文档库 最新最全的文档下载
当前位置:文档库 › 周期三角波的傅里叶级数

周期三角波的傅里叶级数

周期三角波的傅里叶级数
周期三角波的傅里叶级数

例题:求下图所示周期性三角波()x t 的三角函数形式傅里叶级数,其中周期为0

T ,幅值为A 。

解:在()x t 的一个周期中,()x t 可表示为

0000(0)22()(0)

22T A A t t T x t T A A t t T ?

+-???=?

??-??

≤≤≤≤

由于()x t 为偶函数,故正弦分量幅值0=n b 。

常值分量

00/200/200111()22

T T A a x t dt T A T T -==???=

?

而余弦分量幅值为

000

/2

/2

00/20

222

222222

2()cos d 2()cos d 41,3,5,24(cos 1)sin 20

2,4,6,T T n T A

a x t n t t A t n t t

T T T A n n A A n n n n n ωωπ-=

=-?=?ππ?=--==?

ππ?

?=??

?

L L

展开式为

000222411

()(cos cos3cos5)

235A A x t t t t ωωω=++++πL

(a) 幅值频谱图

(b) 相位频谱图

例题:求下图所示周期性三角波()x t的复指数函数形式傅里叶级数,其中周

期为0T,幅值为A。

解:方法一:

在()x t 的一个周期中,()x t 可表示为

0000(0)

22()(0)

22T A A t t T x t T A A t t T ?

+-???

=?

??-??

≤≤≤≤

0()0,1,2,jn t n

n x t C e n ω∞

=-∞

=

=±±∑

方法二:

在()x t 的一个周期中,()x t 可表示为

0000(0)

22()(0)

22T A A t t T x t T A A t t T ?

+-???

=?

??-??

≤≤≤≤

()

000/2

/2

1()0,1,2,.......

T jn t

n T C x t e

dt

n T ω--=

=±±=?

0()0,1,2,jn t

n

n x t C e

n ω∞

=-∞

=

=±±∑

下面考虑n 取不等于0的整数:

000

/2/2

00/20

00

2222222222()cos d 2()cos d 41,3,5,24(cos 1)sin 20

2,4,6,T T n T A

a x t n t t A t n t t

T T T A n n A A n n n n n ωωπ-==

-?=?ππ?=--==?

ππ?

?=???

L L

由于()x t 为偶函数,故正弦分量幅值0=n b 。

从而,

1

()

2n n n C a jb =-00/20000/20111

()/22

T T C a x t dt T A T A

T -====?

从而其复指数形式是

22221421,3,5,....11()22202,4,6,....n n n n A

A n C a jb a n n n ππ

?==±±±?=-==??=±±±?2221,3,5,....02,4,6,..../20

00,1,3,5,....n n A n n C n A n n π??=±±±??==±±±??=??==±±±0222();1,3,5,2jn t A A x t e n n ωπ=+=±±±???∑

从而幅频谱n C ω-图是:

????

相频谱n ?ω-图是:

????

注:

其中积分计算:

000000

00001

cos sin 1[sin sin ]11

[sin cos ]t n tdt td n t

n t n t n tdt n t n t n t C n n ωωωωωωωωωω==-=++???

P22 例1-1 图1-6 把x(t)轴平移到T 0/2处后,求其傅里叶级数的三角函数展开式,并画出其幅频谱及相频谱图。

解:在x (t )的一个周期中,可表示为

00

000/2/2()/20/2

A

t t T T x t A t T t T ?<

?--<

由于()x t 为偶函数,故正弦分量幅值0=n b 。

常值分量

而余弦分量幅值为

00/200/200111()22T T A a x t dt T A T T -==???=?

00000/2

/2

00/20

00

/2

/2

00020

000

00222224

()cos ()cos cos 4281cos sin 41,3,5,....

2(cos 1)0

2,4,6,....

T T n T T T a x t n tdt x t n tdt

T T n t A A t n tdt t n t T T T n n A

n A n n n n ωωωωωωωπππ-=

=??

==+??

?

?-?=?=-=??=???

?

展开式为

000222411

()(cos cos3cos5....)

235

A A x t t t t ωωωπ=-+++

幅频谱 022

4()1,3,5,....

A

A n n n ωπ

==

相频谱

0()0

1,3,5,....n n ?ω==

从而,其幅频谱图是????? 相频谱图是????

-------------------- 展开式也可以为:

000222411()[sin()sin(3)sin(5)....]

223252

A A x t t t t πππ

ωωωπ=+-+-+-+

幅频谱 022

4()1,3,5,....

A

A n n n ωπ

== 相频谱 0()1,3,5,....

2

n n π

?ω=-

=

傅里叶级数的三角形式和傅里叶级数的指数形式

周期信号的傅里叶级数分析 连续时间LTI 系统的时域分析: 以冲激函数为基本信号 系统零状态响应为输入信号与系统冲激响应之卷积 傅立叶分析 以正弦函数或复指数函数作为基本信号 系统零状态响应可表示为一组不同频率的正弦函数或复指数函数信号响应的加权和或积分; 周期信号: 定义在区间 ,每隔一定时间 T ,按相同 规律重复变化的信号,如图所示 。它可表示为 f (t )=f ( t +m T ) 其中 m 为正整数, T 称为信号的周期,周期的倒数称为频率。 周期信号的特点: (1) 它是一个无穷无尽变化的信号,从理论上也是无始无终的, 时间范围为 (2) 如果将周期信号第一个周期内的函数写成 ,则周期信 号 可以写成 (,)-∞∞(,)-∞∞()f t

(3)周期信号在任意一个周期内的积分保持不变,即有 1. 三角形式的傅立叶级数 周期信号 ,周期为1T ,角频率 11122T f π πω= = 该信号可以展开为下式三角形式的傅立叶级数。 []∑∞ =++ =++++++++=1 1 1 011121211110)sin()cos(...)sin()cos(... )2sin()2cos()sin()cos()(n n n n n t n b t n a a t n b t n a t b t a t b t a a t f ωωωωωωωω 式中各正、余弦函数的系数n n b a , 称为傅立叶系数,函数通过它 可以完全表示。 傅立叶系数公式如下 0()() n f t f t nT ∞ =-∞ = -∑ ()()()a T b T T a b f t dt f t dt f t dt ++= =? ? ?f t ()

将下列各周期函数展开成傅里叶级数(下面给出函数在一个...

习题11-8 1. 将下列各周期函数展开成傅里叶级数(下面给出函数在一个周期内的表达式): (1))2 12 1(1)(2<≤--=x x x f ; 解 因为f (x )=1-x 2为偶函数, 所以b n =0(n =1, 2, ? ? ?), 而 611)1(4)1(2/1221 0221 020=-=-=??dx x dx x a , ?-=21022/1c o s )1(2/12dx x n x a n π 2 2 121 2 )1(2c o s )1(4π πn x d x n x n +-= -=? (n =1, 2, ? ? ?), 由于f (x )在(-∞, +∞)内连续, 所以 ∑ ∞ =+-+=1 2 1 2 2c o s )1(1 1211)(n n x n n x f ππ , x ∈(-∞, +∞). (2)?? ? ???? <≤-<≤<≤-=1 21 12 1 0 101 )(x x x x x f ; 解 2 1)(1 2 121 1 11 -=-+==????--dx dx xdx dx x f a n , ?? ??-+==--1 2 121 1 11 c o s c o s c o s c o s )(x d x n x d x n x d x n x x d x n x f a n ππππ 2 s i n 2])1(1[122πππ n n n n +--= (n =1, 2, ? ? ?), dx x n xdx n xdx n x xdx n x f b n ?? ??-+==--1 2 1210 1 1 1 sin sin sin sin )(ππππ π ππ n n n 12 c o s 2+-= (n =1, 2, ? ? ?).

信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

?? --== 1 1)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 12 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

傅里叶变换定律-傅里叶变换定义定律

第2章信号分析 本章提要 信号分类 周期信号分析--傅里叶级数 非周期信号分析--傅里叶变换 脉冲函数及其性质 信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法 和手段 §2-1 信号的分类 两大类:确定性信号,非确定性信号 确定性信号:给定条件下取值是确定的。 进一步分为:周期信号, 非周期信号。

质量M 弹簧 刚度K t x (t ) o x 0 质量-弹簧系统的力学模型 x (t ) ? ?? ? ??+=0cos )(?t m k A t x 非确定性信号(随机信号):给定条件下取值是不确定的 按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。 信号描述方法 时域描述 如简谐信号

频域描述 以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。

§2-2 周期信号与离散频谱 一、 周期信号傅里叶级数的三角函数形式 周期信号时域表达式 ) 21() ()2()()( ,,±±=+==+=+=n nT t x T t x T t x t x T :周期。注意n 的取值:周期信号“无始无终” # 傅里叶级数的三角函数展开式 ) sin cos ()(01 00t n b t n a a t x n n n ωω∑∞ =++= (n =1, 2, 3,…) 傅立叶系数:

?- = 2 2 0)(1T T dt t x T a ?- = 2 2 0cos )(2T T n tdt n t x T a ω ? - = 2 2 0sin )(2T T n tdt n t x T b ω 式中 T--周期;0--基频, 0=2 /T 。 三角函数展开式的另一种形式: ) cos()(1 00∑∞ =++=n n n t n A a t x ?ωN 次谐波 N 次谐波的相角 N 次谐波的频率 N 次谐波的幅值 信号的均值,直流分量

傅里叶级数的推导

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

最新傅里叶级数的数学推导

傅里叶级数的数学推 导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin

和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即

傅里叶级数的推导

傅里叶级数的推导 2016年12月14日09:27:47 傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程: 1、把一个周期函数表示成三角级数:

首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为: f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式: 这个公式6就是通常形式的三角级数,接下来的任务就是要把各项系数an和bn 及a0用已知函数f(t)来表达出来。 2、三角函数的正交性:

傅里叶级数的数学推导

傅里叶级数的数学推导 首先,隆重推出傅里叶级数的公式,不过这个东西属于“文物”级别的,诞生于19世纪初,因为傅里叶他老人家生于1768年,死于1830年。 但傅里叶级数在数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学等领域都有着广泛的应用,这不由得让人肃然起敬。一打开《信号与系统》、《锁相环原理》等书籍,动不动就跳出一个“傅里叶级数”或“傅里叶变换”,弄一长串公式,让人云山雾罩。 如下就是傅里叶级数的公式: 不客气地说,这个公式可以说是像“臭婆娘的裹脚布——又臭又长”,而且来历相当蹊跷,不知那个傅里叶什么时候灵光乍现,把一个周期函数f(t)硬生生地写成这么一大堆东西。单看那个①式,就是把周期函数f(t)描述成一个常数系数a0、及1倍ω的sin和cos函数、2倍ω的sin和cos函数等、到n倍ω的sin和cos函数等一系列式子的和,且每项都有不同的系数,即An和Bn,至于这些系数,需要用积分来解得,即②③④式,不过为了积分方便,积分区间一般设为[-π, π],也相当一个周期T的宽度。 能否从数学的角度推导出此公式,以使傅里叶级数来得明白些,让我等能了解它的前世今生呢?下面来详细解释一下此公式的得出过程:

1、把一个周期函数表示成三角级数: 首先,周期函数是客观世界中周期运动的数学表述,如物体挂在弹簧上作简谐振动、单摆振动、无线电电子振荡器的电子振荡等,大多可以表述为:f(x)=A sin(ωt+ψ) 这里t表示时间,A表示振幅,ω为角频率,ψ为初相(与考察时设置原点位置有关)。 然而,世界上许多周期信号并非正弦函数那么简单,如方波、三角波等。傅叶里就想,能否用一系列的三角函数An sin(nωt+ψ)之和来表示那个较复杂的周期函数f(t)呢?因为正弦函数sin可以说是最简单的周期函数了。于是,傅里叶写出下式:(关于傅里叶推导纯属猜想) 这里,t是变量,其他都是常数。与上面最简单的正弦周期函数相比,5式中多了一个n,且n从1到无穷大。这里f(t)是已知函数,也就是需要分解的原周期函数。从公式5来看,傅里叶是想把一个周期函数表示成许多正弦函数的线性叠加,这许许多多的正弦函数有着不同的幅度分量(即式中An)、有不同的周期或说是频率(是原周期函数的整数倍,即n)、有不同的初相角(即ψ),当然还有一项常数项(即A0)。要命的是,这个n是从1到无穷大,也就是是一个无穷级数。 应该说,傅里叶是一个天才,想得那么复杂。一般人不太会把一个简单的周期函数弄成这么一个复杂的表示式。但傅里叶认为,式子右边一大堆的函数,其实都是最简单的正弦函数,有利于后续的分析和计算。当然,这个式能否成立,关键是级数中的每一项都有一个未知系数,如A0、An等,如果能把这些系数求出来,那么5式就可以成立。当然在5式中,唯一已知的就是原周期函数f(t),那么只需用已知函数f(t)来表达出各项系数,上式就可以成立,也能计算了。 于是乎,傅里叶首先对式5作如下变形: 这样,公式5就可以写成如下公式6的形式:

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

周期性函数分解的傅里叶级数

周期性函数分解的傅里叶级数 周期电压、电流等都可以用一个周期函数表示,即 210),()(、、 =+=k kt t f t f 式中T 是周期函数的周期,且 210、、 =k 如果给定的周期函数在有限的区间内,只有有限个第一类间断点和有限个极大值和极小值,那么就可以展开成一个收敛的级数(三角级数) 设给定的周期函数)(t f ,则)(t f 可展开成 ) ()(1)sin cos (sin cos )2sin 2cos ()sin cos ()(1022110 ∑∞ =++=+++++++=k k k k k t k b t k a a t k b t k a t b t a t b t a a t f ωωωωωωωω 上式中的系数,可按下列公式计算: ????? ?? ? - - -= ====== = π ππ π ππωωπ ωωπωωωπ ωωπω) (sin )(1 ) (sin )(1sin )(2)(cos )(1 ) (cos )(1cos )(2)(1 )(1 20 020 00 22 0t td k t f t td k t f tdt k t f T b t td k t f t td k t f tdt k t f T a dt t f T dt t f T a T k T k T T T )(2 这些公式的对导,主要的依据是利用三角函数的定积分的特点。 设m.n 是任意整数,则下列定积分成立: ?=π 200 sin mxdx ? =π 20 cos mxdx ?=π 200cos sin nxdx mx , n m ≠ ?=π 200 sin sin nxdx mx , n m ≠ ? =π 200cos cos nxdx mx , n m ≠ ? =π π 20 2)(sin dx mx ,

方波正弦波三角波转换器

毕业论文综合实践报告 第一章、系统的组成及工作原理 1.1系统组成 本设计的方波—三角波转换电路由同相滞回比较电路和积分电路两部分组成。 图1—1 方波三角波发生电路 三角波正弦波转换电路由滤波电路完成。 题目 设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为0.02Hz~20kHz 且连续可调; 2 正弦波幅值为±2V ; 3 方波幅值为2V ; 4 三角波峰-峰值为2V ,占空比可调; 5 设计电路所需的直流电源可用实验室电源。 摘要 波形发生器已经越来越广泛的运用到我门的日常生活、航空航天、医疗技术地理气象检测等等科学领域。随着科技的进步和社会的发展,单一的波形发生器已经不能满足人们的要求。为了能够更好的掌握在书本所学到的相关知识,以备以后在工作中运用所需,们今天设计的正是多种波形发生器。 同相滞回比较电路 积分电路 三角波

图1—2 正弦波发生电路 1.2工作原理 本文所设计的电路是通过集成运算放大器长生不同的波形,先通过同相滞回比较电路产生方波,然后方波通过积分电路转换成三角波,最后由滤波电路将三角波转换成正弦波,从而完成波形的转换。 角波发生电路是通过R 1调节方波的幅值,R 2、R 3调节方波的频率,R 4调节三角波 的峰峰值R 5调节三角波的占空比。 三角波输入滤波电路后通过滤波作用将三角波转换成正弦波,输出正弦波的幅值由R 6、R 7、R 8调节. 第二章、电路方案设计 方案一: 方案一电路由方波—三角波转换电路和三角波—正弦波转换电路组成。 2.1、方波—三角波转换电路如图 3.1所示。 该电路由同相滞回比较电路和积分电路组成。滞回比较器输出电压U 01在t 0时刻由-Uz 跃变为+Uz(为第一暂态),此时积分电路进行反向积分,输出电压u 0呈线性下降,当u 0下降到滞回比较器的阈值电压-U T 时即t 1时刻,滞回比较器的输出的电压U 01从+Uz 跃变到-Uz (为第二暂态)。此后,积分电路进行正向积分,u 0呈线性上升,当u 0上升到滞回比较器的阈值电压+U T 时即t 2时刻,u 01从-Uz 又跃变回到+Uz ,即返回第一暂态,电路又开始反向积分。如此周而复始,产生振荡。 三角波 滤波电路 正弦波

傅里叶级数

傅里叶级数 诀窍就在于从“几何”的角度来看待傅里叶级数。当我们把一个周期函数表达成傅里叶级数时,其实我们只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。 1.什么是投影 我们先来复习什么是投影吧。考虑一个简单的二维平面的例子。如下图所示,给定两个向量 u 和 v ,我们从 u 的末端出发作到 v 所在直线的垂线,得到一个跟 v 同向的新向量 p 。这个过程就称作 u 到 v 所在直线的投影,得到的新向量 p 就是 u 沿 v 方向的分量。图中的系数 c 是 p 跟 v 的比例,也就是 u 在 v 轴上的“坐标”。我们可以用尺规作图来完成投影这个动作,问题是:如果给定的向量 u 和 v 都是代数形式的,我们怎么用代数的方法求 c ? 我相信只要有基本线性代数知识的同学都可以轻松解决这个问题。我们知道 u-cv这个向量是“正交”于 v 的,用数学语言表达就是(u-cv)T v=0。我们马上就可以得到 c 的表达式如下。 (1) 2.向量在一组正交基上的展开

在讲傅里叶级数之前,我们还需引进线性代数中“正交基”的概念。如果这个概念你觉得陌生,就把它想成是互相垂直的“坐标轴”。回到刚才这个例子,如下图所示,现在我们引进一组正交基 {v1,v2},那么 u 可以展开成以下形式 (2) 从图上来看,(2)式其实说的是我们可以把 u“投影”到 v1 和 v2 这两个坐标轴上,c1 和 c2 就是 u 的新“坐标”。问题是:我们怎么求 c1 和 c2 呢?你会说,我们可以(2)式两边同时乘以 v1 或 v2,然后利用它们正交的性质来求 c1,c2。没错,数学上是这么做的。但是利用之前关于投影的讨论,我们可以直接得出答案,直接利用(1)式就可以得到如下的表达式: (3) 3.傅里叶级数的几何意义 现在我们已经明白一件事情了:如果想把一个向量在一组正交基上展开,也就是找到这个向量沿每条新“坐标轴”的“坐标”,那么我们只要把它分别投影到每条坐标轴上就好了,也就是把(1)式中的 v 换成新坐标轴就好了。说了半天,这些东西跟傅里叶级数有什么关系?我们先回忆一下傅里叶级数的表达式。给定一个周期是 2l 的周期函数 f(x),它的傅里叶级数为:

第一章周期三角波的傅里叶级数

例题:求下图所示周期性三角波 x(t)的三角函数形式傅里叶级数,其中周期 为 T ,幅值为A 。 解:在x(t )的一个周期中,x(t)可表示为 7 (J x(t)二 由于x(t)为偶函数,故正弦分量幅值 b ^ 0 常值分量 a ^ = — To/2 x (t)dt =丄1 T A = '

1 5 71 而余弦分量幅值为 2 T o /2 2 T o /2 2A x(t)cos n o tdt 2(A t)cos n o tdt T o "八 T o o 、 T o ' 4A ^ 2A 2(cosn -1) = n 二 4 A sin 2 n 2 2 31 n =1,3,5 丄 展开式为 x(t)=- 2 n 二 2,4,6,L 警(cos o t 32 COS3 O' 1 2cos5 0t L )

2 4A (a)幅值频谱图 例题:求下图所示周期性三角波x(t)的复指数函数形式 傅里叶级数,其中周 期为 T o ,幅值为A 。 4A 3V 4A 4A 7V … ―1 ---------- ? 7&>0 … (b)相位频谱图

x(t) 解:方法一: 在x(t)的一个周期中,x(t)可表示为r A T A t ( 0< t < 0) T o 2 2 x(t)= A - A t (0 w t w —°) % 2 i 2) QO x(tp C n e jn o t n = 0厂1厂2」ll n 二一::

方法二: 在x(t) 的一个周期中,x(t)可表示为 A t (?互 < t w 0) T o 2 V 2 x(t)二 I A T A t (0 < t w 』) T o 2 2 □0 1 T °/2 T o -T o /2 x(t)e jn 0t dt

连续周期性时间信号的傅里叶级数

实验三连续周期性时间信号的傅里叶级数 一、实验目的: 1. 进一步掌握MATLAB子函数的表示方法 2. 深刻理解傅里叶级数的信号分解理论及收敛性问题 3. 理解周期性信号的频谱特点。 二、实验原理 傅里叶级数 设有连续时间周期信号,它的周期为T,角频率,且满足狄里赫利条 件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。傅里叶级数有三角形式和指数形式两种。 1. 三角形式的傅里叶级数: 式中系数,称为傅里叶系数,可由下式求得: [ 2. 指数形式的傅里叶级数: 式中系数称为傅里叶复系数,可由下式求得: 周期信号频谱具有三个特点: (1)离散性,即谱线是离散的; (2)谐波性,即谱线只出现在基波频率的整数倍上; (3)收敛性,即谐波的幅度随谐波次数的增高而减小。

周期信号的MATLAB表示 周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。在Matlab中有多种进行数值积分运算的方法,我们采用quadl函数,它有两种其调用形式。 (1) y=quadl(‘func’, a, b)。其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。 (2) y=quadl(@myfun, a, b)。其中“@”符号表示取函数的句柄,myfun表示所定义函数的文件名。 例: 用MATLAB计算脉冲宽度T1 = 2;周期T = 4的周期性脉冲信号的复傅里叶级数,分别画出N = -2:2, -10:10, -50:50, -200:200的傅里叶级数展开及合成,观察吉普斯效应。画出T = 4, T =8下的双边谱 A.首先创建一个子函数singRect(t, T1),表示单个脉冲信号,时间为t,宽度为T1。function y = singRect(t, T1) y = (abs(t) <= T1); end B.创建傅里叶积分的被积子函数 function y = rectExp(t, k, w) y = (abs(t) <= 1) .* exp(-1j*k*w*t); end C.创建子函数用于傅里叶级数计算及合成 function [x, ak] = fourierSeries(N, t) T1 = 1; T = 4; w = 2 * pi/T; ak = zeros(1, 2 * N + 1); for i = 1:2*N+1 %傅里叶分解,计算傅里叶系数ak ak(i) = quadl(@(t)fsInt(t, i - N - 1, w, T1), -2, 2)/T; end; x = 0; for i = 1:2*N + 1 %傅里叶级数合成 x = x + ak(i) * exp(1j*(i - N - 1)*w*t); end end D.创建main函数,计算不同N下的傅里叶级数及合成。 T1 = 1; T = 4; t = -T/2:0.001:T/2; figure, subplot 221, N = 2; [x, ak] = fourierSeries(N, t); plot(t, singRect(t, T1), 'k');

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

【免费下载】傅里叶级数的数学推导

、管路敷设技术通过管线敷设技术,不仅可以解决吊顶层配置不规范问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

傅里叶变换

傅里叶变换 那么,到底什么是傅里叶变换算法列?傅里叶变换所涉及到的公式具体有多复 杂列? 傅里叶变换(Fourier transform)是一种线性的积分变换。因其基本思想首先 由法国学者傅里叶系统地提出,所以以其名字来命名以示纪念。 哦,傅里叶变换原来就是一种变换而已,只是这种变换是从时间转换为频率的变化。这下,你就知道了,傅里叶就是一种变换,一种什么变换列?就是一种从时间到频率的变化或其相互转化。 ok,咱们再来总体了解下傅里叶变换,让各位对其有个总体大概的印象,也顺便看看傅里叶变换所涉及到的公式,究竟有多复杂: 以下就是傅里叶变换的4种变体(摘自,维基百科) 连续傅里叶变换 一般情况下,若“傅里叶变换”一词不加任何限定语,则指的是“连续傅里叶变换”。连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数 形式。 这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。连续傅里 叶变换的逆变换 (inverse Fourier transform)为: 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅里

叶变换对(transform pair)。除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以来代换,而形成新的变换对: 或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。分数傅里叶变换(fractional Fourier transform,FRFT)指的就是傅里叶变换(Fourier transform,FT)的广义化。 分数傅里叶变换的物理意义即做傅里叶变换 a 次,其中 a 不一定要为整数; 而做了分数傅里叶变换之后,信号或输入函数便会出现在介于时域(time domain)与频域(frequency domain)之间的分数域(fractional domain)。 当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform)或正弦变换(sine transform). 另一个值得注意的性质是,当f(t)为纯实函数时,F(?ω) = F*(ω)成立. 傅 里叶级数 连续形式的傅里叶变换其实是傅里叶级数 (Fourier series)的推广,因为积 分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:

相关文档
相关文档 最新文档