文档库 最新最全的文档下载
当前位置:文档库 › 基于keil C51实现对变极性等离子焊控制系统编程

基于keil C51实现对变极性等离子焊控制系统编程

等离子弧焊

等离子弧焊 一、等离子弧及其形成 等离子弧是在钨极氩弧焊的基础上发展起来的一种焊接方法。钨极氩弧焊使用的热源是常压状态下的自由电弧,简称自由钨弧。等离子弧焊用的热源则是将自由钨弧压缩强化之后而获得电离度更高的电弧等离子体——等离子弧。两者在物理本质上没有区别,仅是弧柱中电离程度上的不同。经压缩的电弧其能量密度更为集中,温度更高。 目前广泛应用压缩电弧的方法将产生钨极氩弧的钨极缩入到焊枪的喷嘴内部,并在喷嘴中通入等离子气,强制电弧从喷嘴的孔道通过。这样电弧就受到了三种压缩——机械压缩、冷收缩、弧柱磁收缩。于是弧柱导电截面缩小,电流密度增大。 改变喷嘴孔径和孔道长度,可在一定范围内调节弧柱的压缩程度。通入冷离子气的作用①作为产生等离子弧的气体介质②冷却电弧③使弧柱周围形成一层良好的电阻和热阻的“冷气壁”,使电弧稳定。 二、等离子弧特性与自由钨弧相比,有如下特点 1、能量特性 等离子弧的最大压降是在弧柱区,因为弧柱被强烈压缩,使电场强度明显增大。因此等离子弧焊主要是利用弧柱等离子体热来加热金属。 另外,等离子弧能量密度可达100000~1000000W/cm2,比自由钨弧高,其温度可达18000~24000K,比自由钨弧高很多。 2、静特性

其静特性曲线接近U形。在小电流时,等离子弧为缓降或平的,易与电源外特性相交建立稳定工作点。 3、等离子弧形态 等离子弧成圆柱形,扩散角约5度,焊接时,当弧长发生波动时,母材的加热面积不会发生明显变化。 4、等离子弧的挺直度 由于等离子弧是自由钨弧经压缩而成,故挺度比自由钨弧好,焰流速度大,可达每秒300米以上,因而指向性好,喷射有力,其熔透能力强。 三、等离子弧的类型 按电源联接方式和形成等离子弧的过程不同,等离子弧有转移型、非转移型和联合型三种 1、非转移型等离子弧电源接于钨极和喷嘴之间,在离子气流押送下,弧焰从喷嘴中喷出,形成等离子焰。工件本身不导电,而是被间接加热,因此热的有效利用率不高。主要用于焊接金属薄板、喷涂和许多非金属材料的切割与焊接。 2、转移型等离子弧电源接于钨极和工件之间。因该电弧难以形成,需在喷嘴上接入正极,先在钨极与喷嘴之间引燃电流较小的等离子弧,为工件和电极之间提供足够的电离度。然后迅速接通钨极和工件之间的电路,使该电弧转移到钨极和工件之间直接燃烧,随即切断喷嘴与钨极之间的电路。 3、联合型等离子弧是上述两种的并存

keil c51 详细中文手册

Keil C51使用详解 V1.0 第一章 Keil C51开发系统基本知识 (6) 第一节系统概述 (6) 第二节Keil C51单片机软件开发系统的整体结构 (6)

1. C51 for Dos 7 2. C51 for Windows的安装及注意事项: (7) 第四节Keil C51工具包各部分功能及使用简介 (7) 1. C51与A51. 7 2. L51和BL51. 8 3. DScope51,Tscope51及Monitor51. 8 4. Ishell及uVision. 9 第二章 Keil C51软件使用详解 (10) 第一节Keil C51编译器的控制指令 (10) 1. 源文件控制类 (10) 2. 目标文件(Object)控制类: (10) 3. 列表文件(listing)控制类: (10) 第二节dScope51的使用 (11) 1. dScope51 for Dos 11 2. dScope for Windows 12 第三节Monitor51及其使用 (13) 1. Monitor51对硬件的要求 (13) 2. Mon51的使用 (13) 3. MON51的配置 (13) 4. 串口连接图: (13) 5. MON51命令及使用 (14) 第四节集成开发环境(IDE)的使用 (14) 1. Ishell for Dos的使用 (14) 2. uVision for windows的使用 (15) 第三章 Keil C51 vs 标准C.. 15

第二节内存区域(Memory Areas): (16) 1. Pragram Area: (16) 2. Internal Data Memory: 16 3. External Data Memory. 16 4. Speciac Function Register Memory. 16 第三节存储模式 (16) 1. Small模式 (16) 2. Compact模式 (17) 3. large模式 (17) 第四节存储类型声明 (17) 第五节变量或数据类型 (17) 第六节位变量与声明 (17) 1. bit型变量 (17) 2. 可位寻址区说明20H-2FH.. 18 第七节Keil C51指针 (18) 1. 一般指针 (18) 2. 存储器指针 (18) 3. 指针转换 (18) 第八节Keil C51函数 (19) 1. 中断函数声明: (19) 2. 通用存储工作区 (19) 3. 选通用存储工作区由using x声明,见上例。 (19) 4. 指定存储模式 (19) 5. #pragma disable. 19 6. 递归或可重入函数指定 (19)

等离子弧焊的研究现状及发展趋势

等离子弧焊的研究现状及发展趋势 1 概述 等离子弧焊发明于1953年,英文学名为“Plasma Arc Welding”,缩写为PAW,由钨极氩弧焊发展而成,是该领域内的一项重大技术创新。等离子弧焊与原始的TIG焊相比,具有优质、高效、经济等优点,早在上世纪60年代初已成功用于金属制品生产。近20年来,等离子弧焊技术获得了进一步的发展,并成为现代焊接结构制造业中不可缺少的精密焊接工艺方法,在压力容器、管道、航天航空、石化装置、核能装备和食品及制药机械生产中得到普遍的推广应用,可以焊接普通优质碳钢、低合金钢、不锈钢、镍基合金、铜镍合金、钛、钽、锆及其合金和铝及其合金等金属材料。 为充分发挥等离子弧焊方法的潜在优势,增强其工艺适应性,进一步扩大应用范围,已开发出各种等离子弧焊工艺方法,如微束等离子弧焊、熔透型(弱等离子)等离子弧焊、锁孔型等离子弧焊、脉冲等离子弧焊、交流变极性等离子弧焊、等离子弧钎焊和等离子弧堆焊等。可以预料,等离子弧焊必将在现代工业生产中发挥出愈来愈重要的作用。 2 等离子弧焊的基本工作原理 等离子弧焊是早期对焊接电弧物理深入研究的最重要的成果之一。通过试验研究发现,在任何一种焊接电弧中,都存在温度超过3000℃的等离子区,但在自由状态的电弧中,这一区域的尺寸显得过小,且紧靠阴极,未能充分发挥其作用。TIG焊自由状态电弧的形貌成锥形,大部分能量被散失,电弧的热效率很低,从而大大降低了焊接效率。为充分利用电弧的能量,自然萌发出将电弧柱进行压缩,使其能量集中的想法,并逐步形成了等离子弧焊的设计思想。 等离子弧是一种被压缩的钨极氢弧,或者说是一种受约束的非自由电弧。一般情况下,借助于水冷喷嘴的约束作用,等离子体电弧弧柱在压缩作用下形成压缩电弧,即等离子弧。等离子弧由特殊结构的等离子体发生器产生,具有热压缩效应、机械压缩效应以及电磁压缩效应的特点。根据电极接电方式,等离子弧可以分为非转移型等离子弧和转移型等离子弧。 非转移型等离子弧的电极接负极,喷嘴接正极,电极与喷嘴之间产生等离子

Keil C51 集成开发环境的使用实验报告

Keil C51 集成开发环境的使用 姓名:专业:学号:成绩: 一、实验目的 1、熟悉Kei C51集成开发环境的基本操作; 2、掌握简单Kei C51和汇编程序的编写、调试。 二、实验内容 1、仔细阅读教材相关内容,掌握KeiC51集成开发环境的基本功能; 2、分别用汇编和C51编写清零程序,把片外RAM中的7000H-70FFH单元 中内容清零; 3、分用汇编和C51编写查找相同个数程序。统计片外RAM7000H-700FH中 “00H”的个数并保存在片内RAM30H单元中。 三、实验原理与步骤 1、清零程序 (1)汇编语言程序设计框图 (2)实验步骤 用连续或单步方式运行程序,检查7000H-70FFH单元中执行内容变化。 (3)假使把7000H-70FFH中的内容改成FFH,如何修改程序。 (4)用C51 重新编写该程序,运行并查看结果。 2、查找相同数个数 (1)汇编语言程序设计框图

(2)实验步骤 ①在7000H-700FH单元中放入随机数,其中几个单元输入0; ②用连续或单步方式运行程序; ③观察片内RAM 30H的内容,应显示“00H”的个数。 (3)用C51重新编写程序,运行并查看结果。 四、实验程序 1、清零程序 (1)汇编语言 ORG 0000H MOV R0,#0100H MOV DPTR,#7000H MOV A,#0 LOOP:MOVX @DPTR,A INC DPTR DJNZ R0,LOOP END (2) C语言 #include void main() { char xdata *p=0x7000; int t=0x7100-0x7000 ; while(t--) {*p=00; p++; } } 2、查找相同数个数

2219铝合金变极性等离子弧穿孔焊接

23 制造技术研究 2219铝合金变极性等离子弧穿孔焊接工艺研究 陆成虹 罗志强 杨学勤 林立芳 (上海航天精密机械研究所,上海 201600) 摘要:采用上坡焊的方法,以不同的焊接倾角对2219铝合金进行变极性等离子弧穿孔焊接。通过对不同焊接倾角条件下得到的焊缝进行焊缝成形、焊缝尺寸、显微组织及焊缝强度的分析,得出不同焊接倾角对变极性等离子弧穿孔焊接的影响。结果表明,当焊接倾角小于20°时,焊缝不能良好成形;当倾角小于40°时,焊缝区有少量气孔。 关键词:2219铝合金;变极性等离子弧;上坡焊 Investigation of VPPA Welding Processing for 2219 Aluminum Alloy Lu Chenghong Luo Zhiqiang Yang Xueqin Lin Lifang (Shanghai Spaceflight Precision Machinery Research Institute, Shanghai 201600) Abstract :Variable polarity plasma arc (VPPA) welding is used with upward welding in the inclined position with different angles for 2219 aluminum alloy, then studying the weld shape, the weld size, microstructures and weld strength of welded joint obtained at different angles. The results indicate that when the angle of inclination for welding is less than 20 degree, welded joint cannot form well; when the angle of inclination for welding is less than 40 degree, weld zone has little gas pore. Key words :2219 aluminum alloy ;VPPA ;upward welding in the inclined position 1 引言 2219铝合金在-250℃到250℃的温度范围内仍能保持良好的力学性能和断裂韧性,因此被广泛用作航空、航天、军事以及一些民用领域的焊接结构材料。但是2219铝合金在熔焊时存在接头强度系数低的问题,通常只有母材强度的60%;且气孔倾向性较大[1 , 2] 。 变极性等离子弧焊接铝合金时,焊件不需要开坡 口,节省了焊前制备时间;焊道窄,焊接变形小,且单面一次焊双面自由成形;立向上焊接时有利于排除焊缝中的夹气和夹杂物,可获得无缺陷焊缝[3 ,4] 。但 在实际生产中,多数焊缝为空间曲线焊缝,要使空间曲线焊缝在焊接时始终保持立向上焊有一定的困难, 因而采用倾斜焊的焊接位姿。与立向上焊接相比,倾斜焊不利于熔池中气孔的排出,且在相同焊接规范不同倾角焊接时,熔池受到重力、电弧力等的作用,焊缝成形不均一,在倾角大时,熔池易发生下塌。 2 试验材料与方法 图1 焊接方法示意图 作者简介:陆成虹(1984?),硕士,飞行器设计专业;研究方向:焊接自动化。 收稿日期:2009-11-19

等离子弧焊

等离子弧焊接(WP 15) 一、等离子弧焊原理及方法分类 1. 等离子弧: 是等离子体组成。自由电弧被强迫压缩后,电流密度增加,导致电弧温度升高,电离度增大,中性气体充分电离,就形成等离子弧。 2.等离子弧产生的三要素 (1)机械压缩作用: 利用水冷喷嘴孔道限制弧柱直径,提高弧柱的能量密度和温度。 (2)热收缩作用: 由于水冷喷嘴,在喷嘴内壁建立一层冷气膜,迫使弧柱导电断面进一步减小,电流密度进一步提高。这叫热收缩,也叫热压缩。 (3)磁收缩作用: 弧柱电流本身产生的磁场对弧柱再压缩作用。也叫磁收缩效应。电流密度越大,磁收缩作用越强。 3.等离子弧的特点 (1)能量集中(能量密度105~6 W/cm2TIG自由电弧<10 4W/cm2)。 (2)温度高(18000K~24000K)。 图1 自由电弧和等离子弧的比较图

4.等离子弧的三种基本形式 (1)非转移型等离子弧 钨极为负,喷嘴为正,钨极与喷嘴之间产生等离子弧。(等离子束焊接) 图2 非转移型等离子弧示意图 (2)转移型等离子弧 钨极为负,工件为正,钨极与喷嘴之间先引弧后,转移到钨极与工件之间产生等离子弧。(等离子弧焊接) 图3 转移型等离子弧示意

(3)联合型等离子弧 非转移型和转移型弧同时并存。主要用于微束等离子弧焊、粉末堆焊等方面。 图4 联合型等离子弧示意图 5.等离子弧焊基本方法 (1)小孔型等离子弧焊(穿孔、锁孔、穿透焊) 利用能量密度大和等离子流力大的特 点,将工件完全熔透并产生一个贯穿工件的 小孔,熔化金属被排挤在小孔的周围,沿着 电弧周围的熔池壁向熔池后方移动,使小孔 跟着等离子弧向前移动,形成完全熔透的焊 缝。 一般大电流等离子弧(100~300安培) 时采用该方法。 图5 小孔型等离子弧焊焊缝成形原理

等离子弧焊原理及操作安全

等离子弧焊原理及操作安全 什么是等离子弧焊?试述等离子弧的产生方法。 借助水冷喷嘴对电弧的拘束作用,获得高能量浓度的等离子弧进行焊接的方法称为等离子弧焊。 等离子弧是自由电弧压缩而成,它是通过以下三种压缩作用获得的,机械压缩效应示意图见图22。 1.机械压缩将电弧强制通过具有小孔径喷嘴的孔道,使电弧受到压缩。 2.热压缩当等离子气体(Ar、N气)以一定的速度和流量经喷嘴时,靠近电弧一侧的气体通过弧柱,吸收大量热量而电离,成为等离子弧的一个组成部分。但是靠近喷嘴内壁的气体,由于受到喷嘴强烈的冷却作用,形成一个冷气套,迫使弧柱截面进一步缩小称为热压缩。 3.磁压缩弧柱电流是一束平行的同向电流线,必然产生往内的收缩力。当电弧受到机械压缩和热压缩之后,截面缩小,因而电流密度增大,由此产生的电磁收缩力必然增大,形成磁压缩。 试述等离子弧的类型。 按电源连接方式的不同,等离子弧有非转移型、转移型和联合型三种形式见图23。

⑴非转移型等离子弧钨极接电源负端,焊件接电源正端,等离子弧体产生在钨极与喷嘴之间,在等离子气体压送下,弧柱从喷嘴中喷出,形成等离子焰。 ⑵转移型等离子弧钨极接电流负端,焊件接电流正端,等离子弧产生的钨极和焊件之间。因为转移弧能把更多的热量传递给焊件,所以金属焊接、切割几乎都是采用转移型等离子弧。 ⑶联合型等离子弧工作时非转移弧和转移弧同时并存,故称为联合型等离子弧。非转移弧起稳定电弧和补充加热的作用,转移弧直接加热焊件,使之熔化进行焊接。主要用于微束等离子弧焊和粉末堆焊。 56 试述转移型等离子弧的产生方法。 为建立转移型等离子弧,应将钨极接电源负极,喷嘴和焊件同时接正极,转移型弧示意图见图24。首先接通钨极与喷嘴之间的电路,引燃钨极与喷嘴之间的电弧,接着迅速接通钨极和焊件之间的电路,使电弧转移到钨极和焊件之间直接燃 烧,同时切断钨极和喷嘴之间的电路,转移型等离子弧就正式建立。

KeilC51使用详解

KeilC51使用说明 首先启动Keil μVision2程序,首次进入 Keil μVision2的编辑界面如图1所示,否则,会打开用户前一次处理的工程。 图1 首次进入Keil μVision2的编辑界面 下面通过简单的编程、调试,引导大家学习Keil μVision2软件中Keil Monitor-51 Driver 仿真器的基本使用方法和基本调试技巧。 1 工程的建立 单击“项目->新建项目…”菜单,弹出创建新工程对话框,如图2所示。选择你要保存的路径, 输入工程文件的名字, 不需要输入扩展名。比如保存到JY_E2X00目录里,工程文件的名字为 Test1,如图(2)所示,然后点击“保存”,保存后的文件扩展名为.uv2,这是KeilμVision2项 目文件扩展名。以后我们可以直接点击此文件来打开已创建的工程。 图2 创建新工程对话框

这时会弹出一个对话框,要求选择目标CPU(即用户所用单片机的型号),Keil μVision 几乎支持所有的51内核的单片机,我们以AT89S52芯片为例,如图3所示, 在左侧的Data base列表框中点击Atmel前面的“+”号,展开该层,选中AT89S52,在其右边的Description显示区域。中是对这个单片机的基本描述,然后再点击“确定”按钮. 图3 为工程选择目标CPU 窗口会出现询问是否添加startup.a51,如图4:请选择“否”。 图4 此时,在工程窗口的文件页中,出现了“Target 1”,前面有“+”号,点击“+”号展开,可以看到下一层的“Source Group1”,这时的工程还是一个空的工程,里面什么文件也没有,需要为这个工程添加文件。如图5所示。

如何使用KeilC51创建一个工程文件

如何使用KeilC51创建一个工程文件 建立一个项目: 点击工程菜单中选择弹出的下拉式菜单中的新建工程...,接着弹出一个标准Windows 文件对话窗口,在"文件名"中输入您的第一个程序项目名称,这里我们用"test",这是笔者惯用的名称,大家不必照搬就是了,只要符合Windows文件规则的文件名都行。"保存"后的文件扩展名为uv2,这是KEIL uVision2项目文件扩展名,以后我们可以直接点击此文件以打开先前做的项目 。 这时会弹出让你选择单片机型号的对话框,我们选择A TMEL---A T89C51

然后点击Target 1前面的“+”,出现Source Group 1,选中右键点选“增加文件到组Source Group 1” 这时选择文件类型为Asm 源文件,再选中001.asm文件,再按添加,在随后出现的提示框中按“确定” 仿真器采用Mon51协议,在使用之前应必须对软件项目进行如下设置: 1、单击工程菜单,再在下拉菜单中单击"目标target 1属性" 在下图中,单击"Target"输入仿真器的工作频率(11.0592MHz)

2、在调试菜单中点选"Keil Monitor-51 Driver",即选择了STC89C516RD硬件仿真器。 3、单击“R外围设备”选Target Setup设置选项选择您要使用串口(必须和实际相符合),波特率38400。 如果被仿真的目标板使用12MHZ或者是11.0592MHZ晶振时波特率选择38400,如果被仿真的目标板使用6MHZ晶振时波特率选择18400。

4、如果需要生成HEX代码给编程器烧写芯片的话,需要选中“生成HEX 文件”的选项,按钮“选择OBJ文件夹...”是用来选择最终HEX文件的存放目录的。 5、按F7快捷键可以进行编译,编译成功后如会出现上图红箭头所指的文字,表示编译成

Keil-C51-基本使用方法 (1) 。。。。2

、Keil C51工程建立与仿真 1、建立一个工程项目,选择芯片并确定选项 双击Keil uVision2快捷图标后进入Keil C51开发环境,单击“工程”菜单,在弹出的下拉菜单选中“新工程”选项,屏幕显示为图1。附录: 一 图1 建立一个工程项目在文件名中输入一个项目名“my-test”,选择保存路径(可在 “我的 文档” 中先建 立一个 同名的

文件夹),单击保存。在随后弹出的“为目标target选择设备”(Select Device for Target “Target1”)对话框中用鼠标单击Atmel前的“+”号,选择“89C51”单片机后按确定,如图2所示。 图 2 选择单片机后按确定 选择主菜单栏中的“工程”,选中下拉菜单中“Options for Target ‘Target1’”,出现图3所示的界面。单击“target”页面,在晶体Xtal(MHz)栏中选择试验板的晶振频率,默认为24MHz,我们讲座试验板的晶振频率为11.0592MHz,因此要将24.0改为11.0592。然后单击输出“Output”页面,在“建立hex格式文件”前打勾选中,如图3-4。其它采用默认设置,然后点确定。 图3 选择Target

页面 图4 选择Output页面 2、建立源程序文件 图 5 建立源程序文件

程序输入完成后,选择“文件”,在下拉菜单中选中“另存为”,将该文件以扩展名为.asm格式(如my-test.asm)保存在刚才所建立的一个文件夹中(my-test)。 3、添加文件到当前项目组中 单击工程管理器中“Target 1”前的“+”号,出现“Source Group1”后再单击,加亮后右击。在出现的下拉窗口中选择“Add Files to Group‘Source Group1’”,如图6所示。在增加文件窗口中选择刚才以asm格式编辑的文件my-test.asm,鼠标单击“ADD”按钮,这时my-test.asm文件便加入到Source Group1这个组里了,随后关闭此对话窗口。 图 6 添加文件到当前项目组中 4、编译(汇编)文件 选择主菜单栏中的“工程”,在下拉菜单中选中“重建

变极性TIG焊接电弧稳定性分析

变极性TIG焊接电弧稳定性分析 姚河清张俊涛 (河海大学机电工程学院,江苏常州 213022) 摘要:通过对变极性TIG焊接电弧稳定性试验研究,发现小电流电弧极性切换时,容易引起熄弧。同时, 电弧等效电阻的变化,导致严重的换向冲击。原因是:电路的等效电容、电感引起小电流换向速度慢,电弧等效电阻变小引起换相冲击。本文通过二次主回路加耦合电感,以及在电弧极性切换时,采用变参数PI控制与超前控制的软件控制策略。实验结果表明:变极性TIG焊接电弧稳定性问题得到有效解决。 关键词:变极性;电弧稳定;等效电阻;控制策略 The analysis of arc stability of the variable polarity welding TIG Y ao Heqing Zhang Juntao (Hohai University, College of Mechanical & Electrical Engineering, Jiangsu Changzhou 213022) Abstract:welding arc stability of variable polarity TIG welding was studied through experiment. The experimental results indicate that the small current cause the arc extinguisher when the welding arc commutating. Simultaneity, the diversification of the equivalent resistance, which can cause concussion. The equivalent capacitance and the equivalent inductance of the circuit which slower the speed of the current when the arc polarity change. In order to resolve the problem, added the coupling inductance in the main circuit and a control strategy incorporate variable parameter PI into advance control. Experimental results prove the welding arc stability of the variable polarity TIG is available. Key words:V ariable polarity; arc stability; equivalent resistance; control policy 0 前言 变极性逆变焊接电源是近10年发展起来的一种代替正弦波交流和方波交流焊机来焊接铝及其合金的新型焊机,是一种电流频率、正负半波电流幅值和时间比可以分别独立调节的方波交流电源。通常变极性焊接电源是由一次逆变和二次逆变组成,一次逆变控制使弧焊电源具有快速响应特性,二次逆变控制使弧焊电源具有良好的变极性能力,广泛应用于铝及铝合金的焊接。由于铝及铝合金在空气中极易被氧化,生成Al2O3氧化膜熔点高(约2050 0C)、比重大、非常稳定、不易被去除等等。所以为保证焊接质量,必须先去除表面氧化膜。变极性焊接铝及其合金是在控制周期内利用直流反接(电极接正DCEP)的“阴极雾化”作用对熔池表面氧化膜的进行清理,达到铝合金的焊接

Keilc51程序中几种精确延时的方法

Keilc51程序中几种精确延时的方法 单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。 实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。 1 使用定时器/计数器实现精确延时 单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。 在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。 2 软件延时与时间计算 在很多情况下,定时器/计数器经常被用作其他用途,这时候就只能用软件方法延时。下面介绍几种软件延时的方法。 2.1 短暂延时 可以在C文件中通过使用带_NOP_( )语句的函数实现,定义一系列不同的延时函数,如Delay10us( )、Delay25us( )、Delay40us( )等存放在一个自定义的C文件中,需要时在主程序中直接调用。如延时10 μs的延时函数可编写如下: void Delay10us( ) { _NOP_( ); _NOP_( );

电子束焊及等离子弧焊特点

电子束焊 真空电子束焊接具有以下特点: ●电子束能焊接不同的金属及合金材料,尤其高难熔金属都能焊接 ●电子束可以精确的确定焊缝的位置,精度和重复性误差为0% 。 ●最大的穿透深度,可达15MM ●最高的深宽比大于10:1。 ●焊接直径可达400MM ●电子束焊接,其焊缝化学成份纯净, 焊接接头强度高、质量好。 ●电子束焊接所需线能量小,而焊接速度高,因此焊件的热影响区小、焊件变形小,除一般焊接外,还可以对精加工后的零部件进行焊接。 ●可焊接异种金属, 如铜和不锈钢、钢与硬质合金、铬和钼、铜铬和铜钨等。 ●真空电子束焊接不仅可以防止熔化金属受到氧、氮等有害气体的污染,而且有利于焊缝金属的除气和净化,因而特别适于活泼金属焊接。也常用于电子束焊接真空密封元件,焊后元件内部保持在真空状态 ●在真空中进行焊接,焊缝纯净、光洁,呈镜面,无氧化等缺陷。 ●电子束能量密度高达108瓦/厘米2,能把焊件金属迅速加热到很高温度,因而能熔化任何难熔金属与合金。熔深大、焊速快,热影响区极小,因此对接头性能影响小,接头基本无变形。 ●与普通焊接相比, 其焊接速率更高(尤其对于大厚件的焊接工件)。 等离子弧焊 1.1 等离子弧的产生: (1)等离子弧的概念: 自由电弧:未受到外界约束的电弧,如一般电弧焊产生的电弧。 等离子弧:受外部拘束条件的影响使孤柱受到压缩的电弧。 自由电弧弧区内的气体尚未完全电离,能量未高度集中,而等离子弧弧区内的气体完全电离,能量高度集中,能量密度很大,可达10~10W/cm2,电弧温度可高达24000~50000K(一般自由状态的钨极氩弧焊最高温度为10000~20000K,能量密度在10W/cm2以下)能迅速熔化金属材料,可用来焊接和切割。

脉冲变极性等离子弧焊接系统及其特征信号分析

第50卷第18期2014年9月 机械工程学报 JOURNAL OF MECHANICAL ENGINEERING Vol.50 No.18 Sep. 2014 DOI:10.3901/JME.2014.18.059 脉冲变极性等离子弧焊接系统及其特征信号分析* 春兰韩永全陈芙蓉洪海涛 (内蒙古工业大学材料成型自治区重点实验室呼和浩特 010051) 摘要:研制基于单片机控制的具有高低频调制脉冲功能的双逆变变极性等离子弧(Variable polarity plasma arc,VPPA)焊接系统,检测并分析叠加不同高低频脉冲参数条件下该焊接系统输出信号的特征,并对系统进行实际焊接试验,结果表明系统运行良好。从特征信号的时域及频域分析发现,当高频脉冲频率提高到2 kHz时,与1 kHz相比较,脉冲上下降沿斜率降低1.2倍,高次谐波量增加1.4倍。由焊接试验结果得出,当高频脉冲频率及正反极性电流等工艺参数选择合适时,可以得到比典型VPPA焊接更加优越的焊缝成形,获得具有均匀鱼鳞纹的理想焊缝。从焊缝显微组织的分析发现,脉冲VPPA焊接工艺得到的焊缝晶粒比典型VPPA焊缝晶粒细小,因此该焊接工艺对进一步提高航空航天高强铝合金焊接质量具有重要意义。 关键词:脉冲;变极性等离子弧;信号分析 中图分类号:TG439 Pulse Variable Polarity Plasma Arc Welding System and Analysis of Its Characteristic Signals CHUN Lan HAN Yongquan CHEN Furong HONG Haitao (Material Forming Key Laboratory of Autonomous Region, Inner Mongolia University of Technology, Hohhot 010051) Abstract:A double-inverter variable polarity plasma arc(VPPA) welding system with high-low frequency modulation, controlled by single chip microcomputer is introduced and its characteristics of output signal with different conditions of adding high-low frequency pulse are tested and analyzed. Its welding test is performed and the results show the system runs well. It is analyzed from the time and frequency domain of the characteristic signals that compare with 1 kHz, when pulse frequency increases to 2 kHz the slope of pulse reduces 1.2 times and higher harmonic increases 1.4 times. The welding experiment results show that it can get better welding gap than typical VPPA welding and obtain uniform ripple welding line when process parameters including high frequency pulse, positive and negative polarity currents etc. are chosen appropriately. After examination of the weld microstructure, it is found that the pulse VPPA could obtain finer weld grains than typical VPPA. Because of improving quality of welding, the welding procedure is significant for high-intensity Al-alloy welding in aerospace. Key words:pulse;variable polarity plasma arc;signal analysis 0 前言 变极性等离子弧焊接方法具有能量集中、电弧挺度大、焊后变形小等优点,被誉为“零缺陷”焊接方法[1]。因此,该方法已用于航天飞机、火箭筒体和排气管道的焊接中[2-4]。铝合金的焊接质量对于气孔和热影响区的软化很敏感,为了解决这方面的问题,陈树君等[5]提出了两种不同频率的脉冲调制 * 国家自然科学基金(51365032)和教育部新世纪优秀人才(NCET-10-0908)资助项目。20140126收到初稿,20140522收到修改稿变极性钨极惰性气体保护(Variable polarity tungsten inert gas, VPTIG)焊接方法,研究发现双脉冲控制可以改变电弧形态、电弧作用力及母材的热输入量,减少气孔,提高铝合金的焊接质量。从保强等[6]、杨明轩等[7]分别研究了高强铝合金复合脉冲VPTIG 焊缝组织与性能和钛合金超音频直流脉冲钨极惰性气体保护焊组织性能,研究发现加入高频脉冲后焊缝组织明显细化,在一定范围内,脉冲电流频率越高,晶粒细化作用越明显,且接头抗拉强度和断后伸长率明显提高。加入脉冲电流可以增强电弧挺度,且能有效提高电弧压力[8-9]。山东大学贾传宝等[10]

等离子焊接工艺

等离子焊接工艺 (1)焊接电流 焊接电流是根据板厚或熔透要求来选定。焊接电流过小,难于形成小孔效应:焊接电流增大,等离子弧穿透能力增大,但电流过大会造成熔池金属因小孔直径过大而坠落,难以形成合格焊缝,甚至引起双弧,损伤喷嘴并破坏焊接过程的稳定性。因此,在喷嘴结构确定后,为了获得稳定的小孔焊接过程,焊接电流只能在某一个合适的范围内选择,而且这个范围与离子气的流量有关。 (2)焊接速度 焊接速度应根据等离子气流量及焊接电流来选择。其他条件一定时,如果焊接速度增大,焊接热输入减小,小孔直径随之减小,直至消失,失去小孔效应。如果焊接速度太低,母材过热,小孔扩大,熔池金属容易坠落,甚至造成焊缝凹陷、熔池泄漏现象。因此,焊接速度、离子气流量及焊接电流等这三个工艺参数应相互匹配。 (3)喷嘴离工件的距离 ·喷嘴离工件的距离过大,熔透能力降低:距离过小,易造成喷嘴被飞溅物堵塞,破坏喷嘴正常工作。喷嘴离工件的距离一般取3~8mm。与钨极氩弧焊相比,喷嘴距离变化对焊接质量的影响不太敏感。 (4)等离于气及流量 等离子气及保护气体通常根据被焊金属及电流大小来选择。大电流等离子弧焊接时,等离子气及保护气体通常采取相同的气体,否则电弧的稳定性将变差。小电流等离子弧焊接通常采用纯氩气作等离子气。这是因为氧气的电离电压较低,可保证电弧引燃容易。 离子气流量决定了等离子流力和熔透能力。等离子气的流量越大,熔透能力越大。但等离子气流量过大会使小孔直径过大而不能保证焊缝成形。因此,应根据喷嘴直径、等离子气的种类、焊接电流及焊接速度选择适当的离子气流量。利用熔人法焊接时,应适当降低等离子气流量,以减小等离子流力。 保护气体流量应根据焊接电流及等离子气流量来选择。在一定的离子气流量下,保护气体流量太大,会导致气流的紊乱,影响电弧稳定性和保护效果。而保护气体流量太小,保护效果也不好,因此,保护气体流量应与等离子气流量保持适当的比例。 小孔型焊接保护气体流量一般在15~30L/min范围内。采用较小的等离子气流量焊接时,电弧的等离子流力减小,电弧的穿透能力降低,只能熔化工件,形不成小孔,焊缝成形过程与TIG焊相似。这种方法称为熔入型等离子弧焊接,适用于薄板、多层焊的盖面焊及角焊缝的焊接。 (5)引弧及收弧

keil+c51教程

Keil uVision2的使用 Keil uVision2是目前使用广泛的单片机开发软件,它集成了源程序编辑和程序调试于一体,支持汇编、C、PL/M语言。 这里我们仅仅介绍Keil uVision2的简单使用,更详细的使用方法见本光盘单片机软件\Keil c51\Keil书籍与资料目录中的内容。 keil C51v6.12的安装: 先运行光盘中单片机软件\setup\setup.exe安装程序,选择安装“Eval Version”版进行安装。一直点击“Yes”或“Next”,直到“Finish”完成。 之后运行同目录中的Keil uv2汉化安装.exe安装汉化程序。 安装好后,在桌面上会产生快捷图标,如下图: keil C51v6.12的使用: 点击桌面快捷图标,可以直接进入主画面:

序。 在Keil系统中,每做个独立的程序,都视为工程(或者叫项目)。首先从菜但的“工程”中“新建工程...”,建立我们将要做的工程项目: 新建的工程要起个与工程项目意义一致的名字,可以是中文名;我们这里的程序是实验测试程序,所以起的名字为Test,并将Test工程“保存”到 C:\Keil下:

接下来,Keil环境要求我们为Test工程选择一个单片机型号;我们选择Atmel公司的89C51(虽然我们使用的是89S51,但由于89S51与89C51内、外部结构完全一样,所以这里依然选择“89C51”)。“确定”后工程项目就算建立了。

立了工程项目,肯定要实施这个工程,现在就为工程添加程序; 点击“文件”中的“新建”,新建一个空白文档;这个空白文档就是让我们编写单片机程序的场所。在这里你可以进行编辑、修改等操作。 根据题意,在文档中写入下列代码:(下列代码你暂时不要管什么意思,只要照抄正确就可以,今后在学习汇编时你会明白的) mov p0,#01010101B;将01010101二进制代码送P0口 ajmp$;程序在此原地踏步 end;程序结束标志 写完后再检查一下,并保存文件,保存文件时,其文件名最好与前面建立的工程名相同(当然这里为Test了),其扩展名必须为.Asm!“文件名”中一定要写全,如:Test.Asm;保存后的文档彩色语法会起作用,将关键字实行彩色显示:

Keil c51的使用及界面翻译

Keil C51的使用方法 Keil C51 软件是众多单片机应用开发的优秀软件之一,它集编辑,编译,仿真于一体,支持汇编,PLM 语言和C 语言的程序设计,界面友好,易学易用。 下面介绍Keil C51软件的使用方法 进入Keil C51 后,屏幕如下图所示。几秒钟后出现编辑界

进入Keil C51后的编辑界面 简单程序的调试 学习程序设计语言、学习某种程序软件,最好的方法是直接操作实践。下面通过简单的编程、调试,引导大家学习Keil C51软件的基本使用方法和基本的调试技巧。 1)建立一个新工程 单击Project菜单,在弹出的下拉菜单中选中New Project选项 2)然后选择你要保存的路径,输入工程文件的名字,比如保存到C51目录里,工程文件的名字为C51 如下图所示,然后点击保存.

3)这时会弹出一个对话框,要求你选择单片机的型号,你可以根据你使用的单片机来选择,keil c51几乎支持所有的51核的单片机,我这里还是以大家用的比较多的Atmel 的89C51来说明,如下图所示,选择89C51之后,右边栏是对这个单片机的基本的说明,然后点击确定. 4)完成上一步骤后,屏幕如下图所示

到现在为止,我们还没有编写一句程序,下面开始编写我们的第一个程序。 5)在下图中,单击“File”菜单,再在下拉菜单中单击“New”选项 新建文件后屏幕如下图所示 此时光标在编辑窗口里闪烁,这时可以键入用户的应用程序了,但笔者建议首先保存该空白的文件,单击菜单上的“File”,在下拉菜单中选中“Save As”选项单击,屏幕如下图所示,在“文件名”栏右侧的编辑框中,键入欲使用的文件名,同时,必须键入正确的扩展名。注意,如果用C语言编写程序,则扩展名为(.c);如果用汇编语言编写

Keil C51 基本使用方法

附录: 一、Keil C51工程建立与仿真 1、建立一个工程项目,选择芯片并确定选项 双击Keil uVision2快捷图标后进入Keil C51开发环境,单击“工程”菜单,在弹出的下拉菜单选中“新工程”选项,屏幕显示为图1。 图1 建立一个工程项目 在文件名中输入一个项目名“my-test”,选择保存路径(可在“我的文档”中先建立一个同名的文件夹),单击保存。在随后弹出的“为目标target选择设备”(Select Device for Target “Target1”)对话框中用鼠标单击Atmel前的“+”号,选择“89C51”单片机后按确 定,如图2 所示。

图2 选择单片机后按确定 选择主菜单栏中的“工程”,选中下拉菜单中“Options for Target ‘Target1’”,出现图3所示的界面。单击“target”页面,在晶体Xtal(MHz)栏中选择试验板的晶振频率,默认为24MHz,我们讲座试验板的晶振频率为11.0592MHz,因此要将24.0改为11.0592。然后单击输出“Output”页面,在“建立hex格式文件”前打勾选中,如图3-4。其它采用默认设置,然后点确定。 图3 选择Target页面

图4 选择Output页面 2、建立源程序文件 单击“文件”菜单,在下拉菜单中选择“新建”,随后在编辑窗口中输入以下的源程序(如图5)。 ORG 0000H LJMP MAIN ORG 030H MAIN: MOV P0,#00H MOV P1 ,#00H MOV P2 ,#00H MOV P3 ,#00H ACALL DEL MOV P0 ,#0FFH MOV P1 ,#0FFH MOV P2 ,#0FFH MOV P3 ,#0FFH ACALL DEL AJMP MAIN ORG 0200H DEL: MOV R5,#04H F3: MOV R6,#0FFH F2: MOV R7,#0FFH F1: DJNZ R7,F1 DJNZ R6,F2 DJNZ R5,F3 RET END 图5 建立源程序文件 程序输入完成后,选择“文件”,在下拉菜单中选中“另存为”,将该文件以扩展名为.asm

相关文档