文档库 最新最全的文档下载
当前位置:文档库 › 蒸发器热力计算

蒸发器热力计算

蒸发器热力计算
蒸发器热力计算

风冷式蒸发器换热计算一、设计计算流程图

二、 设计计算(以HLR45S 为例)

1、已知参数

换热参数:

冷凝负荷:Q e =31000W 蒸发温度:t k =-1℃

回风干球温度:t a1=7℃,湿球温度t s1=6℃ 送风干球温度:t a1=4℃,湿球温度t s1=3.6℃ 工质质量流速:g =140 kg/(m 2*s) 冷凝器结构参数:

铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管

铜管竖直方向间距:S 1=25.4mm 铜管水平方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数

排数:N C =3排 每排管数:N B =52排

2、计算过程

1)冷凝器的几何参数计算

翅片管外径:f b d d δ20+== 9.75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:)

()(2))((4411f f b f f b eq S d S S d S U A

d δδ-+---=

=

=3.04 mm

单位长度翅片面积:32

2110/)4

(2-?-

=f b f S d S S f π=0.537 m 2/m

单位长度翅片间管外表面积:310/)(-?-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:i

t i t d f

f f πβ==

=20.46 2)确定空气在蒸发器内的状态变化过程:

进风点:h1=20.74kJ/kg ,d1=5.5g/kg 出风点:h2=16.01kJ/kg ,d2=4.8g/kg

在湿空气焓湿图上连接状态点1和2,并延长与饱和空气线相交于饱和点4,如图:

饱和点:h4=11.65kJ/kg ,d4=4.2g/kg ,t4=1.2℃ 在蒸发器中空气的平均焓:

)4

2ln(2

143h h h h h h --+

==18.09 kJ/kg

d3=5.1g/kg ,t3=5.3℃ 析湿系数:4

34

346.21t t d d --+=ξ=1.549

3) 空气侧换热系数

迎面风速假定:f w =2.1 m/s

最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=3.64m/s 蒸发器空气入口干球温度为:t a1=7℃ 蒸发器空气出口干球温度为:t a2=4℃

确定空气物性的温度为:2/)(21a a m t t t +==5.5℃ 在t m =5.5℃下,空气热物性:

v f =13.75×10-6m 2/s ,λf =0.02477W/mK ,ρf =1.268kg/m 3,C Pa =1.005kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =805.73

由《制冷原理与设备》中公式(7-36),空气侧换热系数

m

eq eq n

f f O d d C ???

? ??=

γλαRe '=47.98 W/m 2K 其中:

362)(

103)(

000425.0)(

02315.0518.0eq

eq

eq

d d d A γ

γ

γ

-?-+-==0.1852

??

?

???

?-

=1000Re 24.036.1f A C =0.216 eq d n γ

0066.045.0+==0.5931

1000

Re 08

.028.0f m +-==-0.2155

铜管差排的修正系数为1.1,开窗片的修正系数为1.3,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证)

'

o

o αα=×1.1×1.3=68.62 W/m 2K 对于叉排翅片管簇:

f

d s 1

=

ρ=25.4/9.75=2.6051 3.027.12

1

'-=l l ρ

ρ=2.7681 式中:21,l l 为正六边形对比距离,21l l =

翅片当量高度:)'ln 35.01)(1'(5.0'ρρ+-=f d h =0.01169 m

δ

λαa o

m 2=

=75.4 m -1

翅片效率:'

)

'(mh mh tgh f =

η =0.802 表面效率:)1(1f t

f s f f ηη--

==0.812

空气侧当量换热系数为:s o f ηξαα==85.81 W/m 2K 4)冷媒侧换热系数

设R22进入蒸发器的干度x 1=0.16,出口蒸发器时x 2=1.0,则R22的总流量为:

)

(12x x r Q G e

r -=

= 0.17901 kg/s

R22的总流通截面:

g

G A r

=

=12.7866×10-4 每根管子的有效流通截面:

4

2

i i d A π=

=6.1067×10-5

蒸发器的分路数:

i

A A

Z =

=20.9 取Z =21 每一分路的R22流量:

Z

G G r

d =

=0.008524 kg/s R22在管内蒸发时换热系数可按下式计算:

343

.02

.02.0i 6

.0g 7.2???

? ??=cr c i

i P P d q α=8.3766q i 0.6

(如果是内螺纹管,换热系数则需乘以系数1.2)

由于R22与润滑油能相互溶解,可忽略管内侧污垢。取翅片侧污垢热阻为0.001m 2K/W ,翅片与管壁间接触热阻之和为2.5×10-3 m 2K/W 。

o s o m c t c i t i i r f f f f r k αηλδα1

)1

(1

++++=

6

.04425.2014271.01

i

q +

外表面的热流量:β/qi q o ==q i /20.46 需要的传热面积为:o e q Q F /==634260/q i m 2 需要的总管路长为:t

t f F

l =

=1119295/q i m 根据《制冷原理与设备》(公式7-129),R22在管内蒸发的阻力为:

i t i d Z l g q P //)(10986.591.052??=?-= 1.012×10-2q i 0.91

R22在管内蒸发时蒸发温度的降低值:

21P ??

???

??=?-=℃

te e e e P t t δδ 式中:℃

1-=?

???

??te e e P t δδ——蒸发温度-1℃时蒸发温度随蒸发压力的变化率。通过计算可得:℃

1-=?

???

??te e e P t δδ=0.0631℃/Pa 于是:20631.0P t e ??=?=6.384×10-4q i 0.91 ℃

固实际传热温差为:

???

? ??-----=

?22112211ln )

()(e a e a e a e a m t t t t t t t t t =????

??-?--?--e a e e a e a a t t t t t t t t 2121ln )

(=???

? ???-?--5q 106.3848ln q 106.384-30.91i 40.91

i

4

又:

m o i t k q q ?==ββ=20.46×6

.04425.2014271.01

i q +×???

? ???-?--5q 106.3848ln q 106.384-30.91i

40.91

i

4 采用迭代法解上式可得:

q i =3875.8 W/m 2

因此:外表面热流量:β/qi q o ==189.4 W/m 2

冷媒侧的换热系数:i α=1191.4 W/m 2K 传热系数:k =31.8 W/m 2K 工质压降:△P 2=15.39 kPa 蒸发温度下降值:△t e =0.97 ℃ 实际的传热温差为:△t m =5.96 ℃

需要的传热面积为:o e q Q F /==163.64 m 2 所需要翅片管总长:t

t f F

l ==288.8 m 4)确定冷凝器得结构尺寸

冷凝器长:c

B t

N N l A =

=1.851 m 高:1S N B B ==1.334m 宽:2S N C C ==0.066m 风量为:)

(12a a pa a k

a t t C Q V -=

ρ=6.893 m 3/s

迎风面积为:AB F y ==2.469 m 2 实际迎面风速为:y

a

f F V v =

=2.12 m/s 与原假设的风速相符,不再另做计算 5)阻力计算 空气侧阻力:

7

.1max 1)

)(/(81.9w d L A P eq ρ=?=24.7Pa 其中A ——考虑翅片表面粗糙度的系数,对非亲水膜取A =0.0113,对亲水膜取A

=0.007

铝片数量:f F S A N /==1851/1.8=1028 片

铝片重量:3107.2)2/(????+=t F l f fb ff G δ=26.56 kg 铜管重量:32

2

01089.84/)(??-=i t t d d l G π=25.81 kg

3、计算输出

输出参数:

冷凝器长、宽、高、翅片重量、铜管重量、肋化系数、翅片效率、翅片表面效率、单位长度翅片面积;

风量、迎面风速、最大风速、空气侧阻力;工质侧压降、蒸发温度降低值 空气侧换热系数、冷媒换热系数、传热系数、对数温差、传热面积、铜管长

蒸发器的选择计算

. 新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。 '.

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ?? -?=π ()5 .21000 4.10414.36 5.212522???? ???-??= m m 23651.0=

每米管长翅片间管子表面积: f f f b b s s d a ) (δπ-= ()5 .21000 2.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086 .00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 13 21221 空气在下C ?17的物性参数 3215.1m kg f =ρ

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1·引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数[1,2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(ε-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32/R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性和应用时需要注意的问题[7,8]。Ram在对LMTD法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2·平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均温差在一定条件下可由积分平均温差表示[10],即:

管壳式换热器传热计算示例(终-)---用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程 1.5MPa (表压),壳程压力为0.75MPa(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=0.75Mp a(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2=0.3 Mp a(表压)。改为冷却水工作压力P2=2.5 Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2=992.9 kg/m3; 冷却水的比热查物性表得C p2=4.174 kJ/kg.℃ 冷却水的导热系数查物性表得λ2=62.4 W/m.℃ 冷却水的粘度μ2=727.5×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=4.865; 过冷水的定性温度t1=(t1?t1′′)==77.5℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=4.192kJ/kg.℃; 过冷水的导热系数查物性表得λ1=0.672w/m.℃; 过冷水的普朗特数查物性表得P r2=2.312; 过冷水的粘度μ1=0.3704×10-6 Pa·s。 过冷水的工作压力P1=1.5 Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=0.98; 设计传热量: ? Q0=G1·C p1·(t1?t1′′)η×10003600

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一《食品工程原理》课程设计任务书 (1) (1) ........................................................................................................................................... .设计课题 (2) (2) ........................................................................................................................................... .设计条件 (2) (3) ........................................................................................................................................... .设计要求 (2) (4) ........................................................................................................................................... .设计意义 (2) (5) ........................................................................................................................................... .主要参考资料.. (3) 二设计方案的确定 (3) 三设计计算 (4) 3.1. ......................................................................................................................................... 总蒸发水量 (4) 3.2. ......................................................................................................................................... 加热面积初算. (4) ( 1)估算各效浓度 (4) ( 2)沸点的初算 (4) ( 3)温度差的计算 (5) (4)计算两效蒸发水量V,V2及加热蒸汽的消耗量S (6) (5)总传热系数K的计算 (7) ( 6)分配有效温度差,计算传热面积 (9) 3.3. ............................................................................................................................................ 重算两效传热面积.. (10) ( 1)第一次重算 (10) 3.4 计算结果 (11) 四蒸发器主要工艺尺寸的计算 (13)

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

板式换热器热力计算及分析(整合)

第一章概论 1.1综述 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中。它的发展已有一百多年的历史。 德国在1878年发明了板式换热器,并获得专利,到1886年,由法国M.Malvazin首次设计出沟道板板式换热器,并在葡萄酒生产中用于灭菌。APV 公司的R.Seligman在1923年成功地设计了可以成批生产的板式换热器,开始时是运用很多铸造青铜板片组合在一起,很像板框式压滤机。1930年以后,才有不锈钢或铜薄板压制的波纹板片板式换热器,板片四周用垫片密封,从此板式换热器的板片,由沟道板的形式跨入了现代用薄板压制的波纹板形式,为板式换热器的发展奠定了基础。 与此同时,流体力学与传热学的发展对板式换热器的发展做出了重要的贡献,也是板式换热器设计开发最重要的技术理论依据。如:19世纪末到20世纪初,雷诺(Reynolds)用实验证实了层流和紊流的客观存在,提出了雷诺数——为流动阻力和损失奠定了基础。此外,在流体、传热方面有杰出贡献的学者还有瑞利(Reyleigh)、普朗特(Prandtl)、库塔(Kutta)、儒可夫斯基(жуковскиǔ)、钱学森、周培源、吴仲华等。 通过广泛的应用与实践,人们加深了对板式换热器优越性的认识,随着应用领域的扩大和制造技术的进步,使板式换热器的发展加快,目前已成为很重要的换热设备。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片。 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层。 3:研究提高使用压力和使用温度。 4:发展大型板式换热器。 5:研究板式换热器的传热和流体阻力。

蒸发器冷凝器选型参数.doc

选型参数计算表 蒸发器简易选型 ( 仅供参考) 压缩机输 RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°) 入功率备注 (kW)(COP3.33) (Hp) EATB25 EATB55 EATB85 小1 0.62 0.124 0.65 2.17 16 2°蒸发 1 0.7 0.2 2 0.75 2.5 18 2°蒸发 1.5 1.05 0.33 1.13 3.76 22 2°蒸发 2 1.4 0.4 3 1.50 5 26 2°蒸发 3 2.1 0.65 2.25 7.5 3 4 18 2°蒸发 4 2.8 0.86 3.00 10 44 22 2°蒸发 5 3.5 1.1 3.75 12.5 54 2 6 2°蒸发 6 4.2 1.29 4.50 15 30 2°蒸发 7 5 1.5 5.25 17.5 32 2°蒸发 8 5.7 1.7 6.00 20 36 2°蒸发 9 6.4 1.9 6.75 22.5 40 2°蒸发 10 7.1 2.1 7.50 25 46 2°蒸发 11 7.9 2.4 8.25 27.5 50 2°蒸发 12 8.5 2.6 9.00 30 56 36 2°蒸发 13 9.4 2.8 9.75 32.5 60 40 2°蒸发 14 10 3 10.50 35 64 42 2°蒸发 15 11 3.26 11.25 37.5 70 46 2°蒸发 16 11.3 3.44 12.00 40 74 48 2°蒸发 17 12.2 3.7 12.75 42.5 78 52 2°蒸发 18 12.7 3.87 13.50 45 84 56 2°蒸发 19 13.6 4.13 14.25 47.5 60 2°蒸发 20 14.2 4.3 15.00 50 64 2°蒸发 21 15 4.5 15.75 52.5 68 2°蒸发 22 15.6 4.7 16.50 55 74 2°蒸发 23 16.5 5 17.25 57.5 80 2°蒸发 24 17 5.16 18.00 60 84 2°蒸发 25 18 5.6 18.25 62.5 90 2°蒸发 26 20 6 19.00 65 98 2°蒸发 选型参数计算表

蒸发器的设计计算

蒸发器的设计计算

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .210002.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强 及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环 蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有 效总温差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相 等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5), 直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) )110x x F W -=(n W W i =i i W W W F Fx x ---=210

对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 (1-8) 式中 — 由于溶液的蒸汽压下降而引起的温度差损失,℃; — 由于蒸发器中溶液的静压强而引起的温度差损失,℃; — 由于管路流体阻力产生压强降而引起的温度差损失,℃。 n p p p k '-=?1p ?1p k p '∑∑?-'-=?)(1k T T t ∑?t 1T k T '∑?∑∑∑∑?'''+?''+?'=??'?''?'''

管壳式热交换器计算

列管式换热器的设计计算 列管式(管壳式)换热器的设计计算 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。 在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择 增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。 此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定 若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济衡算来决定。为了节省水量,可使水的出口温度提高些,但传热面积就需要加大;为了减小传热面积,则要增加水量。两者是相互矛盾的。一般来说,设计时可采取冷却水两端温差为5~10℃。缺水地区选用较大的温度差,水源丰富地区选用较小的温度差。 4. 管子的规格和排列方法 选择管径时,应尽可能使流速高些,但一般不应超过前面介绍的流速范围。易结垢、粘度较大的液体宜采用较大的管径。我国目前试用的列管式换热器系列标准中仅有φ25×2.5mm及φ19×mm两种规格的管子。 管长的选择是以清洗方便及合理使用管材为原则。长管不便于清洗,且易弯曲。一般出厂的标准钢管长为6m,则合理的换热器管长应为1.5、2、3或6m。系列标准中也采用这四种管长。此外,管长和壳径应相适应,一般取L/D为4~6(对直径小的换热器可大些)。 如前所述,管子在管板上的排列方法有等边三角形、正方形直列和正方形错列等,如第五节中图4-25所示。等边三角形排列的优点有:管板的强度高;流体走短路的机会少,且管外流体扰动较大,因而对流传热系数较高;相同的壳径内可排列更多的管子。正方形直列排列的优点是便于

管式换热器热力计算

这只是个模板,你还要自己修改数据,其中有些公式显示不出来。不明白的问我。 一.设计任务和设计条件 某生产过程的流程如图所示,反应器的混合气体经与进料物流患热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。已知混和气体的流量为227301㎏/h,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口温度为39℃,试设计一台列管式换热器,完成该生产任务。 物性特征: 混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度 定压比热容=3.297kj/kg℃ 热导率=0.0279w/m 粘度 循环水在34℃下的物性数据: 密度=994.3㎏/m3 定压比热容=4.174kj/kg℃ 热导率=0.624w/m℃ 粘度 二.确定设计方案 1.选择换热器的类型 两流体温的变化情况:热流体进口温度110℃出口温度60℃;冷流体进口温度29℃,出口温度为39℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。2.管程安排 从两物流的操作压力看,应使混合气体走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下贱,所以从总体考虑,应使循环水走管程,混和气体走壳程。

三.确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =85℃ 管程流体的定性温度为 t= ℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对混合气体来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。 混和气体在35℃下的有关物性数据如下(来自生产中的实测值): 密度 定压比热容=3.297kj/kg℃ 热导率=0.0279w/m 粘度=1.5×10-5Pas 循环水在34℃下的物性数据: 密度=994.3㎏/m3 定压比热容=4.174kj/kg℃ 热导率=0.624w/m℃ 粘度=0.742×10-3Pas

换热器热力设计方案计算

换热器 默认分类 2008-04-04 00:11 阅读36 评论1 字号:大中小 目前,粮食干燥作业中多用列管式换热器,这种换热器结构简单,制造容易,检修方便。干燥行业中,换热器的热介质是烧烟煤与无烟煤混合燃料产生的高温烟道气。在管内流动,冷介质是空气,在管外 横向冲刷管子流动。 1 换热器的设计步骤与计算 1 换热器的设计步骤与计算 1.1 给定的条件 (1)热流体的入口温度t1' 、出口温度t1"; (2)冷流体的入口温度t2' 、出口温度t2"; (3)需要换热器供给的热量Q。 1.2 计算步骤 热平衡方程式是反映换热器内冷流体的吸热量与热流体的放热量之间的关系式。由于换热器的热散失系数通常接近1,计算时不计算散热损失,则冷流体吸收热量与热流体放出热量相等,热平衡方程式中的热量Q是烘干机干燥粮食所需要的热量,换热器换出的热量必须等于该热量。 (2)计算平均温度差△tp 换热器进出口两处流体的温差分别为△t' 和△t"

定性温度为流体主体温度在进、出口的算术平均值;受热时b=0.4,冷却时b=0.3。 2 在粮食干燥行业中。换热器通常是分三组立式安装,下面举一个干燥行业中的具体示例分析 2.1 已知条件及流程

换热器的管子是φ40x2的无缝管,烟气走管内,空气走管外;假定前面烘干塔热量衡算知道,需要 热量296x10(4)kcal/h; 2.2 求热交换工艺参数

所需管子根数n3 调整后数据如表2所示。

3 小结 从以上计算可知,在粮食干燥行业中,通过烘干机的设计计算得出烘干粮食所需的热量之后,再通过一系列的热量衡算和一系列的参数选择,所需列管换热器的传热面积及管长等其它尺寸是不难确定的。不同的选择有不同的计算结果,设计者作出恰当的选择才能得到经济上合理、技术上可行的设计,或者通过多方案计算,从中选出最优方案。近年来依靠计算机按规定的最优化程序进行自会寻优的方法得到日益 广泛的应用。

换热器热力学平均温差计算方法

换热器热力学平均温差计算方法 1引言 换热器是工业领域中应用十分广泛的热量交换设备,在换热器的热工计算中,常常利用 传热方程和传热系数方程联立求解传热量、传热面积、分离换热系数和污垢热阻等参数 [1, 2]。温差计算经常采用对数平均温差法(LMTD)和效能-传热单元数法(-NTU),二者原理相同。不过,使用LMTD方法需要满足一定的前提条件;如果不满足这些条件,可能会导致计算误差。刘凤珍对低温工况下结霜翅片管换热器热质传递进行分析,从能量角度出发,由换热器的对数平均温差引出对数平均焓差,改进了传统的基于对数平均温差的结霜翅片管换 热器传热、传质模型[3]。Shao和Granryd通过实验和理论分析认为,由于R32∕R134a混合物温度和焓值为非线性关系,采用LMTD法会造成计算误差;当混合物的组分不同时,所 计算的换热系数可能偏大,也可能偏小[4],他们认为,采用壁温法可使计算结果更精确。 王丰利用回热度对燃气轮机内流体的对数平均温差和换热面积进行计算[5]。Ziegler定义了温度梯度、驱动平均温差、热力学平均温差,认为判定换热效率用热力学平均温差,用对数 平均温差判定传热成本的投入,而算术平均温差最易计算;当温度梯度足够大时,对数平均 温差、算术平均温差和热力学平均温差几乎相等[6]。孙中宁、孙桂初等也对传热温差的计 算方法进行了分析,通过对各种计算方法之间的误差进行比较,指出了LMTD法的局限性 和应用时需要注意的问题[7, 8]。 Ram在对LMTD 法进行分析的基础上,提出了一种LMTDnew的对数平均温差近似算法,减小了计算误差[9]。本文在已有工作的基础上,分别采用LMTD和测壁温两种方法,计算了逆流换热器的传热系数,对两种方法进行比较,并在实验的基础上,进一步分析了二者的不同之处。 2平均温差的计算方法 在换热设备的热工计算中,经常用到对数平均温差和算术平均温差。 对数平均ia?i Δ∕-Δ< AZ- =T-Sr In Δ/ 算术平均??: % =l(?∕ι+?∕?ι) 对数平均温差在一定条件下可由积分平均温差表示[10],即:

蒸发器的选择计算

新乡双赢蒸发器选择计算的任务是选择合适的蒸发器类型和计算蒸发器的传热面积,确定定型产品的型号与规格。蒸发器的传热面积计算公式为 Qe=kA△tm 式中Qe----蒸发器的制冷量,W; K-----蒸发器的传热系数,W/(M2.℃); A-----蒸发器的传热面积,M2; Tm----蒸发器的平均传热温差,℃。 对于冷却液体或空气的蒸发器,蒸发器的制冷量应为 Qe=Mc(T1-T2) Qe=M(H1-H2) 式中M---被冷却液体(水、乙二醇)或空气的质量流量,kg/s; C--------被冷却液体的比热,J/(kg.℃); T1、T2----被冷却液体进、出蒸发器的温度,℃; H1、H2----被冷却空气进、出蒸发器的比焓,J/kg。 对于制冷系统,M、c、T1、T2,通常是已知的。例如,为空调系统制备冷冻水,其流量、要求供出的冷冻水温度(T2)及回蒸发器的冷冻水温度(T1)都是已知的。因此,蒸发器的热负荷Qe是已知的。对于热泵系统,进蒸发器的温度T1与热泵的低位热源有关。例如,水作低位热源时,T1决定于水位(河水、湖水、地下水、海水等)的温度。而T2、M的确定需综合考虑热泵的COPh、经济性等因素确定。 蒸发器内制冷剂出口可能有一定的过热度,但过热所吸收的热量比例很小,因此在计算传热温差时,制冷剂的温度就认为是蒸发温度Te,平均传热温差应为 T1--T2 △tm=----------------- T1--Te LN--------- T2--Te △tm和Te的确定影响到系统的运行能耗、设备费用、运行费用等。如果Te取得低,则△tm增大,传热面积减少,降低了蒸发器设备费用;而系统的制冷量、性能系数减小,压缩机的功耗增加,运行费用增大。如果取得高,则与之相反。用于制取冷水的满液式蒸发器Te一般不低于2℃。关于△tm或(T2-Te)的推荐值列于表中。蒸发器的传热系数K与管内、外的放热系数、污垢热阻等因素有关,详细计算请参阅文献。表中还列出了常用蒸发器传热系数K的推荐值。

EDR换热器计算菜单翻译

Geometrysummary换热器几何信息;Frontheadtype前端圭寸头类型 shel; T ubelayout-tubepasses 通过;Tubelayout-pitch :管束间距 tub; Baffles-spac in gat in let:挡;Shell/heads/flanges/tube Frontheadtype:前端圭寸头类型 she;“E” she Geometry summary:换热器几何信息 Front head type :前端圭寸头类型 shell type:壳体类型 Rear head type:末端圭寸头类型 exchanger position:换热器位置(水平或垂直) Shell ( s) -ID :壳体内径shell (s) -OD:壳体外径 Shell (s) -series:壳体串联数目 shell (s) -p arallel:壳体并联数目 Tubes-numbe:管子数目 tube-length:管长 Tubes-OD: 管子外径tubes-管子厚度(壁厚)Tube layout-option :选择是否新建管子布局图还是使用已有的管子布局图 Tube layout-tube passes通过一个壳程的管程数目 Tube layout-pitch :管束间距tube layout-pattern:管束布置类型Baffles-spa cing (centre-centre : 挡板中心间距 Baffles-spaci ng at in let:挡板内侧间距 baffles-spaci ng at outlet :挡板外侧间距 Baffles-number:挡板数目 baffles-orientation:挡板方位 Baffles-type:挡板类型baffles-cut (%d):挡板圆缺度 Baffles-tube in window :是否有部分管子通过横向挡板(折流板) Shell/heads /flan ges/tubesheets Front head type :前端圭寸头类型 shell type:壳体类型 Rear head type :末端圭寸头类型 exchanger position:换热器位置(水平或垂直) Shell (s) -ID : 壳体内径 shell (s) -OD :壳体外径 Shell (s) -series:壳体串联数目 shell (s)

换热站计算使用说明

河北建筑工程学院 毕业设计计算说明书 系别:能环学院 专业:建筑环境与设备工程 班级:建环 121 姓名:任少朋 学号: 2012305127 起迄日期:16年02月21日~ 16年06月15日设计(论文)地点:河北建筑工程学院 指导教师:贾玉贵职称:副教授 2016 年 06 月 15 日

摘要 随着人们生活水平的提高,集中供热被越来越多地采用,采用集中供暖可以减少能量的浪费,提高供热效率,减少环境污染,利于管理.同时采用集中供热可提高供热质量,提高人们的生活质量。 本题目是以张家口市桥西区恒峰热力有限公司集中供热系统M13号热力站供热区域的工程设计、改造为需用背景的实际工程。本工程为张家口市桥西区集中供热工程张家口市检察院换热站,属于原有燃煤锅炉房改造工程。供热区域总建筑面积:110000m2,总热负荷:约6400kw。 本次设计主要有工程概述、热负荷计算、供热方案确定、管道水力计算、系统原理图和平面布置图绘制、设备及附件的选择计算的内容。 除上述内容外,在计算说明书中尚需包括如下一些曲线:供回水温度随室外温度变化曲线,调节曲线。 本次设计要求使用CAD绘出图纸,其中包括设计施工说明、主要设备附件材料表,换热站设备平面布置图、换热站管道平面布置图、换热站流程图及相关剖面图等。 在换热站设计合理,安装质量符合标准和操作维修良好的条件下,换热站能够顺利地运行,对于采暖用户,在非采暖期停止运行期内,可以维修并且排除各种隐患,以满足在采暖期内正常运行的要求。 关键词:供热负荷设备选择计算及布置换热站系统运行板式换热器

目录 摘要 (1) 第一章设计概况 (4) 1.1设计题目 (4) 1.2设计原始资料 (4) 1.2.1 设计地区气象资料 (4) 1.2.2 设计参数资料 (4) 第二章换热站方案的确定 (5) 2.1换热站位置的确定 (5) 2.2换热站建筑平面图的确定 (5) 2.3换热站方案确定 (5) 2.4供热管道的平面布置类型 (5) 2.5管道的布置和敷设 (6) 2.6换热站负荷的计算 (6) 第三章换热站设备的选取 (7) 3.1换热器简介 (7) 3.1.1换热器概述 (7) 3.1.2换热器的分类 (7) 3.2换热器的选取 (9) 3.2.1换热器类型的选取 (9) 3.2.2换热器选型计算 (9) 3.3换热站内管道的水力计算 (10) 3.4循环水泵的选择 (11) 3.4.1循环水泵需满足的条件 (11)

管壳式换热器设计要点

课程设计 设计题目:管壳式水-水换热器 姓名 院系 专业 年级 学号 指导教师 年月日

目录 1前言 (1) 2课程设计任务书 (2) 3课程设计说明书 (3) 3.1确定设计方案 (3) 3.1.1选择换热器的类型 (3) 3.1.2流动空间及流速的确定 (3) 3.2确定物性数据 (3) 3.3换热器热力计算 (4) 3.3.1热流量 (4) 3.3.2平均传热温度差 (4) 3.3.3循环冷却水用量 (4) 3.3.4总传热系数K (5) 3.3.4计算传热面积 (6) 3.4工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (7) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (8) 3.4.7接管 (8) 3.5换热器核算 (8) 3.5.1热量核算 (8) 3.5.2换热器内流体的流动阻力 (12) 3 .6换热器主要结构尺寸、计算结果 (13) 3.7换热器示意图、管子草图、折流板图 (14) 4设计总结 (15) 5参考文献 (16)

1前言 在工程中,将某种流体的热量以一定的传热方式传递给他种流体的设备,成为热交换器。热交换器在工业生产中的应用极为普遍,例如动力工业中锅炉设备的过热器、省煤器、空气预测器,电厂热力系统中的凝汽器、除氧器、给水加热器、冷水塔;冶金工业中高炉的热风炉,炼钢和轧钢生产工艺中的空气和煤气预热;制冷工业中蒸汽压缩式制冷机或吸收式制冷机中的蒸发器、冷凝器;制糖工业和造纸工业的糖液蒸发器和纸浆蒸发器,都是热交换器的应用实例。在化学工业和石油化学工业的生产过程中,应用热交换器的场合更是不胜枚举。在航空航天工业中,为了及时取出发动机及辅助动力装置在运行时产生的大量热量;热交换器也是不可或缺的重要部件。 根据热交换器在生产中的地位和作用,它应满足多种多样的要求。一般来说,对其基本要求有: (1)满足工艺过程所提出的要求。热交换强度高,热损失少。在有利的平均温度下工作。 (2)要有与温度和压力条件相适应的不易遭到破坏的工艺结构,制造简单,装修方便,经济合理,运行可靠。 (3)设备紧凑。这对大型企业,航空航天、新能源开发和余热回收装置更有重要意义。 (4)保证低的流动阻力,以减少热交换器的消耗。 管壳式换热器是目前应用最为广泛的一种换热器。它包括:固定管板式换热器、U 型管壳式换热器、带膨胀节式换热器、浮头式换热器、分段式换热器、套管式换热器等。管壳式换热器由管箱、壳体、管束等主要元件构成。管束是管壳式换热器的核心,其中换热管作为导热元件,决定换热器的热力性能。另一个对换热器热力性能有较大影响的基本元件是折流板(或折流杆)。管箱和壳体主要决定管壳式换热器的承压能力及操作运行的安全可靠性。

相关文档