文档库 最新最全的文档下载
当前位置:文档库 › 三绕组电力变压器桶式油箱三维参数化设计

三绕组电力变压器桶式油箱三维参数化设计

三绕组电力变压器桶式油箱三维参数化设计
三绕组电力变压器桶式油箱三维参数化设计

三绕组电力变压器桶式油箱三维参数化设计

胡国良,高丹,胡鹏,赵洪斌

(特变电工沈阳变压器集团有限公司,辽宁沈阳110114)

摘要:利用Pro/E3.0三维设计软件对三绕组电力变压器桶式油箱基本结构进行三维设计。

关键词:变压器;参数化;油箱;设计

中图分类号:TM402文献标识码:B文章编号:1001-8425(2011)07-0019-06 3D Parameterized Design for Barrel Type Tank of

Three-Winding Power Transformer

HU Guo-liang,GAO Dan,HU Peng,ZHAO Hong-bin

(TBEA Shenyang Transformer Group Co.,Ltd.,Shenyang110114,China)Abstract:The basic structure of barrel type tank of three-winding power transformer is designed with Pro/E3.03D design software.

Key words:Transformer;Parameterization;Tank;Design

1前言

随着信息技术在各个领域的迅速渗透,CAD/ CAM/CAE技术得以广泛的应用,从根本上改变了传统的设计、生产、组织模式,对推动现有企业的技术改造、带动整个产业结构的变革、发展新兴技术、促进经济增长都具有十分重要的意义。在CAD应用软件和应用技术不断发展的情况下,广大设计人员对CAD系统的功能要求也越来越高,他们已经不再满足于利用CAD系统达到“甩图板”的目的,而是希望能使企业的设计人员从根本上减轻大量简单、重复和烦琐的工作量,使他们能集中精力于那些富有创造性的高层次创新设计活动中。而三维CAD系统具有可视性好、形象直观、设计效率高以及能为CIMS 工程中各应用环节提供完整的设计、工艺、制造信息等优势,取代二维CAD系统已经成为历史发展的必然,可满足广大设计人员的迫切需求以及企业发展所需。

2变压器油箱基本结构分析

电力变压器是根据电磁感应原理制造的电气设备,因此电力变压器应有能高效率利用电磁感应的铁心和绕组。电力变压器的主要部分是铁心、绕组、绝缘、油箱和必要的组件等。本文中主要是针对三相五柱有载调压电力变压器的桶式油箱三维设计进行讨论的。

电力变压器的桶式油箱包括箱盖、箱体两大部分。其中箱盖上组件部分通常包括高压法兰、低压法兰、中压法兰、高压中性点法兰、中压中性点法兰、出油口法兰或管接头、联气管法兰、压力释放阀法兰、绕组控制器底座及温度控制器底座等。

油箱箱体主要包括四个箱壁、箱沿以及与总装部分接口的一些零部件,其中箱壁是油箱装配的母体,其他大部分零部件均安装在箱壁之上,而箱沿通过紧固件将箱体与箱盖连接起来。与散热器接口的有进油口管接头、散热器固定板等,这些与散热器接口的元件的位置和尺寸是与散热器的安装设计相配合的,而箱壁上与储油柜接口的元件是储油柜固定板和加强板,其位置与联器管焊装的设计相配合,还有箱体上与总装具有接口的元件如观察孔法兰、人孔法兰、各种标识牌底板等,在三维设计时均应予以考虑。

本文中对油箱结构的分析,主要是从结构中分析接口。

这里所称的接口亦称元件界面,它是通过接口进行连接的两部分或多部分的公共参考,通过这一

TRANSFORMER

第48卷

胡国良、高丹、胡鹏等:三绕组电力变压器桶式油箱三维参数化设计

第7期用件的这个特点,在三维设计前期应该将这些通用件的三维模型设计完成,在具体产品设计时根据需求进行调用而不必再次绘制,这样提高了效率,减少了设计周期,同时在一定程度上也避免了设计差错的产生。

企业通用件库基本分为油箱通用件库、总装通用件库、散热器(冷却器)通用件库、铁心通用件库、线圈通用件库、绝缘通用件库。每个通用件库中分类保存相应的通用件。

国标件库主要包含一些国家标准件三维模型。这些模型使用Pro/E 绘制而成。主要包括一些常用的紧固件,如垫圈、螺栓、螺杆、螺母、铆钉及销子等。国标件均是一些具有固定尺寸的零件,在产品设计中可多次调用它们。

4油箱模块的划分与设计

4.1

模块化设计的定义

模块化设计就是把一个较大的实体或复杂模块实体进行分解,对其进行并行、分支、同步建设的方法。

4.2模块的定义

在建模过程中,把狭义上的模块定义为一个或

一组相关实体,该实体或实体的集合隶属于某一个更高级别的实体或模块实体。

对于油箱而言,其模块划分基本可以分为箱盖模块、箱体模块两大部分,而箱体模块根据桶式油箱的结构特点,又可以分为四个箱壁模块、箱沿模块及箱底模块等,如图1所示。

4.3油箱三维模型设计一般步骤

根据油箱内部模块划分的树形结构图,如图1

所示,按照自顶向下的设计思想,首先设计出油箱的

骨架模型,在骨架模型中主要应描绘出油箱各个部分的接口以及装配关系,其次考虑到虽然目前有大量的通用件可以使用,但并非任何情况下都要使用通用件,专用件的设计也是会存在的。所以在骨架中,对于一些零部件的三维模型特征还应以设计专用件的要求去做,只不过在具体装配某个部件时,能用通用件的建议还是尽量使用通用件,这样可以大大减少出图量,暂时无通用件可用时再将其设计成专用件。

4.3.1布局设计

布局是一个非参数化2D 草绘,它不需要精确

绘制,其几何图形仅仅表示产品的大概形状。布局也可以看作工程记事本,用来绘制结构草图,初步规划产品等。通过布局可以定义组件的基本要求和约束,而不必使用大量的或具体的几何模型,可以针对尺寸建立参数以及这些参数之间的数学关系等。在组件中应用布局图的一个关键是通过声明建立各个零部件之间的配合关系,以便实现各个零部件的自动装配和自动替换,从而有利于在设计过程中对整个产品进行控制。

针对桶式油箱的布局,考虑到油箱结构的复杂度,可以创建多个布局文件,分别描述各部分的结构特征以及设计意图。

箱盖布局中,桶式油箱采用的是平顶箱盖,由于这个特点,箱盖上各个零部件的位置均可以方便地直接参考同一个器身中心进行定位,而不象钟罩式油箱的箱盖上的零部件,如果均直接参考器身中心进行定位并不是很方便,所以往往参考其他的位置进行定位,例如,箱盖高压侧开孔定位,其定位参考之一即是箱盖弯折线,关于钟罩式油箱三维参数化设计不是本文中论述的内容,故不再赘述。

图2为桶式油箱箱盖局部布局图。

箱体的布局:箱体的布局图较箱盖的布局图更为复杂,为了更清晰地表达油箱箱体的布局细节,油箱箱体的布局分成油箱总装配布局、四个箱壁的布局。每个布局文件重点描述的内容各有侧重点。

油箱总装配布局侧重描述油箱的总装配零部件的位置关系,考虑到箱壁加强铁如高低压侧加强铁有可能对称的情况以及调试的方便性,将各个箱壁加强铁的安装位置关系在总布局文件中给出。四个箱壁布局文件分别描述每个箱壁的零件的位置关系以及某些零部件的尺寸大小。

布局文件中预置了一些表格,表格中主要给出了一些零部件的具体尺寸。由于骨架模型中的零件是以特征的形式绘出,亦即是为专用件设计的,因此

图1油箱模块划分

油箱模块

箱盖模块箱体模块

箱壁1箱壁2箱壁3箱壁4箱沿箱底……

Fig.1Modules of tank

21

48卷

图2桶式油箱箱盖局部布局图

3610

3360-990

45

1490

1380

450

340

65

255-970

器身中心128

93

1370

33053550

B B

4×准34

-990

-730-3300

680

850890

551

551

850Fig.2Diagram of partial cover of barrel type tank

22

胡国良、高丹、胡鹏等:三绕组电力变压器桶式油箱三维参数化设计

第7期骨架模型为下游设计提供参考,因此骨架模型内的参考信息是通过出版几何的方式将参考信息传达给下游设计的。为了使出版的信息更加清晰和便于修改,各种参考信息将分类出版,同时出版几何的名称代表出版信息的含义。

4.3.3箱盖模型装配

箱盖是一个装配模型,见图4,按照参考信息逐

层传递的原则,箱盖应该具有自己的骨架模型,上游出版几何在箱盖骨架模型中得以继承,同时对于箱盖的某些具体细节将在箱盖骨架模型中进行设计。

由于大量通用件的使用,给箱盖设计带来了很大的方便性。一般具有可变尺寸的通用件在选定后只是根据具体产品的需要赋予一个具体的参数值,

然后参考箱盖骨架中的安装基准进行安装,而不像专用件那样进行三维图形绘制,录入BOM 参数,之后设计整理2D 工程图。对于国标件和企业内部固定尺寸的通用件,参照骨架模型直接装配到位即可。

为了在箱盖装配时各个零部件之间不出现相互干扰的现象,一般在零部件装配时均要统一参考箱盖骨架模型,而不是零部件之间相互参照。这样,当修改或替换零部件时不至于影响到其他的零部件模型。

4.3.4油箱箱体模型装配

油箱箱体也是一个装配模型,见

图5。按照油箱结构分为四个箱壁装配、箱沿装配及箱底零件装配等。

油箱骨架继承了上游出版的除箱盖以外的所有参考信息,并且分别将四个箱壁的几何、箱沿几何等出版,由

下游的相应的装配模型或零件模型继承。

四个箱壁的装配独立进行,互不相扰,零部件装配或设计参考均由上游设计提供,因而受油箱总骨架控制。由于骨架参考在油箱装配之前已经调试完成,因此装配后一般会符合设计意图的。

箱沿、箱壁尺寸受布局参数控制,依据油箱结构自动算出,三维模型也将随着布局参数的改变而发生相应的变化。

和箱盖模型一样,在油箱装配模型中也使用了许多通用件,对于国标件和固定尺寸的企业通用件,直接引用即可,对于具有可变尺寸的企业通用件,首先同步复制一个完全一样的通用件,然后根据产品要求作为可变尺寸赋予具体值,再将这个通用件装配到位。

4.3.52D 工程图

图3

油箱骨架模型

Fig.3Skeleton model of

tank

图4箱盖装配模型

Fig.4Assembly model of cover 图5油箱装配模型

Fig.5Assembly model of tank

23

第48

Fig.6Assembly engineering diagram of HV tank wall

收稿日期:2010-10-20

作者简介:

胡国良(1964-),男,辽宁沈阳人,特变电工沈阳变压器集团有限公司高级工程师,从事CAD 二次开发、

Pro/E 三维变压器参数化设计及推广等工作。

24

油浸电力变压器设计手册-沈阳变压器(1999) 6负载损耗计算

目录 1 概述SB-007.6 第 1 页 2 绕组导线电阻损耗(P R)计算SB-007.6 第 1 页 3 绕组附加损耗(P f)计算SB-007.6 第1页3.1 层式绕组的附加损耗系数(K f %)SB-007.6 第 1 页3.2 饼式绕组的附加损耗系数(K f %)SB-007.6 第 2 页3.3 导线中涡流损耗系数(K w %)计算SB-007.6 第 2 页 3.3.1 双绕组运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 2 页3.3.2 降压三绕组变压器联合运行方式的最大纵向漏磁通密度(B m)计算SB-007.6 第 3 页 SB-007.6 第3 页3.3.3 升压三绕组(或高-低-高双绕组)变压器联合运行方式的最大纵向漏 磁通密度(B m)计算 3.3.4 双绕组运行方式的涡流损耗系数(K w %)简便计算SB-007.6 第4 页3.4 环流损耗系数(K C %)计算SB-007.6 第 4 页3. 4.1 连续式绕组的环流损耗系数(K C %)计算SB-007.6 第4 页3.4.2 载流单螺旋―242‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第5 页 SB-007.6 第5 页3.4.3 非载流(处在漏磁场中间)单螺旋―242‖换位的绕组环流损耗系数 (K C2 %)计算 3.4.4 载流双螺旋―交叉‖换位的绕组环流损耗系数(K C1 %)计算SB-007.6 第6 页 SB-007.6 第7 页3.4.5 非载流(处在漏磁场中间)双螺旋―交叉‖ 换位的绕组环流损耗 系数(K C2 %)计算 4引线损耗(P y)计算SB-007.6 第7 页5杂散损耗(P ZS)计算SB-007.6 第8 页5.1小型变压器的杂散损耗(P Z S)计算SB-007.6 第8 页5.2中大型变压器的杂散损耗(P Z S)计算SB-007.6 第9 页5.3 特大型变压器的杂散损耗(P Z S)计算SB-007.6 第10 页

电力变压器容量的计算方法 电力变压器容量规格0kva

电力变压器容量的计算方法电力变压器容量规 格0kva 电力变压器容量的计算方法 变压器容量选择的计算,按照常规的计算方法:是小区住宅用户的设计总容量,就是一户一户的容量的总和,又因为住宅用电是单相,我们需要将这个数转换成三相四线用电,那么,相电流跟线电流的关系就是根号3的问题,也就是就这个单相功率的总和除于,变换为三相四线的功率。 比如现在有一个小区,200户住宅,每户6-8KW用电量,一户一户的总和是1400÷ ≈808KW,这个数是小区所有电器同时使用时的最大功率。但是,实际使用时,这种情况是不会发生的。那么,就产生了一个叫同时用电率,一般选择70-80%,这是根据小区的用户结构特征所决定的。一般来说,变压器的经济运行值为75%。那么,我们可以将这二个值抵消,就按照这个功率求变压器的容量。所以,这个变压器的容量就是合计的总功率 1400÷≈808KW。根据居民用电的情况,功率因数一般在,视在功率Sp = P÷ =808/ ≈951KVA 。 还可以这么计算,先把总功率1400分成三条线的使用功率,就是单相功率,1400÷3=467KW;然后,把这个单相用电转换成三相用电,即467× ≈808KW, 再除于功率因数也≈951KVA。

按照这个数据套变压器的标准容量,建议选择二台变压器;总容量为945KVA,一台630KVA的,另一台315KVA的,在实际施工过程中还可以分批投入使用。如果考虑到今后的发展,也可以选择二台500KVA的变压器,或者直接选择一台1000KVA的变压器。 10KV/的电压,1KVA变压器容量,额定输入输出电流如何计算: 我们知道变压器的功率KVA是表示视在功率,计算三相交流电流时无需再计算功率因数,因此,Sp=√3×U×I ,那么,I低=Sp/√3/=1/≈ 也就是说1KVA变压器容量的额定输出电流为,根据变压器的有效率,和能耗比的不同而选择大概范围。高压10KV 输入到变压器的满载时的额定电流大约为;I 高=Sp/√3/10=1/≈ 也就是说1KVA容量的变压器高压额定输入电流为。

产品级参数化设计

第三章产品级参数化设计 本章所研究的是关于产品级的参数化设计问题,为此,拟订“产品模块化、模块参数化”的技术思路来对小型热风微波耦合干燥设备模块化设计进行研究。 3.1参数化设计概述 传统的CAD设计主要针对零件级别的建模,对产品设计本身缺乏有效的支撑,只有最后的结果,不注重整个设计过程,有输入数据量大,操作难度大,无参数设计功能,不能自动更新现有模型,设计周期长,效率低,工作量重复等缺点。 参数化设计过程中,Revit Building是一中重要思想,它在保证参数化模型约束不变的的条件下,通过修改模型的基本尺寸参数来驱动参数化模型,完成模型更新从而获得新模型的现代化设计方法。模型的设计不是一蹴而就的,往往经过一个复杂的过程,在设计初期,设计人员对产品的认识较浅,不能完全确定设计其边界条件,并不能一次性设计出满足产品要求的所有条件。随着时间的推移,研究的深入,设计人员通过不断的修改模型的尺寸和造型,摸索研究之后,一步一步设计出满足所有条件的产品。由此可知,设计是一个不断修改,不断更新数据并且不断满足模型约束条件的过程,这种精益求精,追求完美的过程促进了CAD系统中参数化设计的产生华和发展。参数化设计大大提高了设计的效率,缩短了设计周期的同时大大减少了设计人员的工作强度和工作压力。 目前,参数化设计已经实际运用并且不断的发展壮大,已经成为现代设计与制造,机械设计系统等方向的研究热点,与之相关的各种CAD软件系统也不断的设计完善自己的参数化设计系统和功能,满足未来设计发展的需要。另外,对于标准化,系列化产品,参数化设计尤为重要,对于此次热风微波耦合干燥系列产品,采用参数化设计技术是非常好的选择。 3.1.1 参数化设计定义 参数化设计是机械CAD系统的一项非常关键技术,从最初的概念设计到详细设计,到最后形成产品,它贯穿产品设计的全过程。参数化设计是将参数化的产品模型用数学中一一对应关系来表示,而不是确定其数值,当某些参数变化时,与之相关的其他参数也将随之改变,达到几何更改控制几何形状的目的。这种快速反应的尺寸驱动,高效的图形修改功能,为产品设计、产品造型、产品更新修改,产品系列化设计等提供了有效的手段。其核心是通过产品约束的表达方式,使用设计好的一组尺寸参数和约束来描述产品模型的几个图形,能够充分满足相同或者相近几何拓扑关系的设计需求,充分体现设计者的设计思想。 根据参数化设计对象不同,可以将参数化设计分成两种:零件级参数化设计和产品级参数化设计。目前,广泛应用于实践的是零件级参数化设计方法,主要是指在单个零部件的内部通过尺寸参数和约束控制零件的参数化模型,当尺寸参数和约束发生变化时,参数化零件模型自动更新。相对于零件级参数化设计,产品级参数化设计是一种更加高级的参数化设计方法,它更加注重零部件之间的相互关联关系,当某一个零件的参数修改后,与该零件相关的其他零部件也将完成同步更新,这种更新包括形状的更新和尺寸的更新。由此可知,产品

三维参数化设计的发展现状

三维参数化设计的发展现状 浏览次数:195次悬赏分:10 |解决时间:2011-3-26 23:19 |提问者:linusjenny 最佳答案 在国内大多数人,不习惯三维,精通的更少 很多人,只是把三维作为,设计后的产品演示 从草图规划开始,就是直接用三维设计的人及其比较少。 根据三维三维模型进行有限元分析的也不多。 直接用三维做设计,对个人的软件操作水平要求比较高,老工程师学不了,没有相关知识积累。 新人,对软件应用不够深入,只会皮毛 其发展到目前为止可以分为3个阶段。1995年至2000年是第一阶段,此阶段是三维动画的起步以及初步发展时期。在这一阶段,皮克斯/迪斯尼是三维动画影片市场上的主要玩家。 2001年至2003年为第二阶段,此阶段是三维动画的迅猛发展时期。在这一阶段,三维动画从“一个人的游戏”变成了皮克斯和梦工场的“两个人的撕咬”:你(梦工场)有怪物史瑞克,我(皮克斯)就开一家怪物公司;你(皮克斯)搞海底总动员,我(梦工场)就发动鲨鱼黑帮。 从04年开始,三维动画影片步入其发展的第三阶段———全盛时期。在这一阶段,三维动画将演变成“多个人的游戏”:华纳兄弟电影公司推出圣诞气氛浓厚的《极地快车》;曾经成功推出《冰河世纪》的福克斯再次携手在三维动画领域与皮克斯、梦工场的PDI齐名的蓝天工作室,为人们带来《冰河世纪2》……此外,皮克斯推出自己的第一部独立影片《蹩脚炖菜》。而迪斯尼也将推出第一部独立制作的三维动画影片《小鸡》。至于梦工场,则制作了《怪物史瑞克3》,并且将《怪物史瑞克4》的制作也纳入了日程之中 浅谈三维CAD发展现状 出处:日期:2005-10-28 三维服装CAD有别于二维CAD的地方在于:它是在通过三维人体测量建 立起的人体数据模型的基础上,对模型进行交互式三维立体设计,然后 再生成二维的服装样片。它主要解决的问题是人体三维尺寸模型的建立 及局部修改、三维服装原型设计、三维服装覆盖及浓淡处理、三维服装 效果显示特别是动态显示和三维服装与二维衣片的可逆转换等方面。 三维服装CAD的基础是三维人体测量。目前三维人体测量系统在国外已经商品化,其技术已经较为成熟,其中法国、美国、日本等国利

变压器的选择与容量计算

变压器的选择与容量计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。选用配电变压器时,如果 把容量选择过大,就会形成“大马拉小车”的现象。不仅增加了设备投资,而且还会使变压 器长期处于空载状态,使无功损失增加。如果变压器容量选择过小,将会使变压器长期处与 过负荷状态。易烧毁变压器。依据“小容量,密布点”的原则,配电变压器应尽量位于负荷 中心,供电半径不超过0.5千米。配电变压器的负载率在0.5?0.6之间效率最高,此时变压器的 容量称为经济容量。如果负载比较稳定,连续生产的情况可按经济容量选择变压器容量。对于仅向 排灌等动力负载供电的专用变压器,一般可按异步电动机铭牌功率的 1.2倍选 用变压器的容量。一般电动机的启动电流是额定电流的4~7倍,变压器应能承受住这种冲击, 直接启动的电动机中最大的一台的容量,一般不应超过变压器容量的30就右。应当指出的 是:排灌专用变压器一般不应接入其他负荷,以便在非排灌期及时停运,减少电能损失。对 于供电照明、农副业产品加工等综合用电变压器容量的选择,要考虑用电设备的同时功率,可按实 际可能出现的最大负荷的 1.25倍选用变压器的容量。根据农村电网用户分散、负荷 密度小、负荷季节性和间隙性强等特点,可采用调容量变压器。调容量变压器是一种可以根据负荷 大小进行无负荷调整容量的变压器,它适宜于负荷季节性变化明显的地点使用。对于 变电所或用电负荷较大的工矿企业,一般采用母子变压器供电方式,其中一台(母变压器)按 最大负荷配置,另一台(子变压器)按低负荷状态选择,就可以大大提高配电变压器利用率,降低配电变压器的空载损耗。针对农村中某些配变一年中除了少量高峰用电负荷外,长时间处于低负荷运行状态实际情况,对有条件的用户,也可采用母子变或变压器并列运行的供电方式。在负荷变化较大时,根据电能损耗最低的原则,投入不同容量的变压器。变压器的容 量是个功率单位(视在功率),用AV (伏安)或KVA(千伏安)表示。它是交流电压和交流

1模块化机械设计

1模块化机械设计 1.1模块及模块化的概念 模块是一组具有同一功能和结合要素(指联接部位的形状、 尺寸、连接件间的配合或啮合等),但性能、规格或结构不同却能 互换的单元。模块化则是指在对产品进行市场预测、功能分析的基础上划分并设计出一系列通用的功能模块,然后根据用户的 要求,对模块进行选择和组合,以构成不同功能或功能相同但性 能不同、规格不同的产品。 1.2模块化机械设计相关性 模块化设计所依赖的是模块的组合,即结合面,又称为接 口。为了保证不同功能模块的组合和相同功能模块的互换,模块 应具有可组合性和可互换性两个特征。这两个特征主要体现在 接口上,必须提高模块标准化、通用化、规格化的程度。对于模块化机械设计,可见其关键是怎样划分模块,这里主要通过综合考 虑零部件在功能、几何、物理上存在的相关性来划分模块。 (1)功能相关性零部件之间的功能相关性是指在模块划分 时,将那些为实现同一功能的零部件聚在一起构成模块,这有助 于提高模块的功能独立性。 (2)几何相关性零部件之间的几何相关性是指零部件之间 的空间、几何关系上的物理联接、紧固、尺寸、垂直度、平等度和同轴度等几何关系。 (3)物理相关性零部件之间的物理相关性是指零部件之间 存在着能量流、信息流或物料流的传递物理关系。 1.3模块化机械设计的优点 模块化机械设计在技术上和经济上都具有明显的优点,经 理论分析和实践证明,其优越性主要体现在下述几方面: (1)可使现在机械工业得到振兴,并向高科技产业发展; (2)减轻机械产品设计、制造及装配专业技术人员的劳动强 度; (3)模块化机械产品质量高、成本低,并且妥善解决了多品 种小批量加工所带来的制造方面的问题; (4)有利于企业根据市场变化,采用先进技术改造产品、开 发新产品; (5)缩短机械产品的设计、制造和供货期限,以赢得用户; (6)模块化机械产品互换性强,便于维修。 2模块化机械设计在UG中的实现 2.1总体构思 在用UG进行机械设计时,为了将常用件模块化,首先要把 常用件的三维模型表达出来。对于系列产品,可按照成组技术的 原理进行分类,一组相似的常用件建立一个三维模型,即所谓的 三维模型样板。根据UG参数化设计思想,一个三维模型样板可 认为是一组尺寸不同、结构相似的系列化零部件的基本模型。把

某电力变压器继电保护设计(继电保护)

1 继电保护相关理论知识 1.1 继电保护的概述 研究电力系统故障和危及安全运行的异常工况,以探讨其对策的反事故自动化措施。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件(发电机、变压器、输电线路等),使之免遭损害,所以沿称继电保护。 1.2.1 继电保护的任务 当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内,自动将故障设备从系统中切除,或发出信号由值班人员消除异常工况根源,以减轻或避免设备的损坏和对相邻地区供电的影响。 1.2.2继电保护基本原理和保护装置的组成 继电保护装置的作用是起到反事故的自动装置的作用,必须正确地区分“正常”与“不正常”运行状态、被保护元件的“外部故障”与“内部故障”,以实现继电保护的功能。因此,通过检测各种状态下被保护元件所反映的各种物理量的变化并予以鉴别。依据反映的物理量的不同,保护装置可以构成下述各种原理的保护:(1)反映电气量的保护 电力系统发生故障时,通常伴有电流增大、电压降低以及电流与电压的比值(阻抗)和它们之间的相位角改变等现象。因此,在被保护元件的一端装没的种种变换器可以检测、比较并鉴别出发生故障时这些基本参数与正常运行时的差别.就可以构成各种不同原理的继电保护装置。 例如:反映电流增大构成过电流保护; 反映电压降低(或升高)构成低电压(或过电压)保护; 反映电流与电压间的相位角变化构成方向保护; 反映电压与电流的比值的变化构成距离保护。 除此以外.还可根据在被保护元件内部和外部短路时,被保护元件两端电流相位或功率方向的差别,分别构成差动保护、高频保护等。 同理,由于序分量保护灵敏度高,也得到广泛应用。 新出现的反映故障分量、突变量以及自适应原理的保护也在应用中。

卡车三维参数化总布置设计系统

基于Pro/ENGINEER的卡车三维参数化总布置设计系统 摘要:介绍了在建立零部件图形库、底盘参数数据库、底盘设计标准库的基础上,通过Pro/ENGINEER软件进行二次开发建立的集成于Pro/ENGINEER环境下的卡车底盘参数化三维总布置设计系统。该系统的研制在一定程度上实现了卡车底盘的虚拟设计与虚拟开发。详细阐述了系统开发的基本原理和主要方法。 关键词:卡车总布置计算机辅助设计参数化 1 引言 产品设计通常可以分为创新设计和变型设计两类,在机械、汽车行业中,创新设计较少,大量的是变型设计,也就是在原有产品的基础上,按市场需求进行局部换型和调整、重组。变型设计的实现过程可以最大限度地利用企业已有的成熟产品资源,具有很强的灵活性和适应性,这也就要求企业实施平台化战略。 卡车是一种多品种、多系列的产品,新技术、新产品日益广泛的应用使得卡车的底盘的更新和换型周期不断缩短。卡车性能主要取决于底盘,卡车底盘设计制造水平的不断提高是卡车行业赖以发展的基础。同时,底盘作为平台战略的主要对象,它的快速设计与开发对企业产品平台化战略的实施也必将产生积极的作用。 车辆的总布置是整车开发的基础,其水平对整车产品质量和性能起决定性作用。现惯用的是二维平面方法,它要求总布置人员素质要高,必须对产品零部件相当熟悉且总布置工作必须做细,总布置过程当中要基本完成全部部件的布置,

部件设计人员不独立进行部件的布置。这种做法的优点是总布置人员站在整车的高度全局统筹考虑,一般不易发生由于部件之间缺乏沟通造成的干涉等矛盾;缺点是要求总布置人员具有相当丰富的专业知识和经验并且对各种繁杂的产品具有较深入的了解,对零部件掌握程度高,否则由于部件人员介入晚,一旦总布置出现问题极易影响开发进度和质量。 针对汽车总布置的性质和特点,结合企业实际,以大型CAD/CAE/CAM三维软件Pro/ENGINEER为基础进行二次开发,研制了卡车底盘总布置设计系统,同时采用部件设计人员参与部件布置、总布置与部件布置相结合同步进行的开发思路,使该系统操作简单,设计过程直观、高效,适用于轻卡底盘变型设计与开发。 2 Pro/ENGINEER软件 Pro/ENGINEER是美国PTC公司(Parametric Technology Corporation,参数技术公司)开发的三维造型设计系统,它以单一数据、参数化、基于特征、全相关性以及工程数据再利用等改变了传统机械设计的观念,为工业产品设计提供完整的解决方案,成为当今世界机械CAD领域的新标准,广泛应用于造型设计、机械设计、模具设计、加工制造、机构分析、有限元分析及关系数据库管理等各个领域。Pro/ENGINEER复合式建模工具较之纯参数化的系统更灵活和自由,可以有效利用已有的产品模型数据并充分发挥其在新产品设计中的价值,特别是其自顶向下的设计思路,运用Layout和骨架来传递和交流设计意图,大大提高了设计效率。Pro/ENGINEER软件还提供了强大的装配功能,包括定义不同零部件之间的位置约束关系,生成爆炸视图,进行零部件之间的干涉检查,并计算装配体的距离、总重、重心等各种物理属性等。

电力变压器继电保护设计

1 引言 继电保护是保障电力设备安全和防止及限制电力系统长时间大面积停电的最基本、最重要、最有效的技术手段。许多实例表明,继电保护装置一旦不能正确动作,就会扩大事故,酿成严重后果。因此,加强继电保护的设计和整定计算,是保证电网安全稳定运行的重要工作。实现继电保护功能的设备称为继电保护装置。本次设计的任务主要包括了六大部分,分别为运行方式的选择、电网各个元件参数及负荷电流计算、短路电流计算、继电保护距离保护的整定计算和校验、继电保护零序电流保护的整定计算和校验、对所选择的保护装置进行综合评价。其中短路电流的计算和电气设备的选择是本设计的重点。通过分析,找到符合电网要求的继电保护方案。 继电保护技术的不断发展和安全稳定运行,给国民经济和社会发展带来了巨大动力和效益。但是,电力系统一旦发生自然或人为故障,如果不能及时有效控制,就会失去稳定运行,使电网瓦解,并造成大面积停电,给社会带来灾难性的后果。因此电网继电保护和安全自动装置应符合可靠性、安全性、灵敏性、速动性的要求。要结合具体条件和要求,本设计从装置的选型、配置、整定、实验等方面采取综合措施,突出重点,统筹兼顾,妥善处理,以达到保证电网安全经济运行的目的。 在电力系统发生故障中,继电保护装置能够及时地将故障部分从系统中切除,从而保证电力设备安全和限制故障波及范围,最大限度地减少电力元件本身的损坏,降低对电力系统安全供电的影响,从而满足电力系统稳定性的要求,改善继电保护装置的性能,提高电力系统的安全水平。 2 课程设计任务和要求

通过本课程设计,巩固和加深在《电力系统基础》、《电力系统分析》和《电力 系统继电保护与自动化装置》课程中所学的理论知识,基本掌握电力系统继电保护设计的一般方法,提高电气设计的设计能力,为今后从事生产和科研工作打下一定的基础。 要求完成的主要任务: 要求根据所给条件确定变电所整定继电保护设计方案,最后按要求写出设计说明书,绘出设计图样。 设计基本资料: 某变电所的电气主接线如图所示。已知两台变压器均为三绕组、油浸式、强迫风冷、分级绝缘,其参数:MVA S N 5.31=,电压:kV 11/%5.225.38/%5.24110?±?±,接线:)1211//(//011--?y Y d y Y N 。短路电压:5.10(%)=HM U ; 6(%);17(%),==ML L H U U 。两台变压器同时运行,110kV 侧的中性点只有一台接地; 若只有一台运行,则运行变压器中性点必须接地,其余参数如图所示。(请把图中的L1的参数改为L1=20km ) ~ 图2.1变电所的电气主接线图

设计变压器的基本公式精编版

设计变压器的基本公式 为了确保变压器在磁化曲线的线性区工作,可用下式计算最大磁通密度(单位:T) Bm=(Up×104)/KfNpSc 式中:Up——变压器一次绕组上所加电压(V) f——脉冲变压器工作频率(Hz) Np——变压器一次绕组匝数(匝) Sc——磁心有效截面积(cm2) K——系数,对正弦波为4.44,对矩形波为4.0 一般情况下,开关电源变压器的Bm值应选在比饱和磁通密度Bs低一些。 变压器输出功率可由下式计算(单位:W) Po=1.16BmfjScSo×10-5 式中:j——导线电流密度(A/mm2) Sc——磁心的有效截面积(cm2) So——磁心的窗口面积(cm2) 3对功率变压器的要求 (1)漏感要小 图9是双极性电路(半桥、全桥及推挽等)典型的电压、电流波形,变压器漏感储能引起的电压尖峰是功率开关管损坏的原因之一。 图9双极性功率变换器波形 功率开关管关断时电压尖峰的大小和集电极电路配置、电路关断条件以及漏感大小等因素有关,仅就变压器而言,减小漏感是十分重要的。 (2)避免瞬态饱和

一般工频电源变压器的工作磁通密度设计在B-H曲线接近拐点处,因而在通电瞬间由于变压器磁心的严重饱和而产生极大的浪涌电流。它衰减得很快,持续时间一般只有几个周期。对于脉冲变压器而言如果工作磁通密度选择较大,在通电瞬间就会发生磁饱和。由于脉冲变压器和功率开关管直接相连并加有较高的电压,脉冲变压器的饱和,即使是很短的几个周期,也会导致功率开关管的损坏,这是不允许的。所以一般在控制电路中都有软启动电路来解决这个问题。 (3)要考虑温度影响 开关电源的工作频率较高,要求磁心材料在工作频率下的功率损耗应尽可能小,随着工作温度的升高,饱和磁通密度的降低应尽量小。在设计和选用磁心材料时,除了关心其饱和磁通密度、损耗等常规参数外,还要特别注意它的温度特性。一般应按实际的工作温度来选择磁通密度的大小,一般铁氧体磁心的Bm值易受温度影响,按开关电源工作环境温度为40℃考虑,磁心温度可达60~80℃,一般选择Bm=0.2~0.4T,即2000~4000GS。 (4)合理进行结构设计 从结构上看,有下列几个因素应当给予考虑: 漏磁要小,减小绕组的漏感; 便于绕制,引出线及变压器安装要方便,以利于生产和维护; 便于散热。 4磁心材料的选择 软磁铁氧体,由于具有价格低、适应性能和高频性能好等特点,而被广泛应用于开关电源中。 软磁铁氧体,常用的分为锰锌铁氧体和镍锌铁氧体两大系列,锰锌铁氧体的组成部分是Fe2O3,MnCO3,ZnO,它主要应用在1MHz以下的各类滤波器、电感器、变压器等,用途广泛。而镍锌铁氧体的组成部分是Fe2O3,NiO,ZnO 等,主要用于1MHz以上的各种调感绕组、抗干扰磁珠、共用天线匹配器等。 在开关电源中应用最为广泛的是锰锌铁氧体磁心,而且视其用途不同,材料选择也不相同。用于电源输入滤波器部分的磁心多为高导磁率磁心,其材料牌号多为R4K~R10K,即相对磁导率为4000~10000左右的铁氧体磁心,而用于主变压器、输出滤波器等多为高饱和磁通密度的磁性材料,其Bs为0.5T(即5000GS)左右。 开关电源用铁氧体磁性材应满足以下要求:

电力变压器课程设计

1 前言 随着工农业生产和城市的发展,电能的需要量迅速增加。为了解决热能资源(如煤田)和水能资源丰富的地区远离用电比较集中的城市和工矿区这个矛盾,需要在动力资源丰富的地区建立大型发电站,然后将电能远距离输送给电力用户。同时,为了提高供电可靠性以及资源利用的综合经济性,又把许多分散的各种形式的发电站,通过送电线路和变电所联系起来。这种由发电机、升压和降压变电所,送电线路以及用电设备有机连接起来的整体,即称为电力系统。 电力系统是有各种电力系统元件组成的,它们包括发电、输变电、负荷等机械、电气主设备以及控制、保护等二次辅助设备。WDT-Ⅲ型电力系统综合自动化试验系统是一个完整的电力系统典型模型,它为我们提供了一个自动化程度很高的多功能实验平台,是为了适应现代化电力系统对宽口径“复合型”高级技术人才的需要而研制的电力类专业新型教学试验系统。 本设计所要完成的工作是利用VC语言开发WDT电力系统综合自动化实验台监控软件,主要是完成准同期控制器监控软件的编写,它要求能显示发电机及无穷大系统的相关参数,如电压、频率和相位角,并能发送准同期合闸命令。

2 电力系统实验台 WDT-Ⅲ型电力系统综合自动化实验教学系统主要由发电机组、试验操作台、无穷大系统等三大部分组成(如图2.1所示)。 图 2.1 WDT-Ⅲ型电力系统综合自动化试验系统 2.1 发电机组 该系统的发电机组主要由原动机和发电机两部分构成,另外,它还包括了测速装置和功率角指示器(用于测量发电机电势与系统电压之间的相角 ,即发电机转子相对位置角),测得的发电机的相关数据传输回实验操作台,与无穷大系统的相关参数进行比较,从而确定系统是否满足了发电机并网条件。 2.1.1 原动机 在实际的发电厂中,原动机一般用的是水轮机、气轮机、柴油机或者其他形式的动力机械,将水流,气流,燃料燃烧或原子核裂变产生的能量转换为带动发电机轴旋转的机械能,从而带动发电机转子的旋转。 在WDT-Ⅲ型电力系统综合自动化试验台的发电机组中,原动机是由直流发电机(P N=2.2kW,U N=220V)模拟实现其功能的。直流电动机(模拟原动机)与发电机的结

三维参数化设计现状

三维参数化设计的发展现状 最佳答案 在国内大多数人,不习惯三维,精通的更少 很多人,只是把三维作为,设计后的产品演示 从草图规划开始,就是直接用三维设计的人及其比较少。 根据三维三维模型进行有限元分析的也不多。 直接用三维做设计,对个人的软件操作水平要求比较高,老工程师学不了,没有相关知识积累。 新人,对软件应用不够深入,只会皮毛 其发展到目前为止可以分为3个阶段。1995年至2000年是第一阶段,此阶段是三维动画的起步以及初步发展时期。在这一阶段,皮克斯/迪斯尼是三维动画影片市场上的主要玩家。 2001年至2003年为第二阶段,此阶段是三维动画的迅猛发展时期。在这一阶段,三维动画从“一个人的游戏”变成了皮克斯和梦工场的“两个人的撕咬”:你(梦工场)有怪物史瑞克,我(皮克斯)就开一家怪物公司;你(皮克斯)搞海底总动员,我(梦工场)就发动鲨鱼黑帮。 从04年开始,三维动画影片步入其发展的第三阶段———全盛时期。在这一阶段,三维动画将演变成“多个人的游戏”:华纳兄弟电影公司推出圣诞气氛浓厚的《极地快车》;曾经成功推出《冰河世纪》的福克斯再次携手在三维动画领域与皮克斯、梦工场的PDI齐名的蓝天工作室,为人们带来《冰河世纪2》……此外,皮克斯推出自己的第一部独立影片《蹩脚炖菜》。而迪斯尼也将推出第一部独立制作的三维动画影片《小鸡》。至于梦工场,则制作了《怪物史瑞克3》,并且将《怪物史瑞克4》的制作也纳入了日程之中 浅谈三维CAD发展现状 出处:日期:2005-10-28 三维服装CAD有别于二维CAD的地方在于:它是在通过三维人体测量建 立起的人体数据模型的基础上,对模型进行交互式三维立体设计,然后 再生成二维的服装样片。它主要解决的问题是人体三维尺寸模型的建立 及局部修改、三维服装原型设计、三维服装覆盖及浓淡处理、三维服装 效果显示特别是动态显示和三维服装与二维衣片的可逆转换等方面。 三维服装CAD的基础是三维人体测量。目前三维人体测量系统在国外已经商品化,其技术已经较为成熟,其中法国、美国、日本等国利 用自然光光栅原理,分别用40毫秒、10秒、1.8秒,即可完成三维人 体数据的测量。国际上常用的三维人体测量技术一般都是非接触式的,

UG的参数化建模方法

UG的参数化建模方法及三维零件库的创建 2009-06-03 08:40:32 来源: 作者: 【大中小】浏览:66次评论:1条 摘要: UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。其参数化功能能够很好反映设计意图,参数化模型易于修改。本文以UGNX为支撑平台,介绍了三维参数化建模的基本思想和实现方法,结合实例分析了三维零件参数化模型的建立步骤,并创建立一个简单的零件库。 关键词:UGNX,参数化,标准件库 一.引言 CAD技术的应用目前已经从传统的二维绘图逐步向三维设计过渡。从实现制造业信息化的角度来说,产品的三维模型可以更完整地定义和描述设计及制造信息。在产品设计和开发过程中,零部件的标准化、通用化和系列化是提高产品设计质量、缩短产品开发周期的有效途径,而基于三维CAD系统的参数化设计与二维绘图相比更能够满足制造信息化的要求。UGNX是美国EDS公司的CAD/CAE/CAM一体化软件,具有强大的参数化设计功能,在设计和制造领域得到了广泛的应用。本文以UGNX为支撑平台,介绍了三维参数化建模的实现方法,结合实例分析了一种三维零件库的建立方法。 二.参数化设计思想 在使用UG软件进行产品设计时,为了充分发挥软件的设计优势,首先应当认真分析产品的结构,在大脑中构思好产品的各个部分之间的关系,充分了解设计意图,然后用UG提

供的强大的设计及编辑工具把设计意图反映到产品的设计中去。因为设计是一项十分复杂的脑力活动,一项设计从任务的提出到设计完成从来不会是一帆风顺的,一项设计的完成过程就是一个不断改进、不断完善的过程,因此,从这个意思上讲,设计的过程就是修改的过程,参数化设计的目的就是按照产品的设计意图能够进行灵活的修改,所以它的易于修改性是至关重要的。这也是UG软件为什么特别强调它的强大的编辑功能的原因。

模块化设计

模块化设计技术的研究现状 模块化设计[15]的概念在20世纪50年代由欧美一些国家正式提出,随后得到越来越广泛的关注和研究[16,17,18]。模块化设计方法已经在机械(如数控机床、模具、减速箱、工业汽轮机)、电工电子(如微机、通信设备、电动控制仪表)、船舶、建筑、电力、武器装备(如方舱、雷达、航空电子设备)等行业中得到广泛应用[19],并取得了显著的效益。Huan和Kusiak[20,21]等对模块化产品开发研究现状进行了评述,指出了一些有待深入研究的问题。 1.模块化相关概念的研究 对于模块化设计,目前还没有公认的权威性定义。许多学者根据各自的研究,从不同的角度对其进行了表述。 文献[22][z22]认为,模块化设计综合考虑系统对象,把系统按功能分解成不同用途和性能的模块,并使之接口标准化,选择不同的模块(必要时设计部分专用模块)以迅速组成适应用户不同需求的产品。 文献[23][z23]认为:模块化设计是在对一定范围内的不同功能或相同功能不同性能、不同规格的产品进行功能分析的基础上,划分并设计出一系列功能模块,通过模块的选择和组合可以构成不同的产品,以满足市场不同需求的设计方法。 文献[24][z24]认为,模块是一组同时具有相同功能和相同结合要素,而具有不同性能或用途甚至不同结构特征,但能互换的单元,模块化设计是基于模块的思想,将一般产品设计任务设计成模块化产品方案的设计方法。它包括两方面内容:一是根据新设计要求进行功能分析,合理创建出一组模块—即模块创建;二是根据设计要求将一组存在的特定模块合理组合成模块化产品方案—即模块综合。 Ulrich[[c25]25]提出模块化与设计中的两个特点紧密相关:1)设计中功能域与物理结构域之间的对应程度影响模块化的程度;2)产品物理结构间相互影响程度的最小化。这两点从设计学角度指出了影响模块化设计的基本因素,首先是在系统分析规划时,采用适当的方法对设计过程中各个部分,尤其是产品的功能域、结构域以及二者之间映射关系的合理分析,是模块化设计技术的关键影响因素。其次,要保证模块的功能、结构的相对独立性,即将模块之间相互影响的因素尽量减小。 Suh[c26]26]从功能-设计参数映射的角度定义模块化设计:模块化设计是一种分析结果的产生,这种结果以产品、过程和系统的形式表现,并满足预定的需求,其方法是选择适当的设计参数(DPs)完成从功能需求域(FRsspace)到设计参数域(DPs space)的映射,即,[FR]=[A]?[DP],[A]是设计矩阵。 Pahl和Beitz[27][c27]认为模块化设计是完成从功能需求域到模块功能域的映射,然后在考虑模块性能(如尺寸、重量等)基础上完成从模块功能域到模块结构域的映射,并将模块功能域的功能分为基本功能BF、附加功能AF、适应性功能AdF、专用功能CF、用户定制功能SF五类,相应地将模块结构定义为基本模块BM、附加模块AM、适应性模块AdM、专用模块第一章绪论6CM、用户定制模块SM。 文献[28]针对液压机结构尺寸无明显分级特性,而产品构成链具有固定结构形式的特点提出广义模块化设计的概念,通过模块模板的构造对液压机实施模块化设计。 2001年5月在美国密歇根大学召开的CIRP第一届柔性、可重构制造国际会议[29]以可重构制造系统[30,31]为主题,可重构制造的一项重要内容就是可重构机床(Reconfigurable Machine tools)的研究和开发。可重构机床[32,33]也是一种模块化机床,在设计时要求充分考虑机床使用中的可重构性,包括产品功能、结构和布局的重组,以及当机床与其它设备如物流系统集成而形成的生产线的重组。 还有一些关于模块化设计概念的定义和研究,这里不再列举。就上述提法来看,基本上都体现了模块化设计的特征和要点

电力变压器设计分析

所需输入数据 一般数据 1.制造商 2.变压器类型(例如:移动式、变电站用、整流器用等)3.数据来源:测试数据或规格参数 3.a.频率 4.自耦变压器:是或不是 5.空载损耗 6.负载损耗kW值以及在标准接线端和中间抽头处的基准温度7.阻抗在额定功率MV A基本接点和抽头位置处的阻抗8.铁芯与线圈总重量 9.额定容量每个绕组的MV A值 10.冷却方式 11.针对每一种额定容量及冷却方式,给出: a)顶层变压器油的温升 b)各绕组引起的温升 c)绕组的平均温升 12.绕组数目以及在铁芯上的位置 13.每个绕组的BIL(绝缘基本冲击耐压水平) 14.每个绕组的额定电压 15.每个绕组的连接形式:星型或三角型 16.每个绕组单相的电阻 17.每个绕组并联的电路数 18.有无低温冷却方式:有或没有 如果有:用在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数 接线位置数 连接方式 19.有无“无负载”抽头:有或没有 如果有:在哪个绕组上? 最大抽头电压 最小抽头电压 该绕组的抽头数

所需输入数据(续) 铁芯数据 20.截面积:毛截面与净截面 21.铁芯:a) 共有多少条 b) 每条的宽度 c) 每条的叠数 d) 芯体的周长或直径 22.通量密度 23.窗口尺寸:高度及宽度 23.a.窗口中心线的位置 24.接缝方式:全斜角接缝或半斜角接缝 25.材料:钢材等级及钢片厚度 25.a.在基准通量密度下的瓦/公斤数: 空隙数据 26.间隙:铁芯与绕组导线之间的空隙 27.间隙:绕组与绕组之间(绕组的导线与导线之间)的空隙28.间隙:相与相之间(导线与导线之间)的空隙 29.每个绕组的留空系数[1] 30.每个绕组的填充和抽头空间[2](沿高度的方向) 31.每个绕组的边缘距离 a)导线至线圈边缘 b)导线至铁芯箍圈 31a.每个绕组的高度: 径向: 轴向: 32.每个绕组的线槽: 径向:数量及尺寸[3] 轴向:数量及尺寸[4]

电力变压器设计原则

电力变压器设计原则 1.铁心设计 1.1铁心空载损耗计算:P 0=k p ?p 0?G W 其中:k p ——铁心损耗工艺系数,见表2; p 0——电工钢带单位损耗(查材料曲线),W/kg ; G ——铁心重量,kg 。 1.2铁心空载电流计算 空载电流计算中一般忽略有功部分。 (1)三相容量≤6300 kV A 时: 1230()10t f N G G G k q S n q I S ++??+??= ? % 其中:G 1、G 2、G 3——分别为心柱重量、铁轭重量、角重,kg ; k ——铁心转角部分励磁电流增加系数,全斜接缝k=4; q f ——铁心单位磁化容量(查材料曲线),V A/ kg ; S ——心柱净截面积,cm 2; S N ——变压器额定容量,k V A ; n ——铁心接缝总数,三相三柱结构n=8; q j ——接缝磁化容量,V A/ cm 2,根据B m 按表1进行计算。

(2)三相容量>6300 kV A :010i t N k G q I S ??= ? % k i ——空载电流工艺系数,见表2; G ——铁心重量,kg ; q t ——铁心单位磁化容量(查材料曲线),V A/ kg ; S N ——变压器额定容量,k V A 。 表2 铁心性能计算系数(全斜接缝) 注(1)等轭表示铁心主轭与旁轭的截面相等。 1.3铁心圆与纸筒之间的间隙见表3 表3 铁心圆与纸筒间隙 1.4铁心直径与撑条数量关系见表4 表4 铁心直径与撑条数量关系 续表4 铁心直径与撑条数量关系

1.5铁心直径与夹件绝缘厚度关系见表5 2.绝缘结构 2.1 10kV级变压器 2.1.1纵绝缘结构 (1)高压绕组(LI75 AC35) 1)饼式结构 导线匝绝缘0.45,绕组不直接绕在纸筒上,所有线段均垫内径垫条1.0mm;各线饼轴向油道宽度见表15;分接段位于绕组中部。 中断点油道 4.0mm,分接段之间(包括分接段与正常段之间)油道2.0mm,正常段之间0.5mm纸圈。整个绕组增加9.0mm调整油道。 2)层式结构 层式绝缘:首层加强0.08×2,第2层与末层加强0.08×1。当绕组不直接绕在纸筒上时,所有线段均垫内径垫条1.0mm。 (2)低压绕组(AC5) 当绕组不直接绕在纸筒上时,所有线段垫内径垫条 1.0mm,所有线段之间垫0.5mm纸圈。。 当高压绕组为饼式结构时,对应高压分接段处应注意安匝平衡。 2.1.2主绝缘结构 (1)铁心圆与纸筒之间的间隙见表3;低压绕组内纸筒厚2.0mm。当

1、电力变压器仿真模型的设计

电力变压器仿真模型的设计 摘要 随着电力系统的飞速发展,对变压器的保护要求也越来越高。研究三相变压器地暂态过程,建立一个完善的变压器仿真模型,对变压器保护方案的设计具有非常重要地意义。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键词:三相变压器、励磁涌流、仿真、数学模型

Abstract Along with the electric power system’ development, the request of the protection of the transformer is more and more high. It has count for much meaning to the transformer protecting project to study the transient of a three-phase transformer, and found a perfect three-phase transformer’s digital model. This paper is worked with Matlab, analyzes the current methods of transformer’s digital model. In single-phase transformer, it is analyzed that the inrush current in saturate and unsaturated states, and the characters of the single-phase transformer’s inrush current. In three-phase transformer, with the foundation of the method of compressing curves, we use respectively two modified functions, and two modified functions and two straight line to establish four kinds of transformer’s digital model, such as Yd11, Ynd11, Yny0, Yy0, and realize these with Matlab. After analyzing the wave form of the three-phase transformer’s inrush current and hysteresis, and the characters of three-phase transformer’s inrush current, it is concluded that the primary factors which affect three-phase transformer’s inrush current. Finally, after analyzing the advantages and disadvantages of two methods, a good digital model of three-phase transformer is established. Keywords:three-phase transformer, inrush current, simulation, digital model

相关文档
相关文档 最新文档