdet)常数。 几乎所有物质都有法拉第效应,但一般都不显著,规定V>0为正旋,方向与产生磁场的螺线管中的电流方向一致。V<0为负旋。 我们可以这样解释法拉第效应。 如图,我们把偏振光分成左旋和右旋部分,通过厚l 的介质会产生不同相位差, 1()()2R L R L n n l π θ??λ =-=-

由量子理论,在B 场作用下,介质轨道电子磁矩具有势能 2B eB B L m μψ=-= B L 是轨道角动量在B 方向上的分量。 用能量为ω 的左旋圆偏振光子激发电子,电子在磁场中能级结构与用能量为 ()L ωφ-? 的光子激发电子,电子在无磁场时能级结构相同。推出, ()()L L n n ωωφ=-? ,2L eB m φ?= 进一步可得, ()()2L dn eB n n d m ωωω=-? ()()2R dn eB n n d m ωωω=+? 带入θ的关系式,有 ()2e dn V mc d λλλ=-? 的关系,所以可以由V 和色散关系来验证荷质比的数值。

相关文档