文档库 最新最全的文档下载
当前位置:文档库 › 气相色谱仪使用注意事项

气相色谱仪使用注意事项

气相色谱仪使用注意事项

ECD检测器的性能特征及操作中应注意的问题

2012-03-07 16:58 星期三

一、ECD检测器的性能特征及应用

ECD是一种灵敏度高、选择性强的检测器。ECD只对具有电负性的物质,如含S、P、卤素的化合物,金属有机物及含羰基、硝基、共轭双键的化合物有输出信号,而对电负性很小的化合物,如烃类化合物等,只有很小或没有输出信号。ECD对那些电负性大的物质检测限可达12^-2 ~ 10-4g,所以特别适合于分析痕量电负性化合物。虽然ECD的线性范围较窄,仅有10^4左右,但ECD仍然被广泛用于生物、医药、农药、环保、金属蛰合物及气象追踪等领域。

二、操作中应注意的几个问题

①放置地点。仪器应放在室内温度不易突变或没有强烈气流的地方。只有在检测其温度控制在0.01℃之内,方能获得稳定的基线。高灵敏度下工作,房门开闭引起的气流波动,就会使基线大幅度漂移。

②色谱柱的老化。色谱柱除前面的要求外,还要充分老化。

③进样垫的老化。ECD的进样垫除尽量使用耐高温的进样垫外,使用前通常在250℃下老化16h。老化后的进样垫寿命会减少,为了防止漏气,需要经常更换。

④排气。63Ni本身是高熔点金属,在350℃下工作不会有金属蒸气。但ECD对样品只检测不破坏,而所检测的大部分样品对人体是有害的,因此为了防止对室内空气的污染,应把所排的尾气通往室外。

⑤最大进样量和样品的纯度。进样量太大时不会引起检测器饱和,有时反而会产生一个小的正峰,恢复正常工作状态有时长达几小时。当样品很浓时需要稀释,可增加补充器流量来减少进样量;另外,在分析某些天然样品时,由于污染物质繁多,事先必须经过净化处理,否则造成污染很难清除。

⑥溶剂和设备。为了消除电负性化合物对色谱系统的污染,最好使用烃烷、苯或甲苯而不要用卤化物、丙酮等作溶剂。操作的有关设备如注射器、柱、样品瓶等都不要接触电负性溶剂,最好有ECD的专用设备。

ECD检测器的性能特征及操作中应注意的问题

一、ECD检测器的性能特征及应用

ECD是一种灵敏度高、选择性强的检测器。ECD只对具有电负性的物质,如含S、P、卤素的化合物,金属有机物及含羰基、硝基、共轭双键的化合物有输出信号,而对电负性很小的化合物,如烃类化合物等,只有很小或没有输出信号。ECD对那些电负性大的物质检测限可达12^-2 ~ 10-4g,所以特别适合于分析痕量电负性化合物。虽然ECD的线性范围较窄,仅有10^4左右,但ECD仍然被广泛用于生物、医药、农药、环保、金属蛰合物及气象追踪等领域。

二、操作中应注意的几个问题

①放置地点。仪器应放在室内温度不易突变或没有强烈气流的地方。只有在检测其温度控制在0.01℃之内,方能获得稳定的基线。高灵敏度下工作,房门开闭引起的气流波动,就会使基线大幅度漂移。

②色谱柱的老化。色谱柱除前面的要求外,还要充分老化。

③进样垫的老化。ECD的进样垫除尽量使用耐高温的进样垫外,使用前通常在250℃下老化16h。老化后的进样垫寿命会减少,为了防止漏气,需要经常更换。

④排气。63Ni本身是高熔点金属,在350℃下工作不会有金属蒸气。但ECD对样品只检测不破坏,而所检测的大部分样品对人体是有害的,因此为了防止对室内空气的污染,应把所排的尾气通往室外。

⑤最大进样量和样品的纯度。进样量太大时不会引起检测器饱和,有时反而会产生一个小的正峰,恢复正常工作状态有时长达几小时。当样品很浓时需要稀释,可增加补充器流量来减少进样量;另外,在分析某些天然样品时,由于污染物质繁多,事先必须经过净化处理,否则造成污染很难清除。

⑥溶剂和设备。为了消除电负性化合物对色谱系统的污染,最好使用烃烷、苯或甲苯而不要用卤化物、丙酮等作溶剂。操作的有关设备如注射器、柱、样品瓶等都不要接触电负性溶剂,最好有ECD的专用设备。

气相色谱仪使用常识~注意事项

气相色谱仪使用常识-注意事项 安装色谱柱 1.安装拆卸色谱柱必须在常温下。 2.填充柱有卡套密封和垫片密封,卡套分三种,金属卡套,塑料卡套,石墨卡套,安装时不易拧的太紧。垫片式密封每次按装色谱柱都要换新的垫片(岛津色谱是垫片密封)。 3.色谱柱两头是否用玻璃棉塞好。防止玻璃棉和填料被载气吹到检测器中。 4.毛细管色谱柱安装插入的长度要根据仪器的说明书而定,不同的色谱汽化室结构不同,所以插进的长度也不同。需要说明的如果你用毛细管色谱柱采用不分流,汽化室采用填充柱接口这时与汽化室连接毛细管柱不能探进太多,略超出卡套即可。 氢气和空气的比例对FID检测器的影响 氢气和空气的比例应1:10,当氢气比例过大时FID检测器的灵敏度急剧下降,在使用色谱时别的条件不变的情况下,灵敏度下降要检查一下氢气和空气流速。氢气和空气有一种气体不足点火时发出“砰”的一声,随后就灭火,一般当你点火电着就灭,再点还着随后又灭是氢气量不足。 使用TCD检测器 1.氢气做载气时尾气一定要排到室外。 2.氮气做载气桥流不能设大,比用氢气时要小的多。 3.没通载气不能给桥流,桥流要在仪器温度稳定后开始做样前在给。 如何判断FID检测器是否点着火 不同的仪器判断方法不同,有基流显示的看基流大小,没有基流显示的用带抛光面的扳手凑近检测器出口,观察其表面有无水汽凝结。 气相色谱常见故障诊断 气相色谱种类很多,性能也各有差别。主要包括两个系统。即气路系统和电路系统。气路系统主要有压力表、净化器、稳压阀、稳流阀、转子流量计、六通进样阀、进样器、色谱柱、检测器等;电子系统包括各用电部件的稳压电源、温控装置、放大线路、自动进样和收集装置、数据处理机和记录仪等电子器件。 要分析和判断色谱仪的故障所在,就必须要熟悉气相色谱的流程和气、电路这两大系统,特别是构成这两个系统部件的结构、功能。色谱仪的故障是多种多样的,而且某一故障产生的原因也是多方面的,必须采用部分检查的方法,即排除法,才可能缩小故障的围。对于气路系统出的故障,不外乎是各种气体(特别是载气)有漏气的现象、气体不好、气体稳压稳流不好等等。 例如:基线若始终向下漂移,即“电平”值逐渐变小至负数,这极有可能是载气泄漏,那么就要查找各个接头部件是否有漏的现象,若不漏而基线仍漂移,则可能是电路系统的故障。色谱气路上的故障,分析工作者可以找出并排除,但要排除电路上的故障则并非易事,就需要分析工作者有一定的电子线路方面的知识,并且要弄清楚主机接线图和各系统的电原理图(尤其是接线图)。在这些图上清楚的画出了控制单元和被控对象间的关系,具体的标明了各接插件引线的编号和去向,按图去检查电路、找寻故障是非常方便的。

气相色谱仪原理(图文详解)

气相色谱仪原理(图文详解) 什么是气相色谱 本章介绍气相色谱的功能和用途,以及色谱仪的基本结构。 气相色谱(GC)是一种把混合物分离成单个组分的实验技术。它被用来对样品组分进行鉴定和定量测定: 基子时间的差别进行分离 和物理分离(比如蒸馏和类似的技术)不同,气相色谱(GC)是基于时间差别的分离技术。 将气化的混合物或气体通过含有某种物质的管,基于管中物质对不同化合物的保留性能不同而得到分离。这样,就是基于时间的差别对化合物进行分离。样品经过检测器以后,被记录的就是色谱图(图1),每一个峰代表最初混合样品中不同的组分。 峰出现的时间称为保留时间,可以用来对每个组分进行定性,而峰的大小(峰高或峰面积)则是组分含量大小的度量。 图1典型色谱图

系统 一个气相色谱系统包括 可控而纯净的载气源.它能将样品带入GC系统进样口,它同时还作为液体样品的气化室色谱柱,实现随时间的分离 检测器,当组分通过时,检测器电信号的输出值改变,从而对组分做出响应 某种数据处理装置图2是对此作出的一个总结。 样品 载气源一^ 进样口一^ 色谱柱一^ 检测器一_ 数据处理」 图2色谱系统 气源 载气必须是纯净的。污染物可能与样品或色谱柱反应,产生假峰进入检测器使基线噪音增大等。推荐使用配备有水分、烃类化合物和氧气捕集阱的高纯载气。见图

钢瓶阀 若使用气体发生器而不是气体钢瓶时,应对每一台GC都装配净化器,并且使气源尽可能靠近仪器的背面。 进样口 进样口就是将挥发后的样品引入载气流。最常用的进样装置是注射进样口和进样阀。注射进样口 用于气体和液体样品进样。常用来加热使液体样品蒸发。用气体或液体注射器穿透隔垫将样品注入载气流。其原理(非实际设计尺寸)如图4所示。

色谱法的分类及其原理

色谱法的分类及其原理 (一)按两相状态 气相色谱法:1、气固色谱法 2、气液色谱法 液相色谱法:1、液固色谱法 2、液液色谱法 (二)按固定相的几何形式 1、柱色谱法(column chromatography) :柱色谱法是将固定相装在一金属或玻璃柱中或是将固定相附着在毛细管内壁上做成色谱柱,试样从柱头到柱尾沿一个方向移动而进行分离的色谱法 2、纸色谱法(paper chromatography):纸色谱法是利用滤纸作固定液的载体,把试样点在滤纸上,然后用溶剂展开,各组分在滤纸的不同位置以斑点形式显现,根据滤纸上斑点位置及大小进行定性和定量分析。 3、薄层色谱法(thin-layer chromatography, TLC) :薄层色谱法是将适当粒度的吸附剂作为固定相涂布在平板上形成薄层,然后用与纸色谱法类似的方法操作以达到分离目的。 (三)按分离原理 按色谱法分离所依据的物理或物理化学性质的不同,又可将其分为:

1、吸附色谱法:利用吸附剂表面对不同组分物理吸附性能的差别而使之分离的色谱法称为吸附色谱法。适于分离不同种类的化合物(例如,分离醇类与芳香烃)。 2、分配色谱法:利用固定液对不同组分分配性能的差别而使之分离的色谱法称为分配色谱法。 3、离子交换色谱法:利用离子交换原理和液相色谱技术的结合来测定溶液中阳离子和阴离子的一种分离分析方法,利用被分离组分与固定相之间发生离子交换的能力差异来实现分离。离子交换色谱主要是用来分离离子或可离解的化合物。它不仅广泛地应用于无机离子的分离,而且广泛地应用于有机和生物物质,如氨基酸、核酸、蛋白质等的分离。 4、尺寸排阻色谱法:是按分子大小顺序进行分离的一种色谱方法,体积大的分子不能渗透到凝胶孔穴中去而被排阻,较早的淋洗出来;中等体积的分子部分渗透;小分子可完全渗透入内,最后洗出色谱柱。这样,样品分子基本按其分子大小先后排阻,从柱中流出。被广泛应用于大分子分级,即用来分析大分子物质相对分子质量的分布。 5、亲和色谱法:相互间具有高度特异亲和性的二种物质之一作为固定相,利用与固定相不同程度的亲和性,使成分与杂质分离的色谱法。例如利用酶与基质(或抑制剂)、抗原与抗体,激素与受体、外源凝集素与多糖类及核酸的碱基对等之间的专一的相互作用,使相互作用物质之一方与不溶性担体形成共价结合化合物,

气相色谱仪操作步骤(精)

气相色谱仪操作步骤 1 打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2. 打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3. 设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。苯分析时的色谱条件:(a)柱箱:柱箱初始温度100℃、初始时间0min、升温速率0℃/min、终止温度0℃、终止时间0min; (b)进样器和检测器:都是150℃。 4. 点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到100℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5. 打开电脑及工作站A,打开一个方法文件:TVOC分析方法或苯分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度

气相色谱检测器 的分类和工作原理及应用范围

气相色谱检测器的分类和工作原理及应用范围 待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后,由记录仪或微处理机得到色谱图,根据色谱图对待测组分进行定性和定量分析。 气相色谱监测器根据其测定范围可分为: 通用型检测器:对绝大多数物质够有响应; 选择型检测器:只对某些物质有响应;对其它物质无响应或很小。 根据检测器的输出信号与组分含量间的关系不同,可分为: 浓度型检测器:测量载气中组分浓度的瞬间变化,检测器的响应值与组分在载气中的浓度成正比,与单位时间内组分进入检测器的质量无关。 质量型检测器:测量载气中某组分进入检测器的质量流速变化,即检测器的响应值与单位时间内进人检测器某组分的质量成正比 目前已有几十种检测器,其中最常用的是热导池检测器、电子捕获检测器(浓度型);火焰离子化检测器、火焰光度检测器(质量型)和氮磷检测器等。 一.检测器的性能指标——灵敏度(高)、稳定性(好)、响应(快)、线性范围(宽) (一)灵敏度——应答值 单位物质量通过检测器时产生的信号大小称为检测器对该物质的灵敏度。 响应信号(R)—进样量(Q)作图,可得到通过原点的直线,该直线的斜率就是检测器的灵敏度,以S 表示: (3) 由此可知:灵敏度是响应信号对进入检测器的被测物质质量的变化率。 气相色谱检测器的灵敏度的单位,随检测器的类型和试样的状态不同而异: 对于浓度型检测器: 当试样为液体时,S的单位为mV·ml/mg,即1mL载气中携带1mg的某组分通过检测器时产生的mV数; 当试样为气体时,S的单位为mV·ml/ml,即1ml载气中携带1ml的某组分通过检测器时产生的mV数; 对于质量型检测器:当试样为液体和气体时,S的单位均为:mV·s/g,即每 秒钟有1g的组分被载气携带通过检测器所产生的mV数。 灵敏度不能全面地表明一个检测器的优劣,因为它没有反映检测器的噪音水平。由于信号可以被放大器任意放大,S增大的同时噪声也相应增大,因此,仅用S不能正确评价检测器的性能。 (二)检测限(敏感度)

气相色谱法基本原理及其应用

安徽建筑大学 现代水分析技术论文 专业:xx级市政工程 学生姓名:xxx 学号:xxx 课题:气相色谱法基本原理及其应用指导教师:xxx xx年xx月xx日

气相色谱法基本原理及其应用 xx (安徽建筑工业学院环境与能源工程学院,合肥,230601) 摘要:气相色谱法是分离混合物中各组分的一种有效的手段,其中气相色谱仪是20世纪50年代末在多数科学家的共同努力下诞生的。本文针对气相色谱法的起源与发展历程、工作原理与特点、在环境水污染物分析领域的应用进行了详细的概述,并列举了饮用水中挥发性有机物的气相色谱检测方法,同时提出了该方法新的发展前景。它的发展已在环境监测、水污染控制领中得到了广泛的应用。 关键词:气相色谱法;发展历程;工作原理;水污染物分析 1.气相色谱法的起源与发展历程 (1)气相色谱法的起源 色谱的发现首先认识到这种分离现象和分离方法大有可为的是俄国的植物学家Tswett。Tswett于1903年在波兰华沙大学研究植物叶子的组成时,将叶绿素的石油醚抽提液倒入装有碳酸钙吸附剂的玻璃管上端,然后用石油醚进行淋洗,结果不同色素按吸附顺序在管内形成一条不同颜色的环带,就像光谱一样。1906年,Tswett在德国植物学杂志上发表的一篇论文中首次把这些彩色环带命名为“色谱图”,玻璃管称为“色谱柱”,碳酸钙称为“固定相”,石油醚称为“流动相”。Tswett开创的方法叫做“液-固色谱法”[1-2],这就是色谱法的起源。 1941年,英国科学家Martin和Synge在研究液-液分配色谱时,预言可以使用气体作流动相,即气-夜色谱法。他们在1941年发表的论文中写到“流动相不一定是液体,也可以是蒸气,如以永久性气体带动挥发性混合物,在色谱柱中通过装有浸透不挥发性溶剂的固体时,可以得到很好的分离”[3]。1950年,Martin和James使用硅藻土助滤剂做载体,硅油为固定相,用气体流动相对脂肪酸进行精细分离,这就是气^液分配色谱的起源。后来,他们在1952年的Biochemical Journal上又连续发表了3篇论文[4-6],叙述了用气相色谱分离低碳数脂肪酸、挥发性胺和吡啶类同系物的方法,这标志着气相色谱法正式进入历史舞台。当时在石油化工的分析中,正当传统的分析方法无能为力时,气相色谱法就像及时雨一样,成为化学分析的得力助手。从此,科学家对气相色谱法的研究逐步展开。 (2)气相色谱法的发展 在历史上,气相色谱法的发展总是和气相色谱仪器的发展密不可分。每一种气相色谱新技术的出现,往往都伴随着气相色谱仪器的改进。因此,了解气相色谱法的发展历史可以从气相色谱仪的发展入手。历史上最早的气相色谱仪1947年由捷克色谱学家Jaroslav Janak发明的。该仪器以C为流动相、杜马测氮管为检测器测定分离开的气体体积。在样品和CA 进入测氮管之前,通过KOH溶液吸收掉CA,按时间记录气体体积的增量。这台仪器虽然简陋,但对当时的气相色谱研究起到了巨大的推动作用。Jaroslav Janak发明的气相色谱仪也有一些明显的不足:它只能测室温下为气体的样品, 样品中的CA不能被测定,而且没有实现自动化。20世纪50年代末,它逐渐被更先进的气相色谱仪所取代。W55年,第一台商品化气相色谱仪诞生,标志着气相色谱仪的发展进入了崭新的时代。 现代气相色谱仪主要由5个系统组成,即气路系统、进样系统、分离系统、温度控制系统与检测记录系统。气路系统与温控系统自气相色谱诞生以来很少有突破性的进展。气路系统主要朝自动化方向发展,20世纪90年代出现了采用电子压力传感器和电子流量控制器,通过计算机实现压力和流量自动控制的电子程序压力流量控制系统,这是气路系统的一大进步[7]。温控系统则基本朝着精细、快速、自动化方向发展。相比之下,进样系统、分离系统与检测记录系统是气相色谱仪的核心组成系统,它们的每一次变革和进步都推动着气相色谱的

气相色谱仪使用方法及实验操作步骤

液相色谱仪、气相色谱仪、原子吸收分光光度计、红外光谱仪、核磁共振、原子发射光谱等分析仪器 气相色谱仪使用方法及实验操作步骤: A、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 B、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 C、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 D、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa 和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 E、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 F、关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。 高效液相色谱 我国药典收载高效液相色谱法项目和数量比较表: 鉴于HPLC应用在药品分析中越来越多,因此每一个药品分析人员应该掌握并应用HPLC。 三、色谱法分类 (3) 四、色谱分离原理 (3) II.基本概念和理论 (5) 一、基本概念和术语 (5) 二、塔板理论 (8)

安捷伦A气相色谱仪作业指导书

XXXX 环境监测站 安捷伦7820A 气相色谱仪作业指导书 修改记录 1.目的 为了不断提高和保证全站监测工作质量,规范我站的安捷伦7820A 气相色谱仪操作规程,方便分析人员使用、维护仪器。 2.适用范围 此作业指导书适用于安捷伦7820A 气相色谱仪。 3.操作程序

3.1 开机: 3.1.1.打开气源(按相应的检测器所需气体,FID需要氮气、氢气和空气)。 3.1.2打开计算机,进入Windows界面。 3.1.3打开7820A GC电源开关。 3.1.4待仪器自检完毕,双击“联机”图标,进入化学工作站,化学工作站自动与7820A通讯,建立连接。 3.2 7820A配置编辑 3.2.1点击“配置”按钮。在“其他”项目中选择压力单位。 3.1.2柱参数设定点击“色谱柱”按钮,进入柱参数设定画面。点击前面的数字,对该柱的名称、长度、内径、膜厚、最高使用温度、最低使用温度和该柱的类型进行设置;点击该柱下拉式箭头选择连接的进样口,检测器及加热类型;用“↑”和“↓”在各柱之间进行切换。 3.1.3在“模块”项目中选择后进样口和后检测器尾吹气的种类。 4.在“ALS”项目中输入所用自动进样针的规格。 3.3 测试以及数据采集方法编辑: 3.3.1 开始编辑完整方法 从“文件”菜单中选择“新建”→“方法”→“确定”。

3.3.2填写自动进样器的参数: 点击“”,设置进样体积:0.2uL,溶剂A 清洗,进样前清洗4次,进样后清洗4次,体积为最大,溶剂B清洗,进样前清洗4次,进样后清洗4次,体积为最大,样品清洗2次,样品抽吸次数6次,驻留时间,进样前:0分钟,进样后:0分钟,推杆速度:快速,粘度延迟:0秒,采样深度:不启用,进样类型:标准 L1气隙 0.2uL。 注:上述设置是常用设置,对于不同性质的样品,需要对某些参数进行更改,比如对于粘度较大的样品,需要将进样后驻留时间设为3-5s,同时将粘度延迟设为3-5s 3.3.3填写进样口参数: 点击“前进样器”或“后进样器”,根据需要填写前进样口或后进样口参数。输入数值后,在各参数前面打钩。根据需要设置进样口温度、进样的模式(分流、不分流、脉冲分流和脉冲不分流,毛细管柱一般要分流,填充柱一般不分流)。载气节省一般要开启。

气相色谱仪原理结构及操作

气相色谱仪原理结构及操 作 Modified by JEEP on December 26th, 2020.

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC)是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为

进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。 一般更换进样隔垫的周期以下面三个条件为准:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差;(3)手动进样次数70次,或自动进样次数50次以后。 玻璃衬管 气相色谱的衬管多为玻璃或石英材料制成,主要分成分流衬管、不分流衬管、填充柱玻璃衬管三种类型。衬管能起到保护色谱柱的作用,在分流/不分流进样时,不挥发的样品组分会滞留在衬管中而不进入色谱柱。如果这些污染物在衬管内积存一定量后,就会对分析产生直接影响。比如,它会吸附极性样品组分而造成峰拖尾,甚至峰分裂,还会出现“鬼峰”,因此一定要保持衬管干净,注意及时清洗和更换。 玻璃衬管清洗的原则和方法 当以下现象:(1)出现“鬼峰”;(2)保留时间和峰面积重现性差出现时,应考虑对衬管进行清洗。清洗的方法和步骤如下:(1)拆下玻璃衬管;(2)取出石英玻璃棉;(3)用浸过溶剂(比如丙酮)的纱布清洗衬管内壁。玻璃衬管更换时要注意玻璃棉的装填:装填量3~6mg,高度5~10mm。要求填充均匀、平整。 气体过滤器

气相色谱仪操作规程完全版

气相色谱仪操作规程 GC9790气相色谱仪操作规程(一) (1) SP1000气相色谱仪操作规程 (1) Agilent4890D气相色谱仪操作规程 (2) HP-5890A气相色谱仪操作规程 (3) GC-9790气相色谱仪操作规程(二) (4) SP2100气相色谱仪操作规程 (5) GC-920色谱操作规程 (5) Agilent6890气相色谱仪操作规程 (6) GC9800TT型气相色谱仪操作步骤 (7) GC9800FF型气相色谱仪操作步骤 (8) 9001型气相色谱仪操作规程 (10) SP6800A气相色谱仪的操作说明 (12) GC-930色谱操作规程 (13) GC112A气相色谱操作规程 (14) GC122气相色谱操作规程 (14) GC1690气相色谱仪说明书 (15) 惠普4890D型气相色谱仪标准操作程序 (16) HP6890气相色谱仪操作规程 (19) SP-6890气相色谱仪操作规程 (20) HP-5890A气相色谱仪操作规程 (21) GC-14A气相色谱仪操作规程 (23) HP4890D气相色谱仪操作说明(二) (24) GC9890气相色谱仪操作步骤 (25) 岛津气相色谱GC-2010操作规程 (26) 岛津GC-14CPFID气相色操作规程 (27) GC-14C气相色谱简易操作规程 (27) Agilent6820-GC(ForCerityNDS) (29) 瓦里安CP3800气相色谱操作规程 (33) 安捷伦GC-6820使用规程 (35)

GC9790气相色谱仪操作规程(一) 1.检查仪器电源线连接是否正常、气路管线连接是否正常。 2.打开载气(N2)钢瓶总阀,并调节减压阀开关,使得输出的载气压力在0.3~0.5Mpa之间。 3.调节仪器上的载气调压阀,使得柱前压处在分析工作所需要的压力(一般来说,柱前压在0.05~0.1Mpa之间)。 4.打开电源开关,根据分析要求设置柱温、汽化温度、检测温度等参数,按确定键后仪器升温。同时打开色谱工作站电源。 5.仪器升温到设置温度后,打开空气发生器电源;同时扭开氢气钢瓶阀门,调节氢气减压阀压力在0.3Mpa左右。 6.调节仪器正面右下侧的针形阀,使空气压力在0.05MPa左右,氢气压力在0.15~0.2MPa之间,用点火枪点着FID的火焰,用玻璃片或铁片等冷的物体靠近检测器的盖帽,有水珠凝结表明点火成功(也可以通过观察工作站所显示的基线是否在点火瞬间开始上升来确定是否点火成功)。 7.将仪器右下侧空气、氢气的针形阀压力都缓慢调节到0.1MPa。 8.待基线稳定后开始分析测试工作。 9.分析工作结束后,可以立即关闭氢气钢瓶总阀以及空气发生器电源。 10.调低各路设定温度,使柱温箱、汽化室、检测器温度下降,待柱箱温度低于70℃即可关闭仪器电源。 11.关闭载气钢瓶上的总阀。清理仪器室的进样针、样品等物品,结束GC9790的操作。 SP1000气相色谱仪操作规程 1仪器组成 1.1气源部分,包括氮气钢瓶,氢气源发生器,空气源发生器。 1.2气相主机,包括氢火焰离子化检测器(FID)。 1.3计算机及C-21色谱数据采集单位组成。 2采样操作步骤 2.1选择合适的色谱柱安装于进样器一端,另一端安装于所用的检测器口。 2.2打开载气钢瓶的总阀及减压阀至0.4-0.5Mpa,确定有载气流量后,打开气相主机电源开关。在面板上按“设定”键进入设定参数界面,设定柱温(恒温、程序升温)、设定进样器温度,设定检测器温度。程序升温包括起始温度、起始时间、升温速率、结束温度、结束时间等。仪器在升温状态中,等待指示灯亮,到达所设状态,就绪指示灯亮,即可进样。2.3打开氢气发生器和空气发生器开关,平衡10分钟。按住气相主机上“点火”钮数秒钟即可。按“状态”键切换到状态界面可观察到信号显示及仪器各部件状态。 2.4打开电脑,双击BF-2002色谱工作站图标进入色谱工作站。

7890B气相色谱仪的操作规程

1、目的:建立安捷伦7890B GC气相色谱仪的操作规程,使检验人员能够正确的使用安捷伦7890B GC气相色谱仪。 2、适用范围:气态有机化合物或较易挥发的液体、固体有机化合物样品。 3、责任人:检测员 4、正文: 4.1 操作步骤 4.1.1 操作前准备 4.1.1.1 色谱柱的检查与安装首先打开柱温箱门看是否是所需用的色谱柱,若不是则旋下毛细管柱按进样口和检测器的螺母,卸下毛细管柱。取出所需毛细管柱,放上螺母,并在毛细管柱两端各放一个石墨环,然后将两侧柱端截去1~2mm,进样口一端石墨环和柱末端之间长度为4~6mm,检测器一端将柱插到底,轻轻回拉1mm左右,然后用手将螺母旋紧,不需用板手,新柱老化时,将进样口一端接入进样器接口,另一端放空在柱温箱内,检测器一端封住,新柱在低于最高使用温度20~30℃以下,通过较高流速载气连续老化24小时以上。 4.1.1.2 气体流量的调节 4.1.1.2.1 载气(氮气)开启氮气钢瓶高压阀前,首先检查低压阀的调节杆应处于释 (400-690kPa)放状态,打开高压阀,缓缓旋动低压阀的调节杆,调节至约0.55MPa。 4.1.1.2.2 氢气打开氢气钢瓶,调节输出压至0.41MPa。(400-690kPa) 4.1.1.2.3 空气打开空气钢瓶,调节输出压至0.55MPa。(550-690kPa) 4.1.1.3 检漏用检漏液检查柱及管路是否漏气。 4.1.2 主机操作 4.1.2.1 接通电源,打开电脑,进入windows 主菜单界面。然后开启主机,主机进行自检,自检通过主机屏幕显示power on successul,进入Windows系统后,双击电脑桌面的(Instrument Online)图标,使仪器和工作联接。 4.1.2.2 编辑新方法 4.1.2.2.1 从“Method”菜单中选择“Edit Entire Method”,根据需要钩选项目,“Method Information”(方法信息),“Instrument/Acquisition”(仪器参数/数据采集条件),“Data Analysis”(数据分析条件),“Run Time Checklist”(运行时间顺

气相色谱仪原理、结构及操作(精)

气相色谱仪原理、结构及操作 1、基本原理 气相色谱(GC )是一种分离技术。实际工作中要分析的样品往往是复杂基体中的多组分混合物,对含有未知组分的样品,首先必须将其分离,然后才能对有关组分进行进一步的分析。混合物的分离是基于组分的物理化学性质的差异,GC 主要是利用物质的沸点、极性及吸附性质的差异来实现混合物的分离。待分析样品在汽化室汽化后被惰性气体(即载气,一般是N2、He 等)带入色谱柱,柱内含有液体或固体固定相,由于样品中各组分的沸点、极性或吸附性能不同,每种组分都倾向于在流动相和固定相之间形成分配或吸附平衡。但由于载气是流动的,这种平衡实际上很难建立起来,也正是由于载气的流动,使样品组分在运动中进行反复多次的分配或吸附/解附,结果在载气中分配浓度大的组分先流出色谱柱,而在固定相中分配浓度大的组分后流出。当组分流出色谱柱后,立即进入检测器,检测器能够将样品组分的存在与否转变为电信号,而电信号的大小与被测组分的量或浓度成比例,当将这些信号放大并记录下来时,就是如图2所示的色谱图(假设样品分离出三个组分),它包含了色谱的全部原始信息。在没有组分流出时,色谱图的记录是检测器的本底信号,即色谱图的基线。 2、气相色谱结构及维护 2.1 进样隔垫 进样隔垫一般为硅橡胶材料制成,一般可分普通型、优质型和高温型三种,普通型为米黄色,不耐高温,一般在200℃以下使用;优质型可耐温到300℃;高温型为绿色,使用温度可高于350℃,至色谱柱最高使用温度的400℃。正因为进样隔垫多为硅橡胶材料制成,其中不可避免地含有一些残留溶剂和/或低分子齐聚物,另外由于汽化室高温的影响,硅橡胶会发生部分降解,这些残留的溶剂和降解产物如果进入色谱柱,就可能出现“鬼峰”(即不是样品本身的峰),从而影响分析。解决的办法有:一是进行“隔垫吹扫”,二是更换进样隔垫。一般更换进样隔

气相色谱仪操作步骤

气相色谱仪操作步骤 1、打开氮气、氢气、空气发生器的电源开关(或氮气钢瓶总阀),调整输出压力稳定在0.4Mpa左右(气体发生器一般在出厂时已调整好,不用再调整)。 2、打开色谱仪气体净化器的氮气开关转到“开”的位置。注意观察色谱仪载气B的柱前压上升并稳定大约5分钟后,打开色谱仪的电源开关。 3、设置各工作部温度。TVOC分析的条件设置:(a)柱箱:柱箱初始温度50℃、初始时间10min、升温速率5℃/min、终止温度250℃、终止时间10min; (b)进样器和检测器:都是250℃。脂肪酸分析时的色谱条件:(a)柱箱:柱箱初始温度140℃、初始时间5min、升温速率4℃/min、终止温度240℃、终止时间15min; (b)进样器温度是260℃,检测器温度是280℃。 4、点火:待检测器(按“显示、换档、检测器”可查看检测器温度)温度升到150℃以上后,打开净化器上的氢气、空气开关阀到“开”的位置。观察色谱仪上的氢气和空气压力表分别稳定在0.1Mpa和0.15Mpa左右。按住点火开关(每次点火时间不能超过6~8秒钟)点火。同时用明亮的金属片靠近检测器出口,当火点着时在金属片上会看到有明显的水汽。如果在6~8秒时间内氢气没有被点燃,要松开点火开关,再重新点火。在点火操作的过程中,如果发现检测器出口内白色的聚四氟帽中有水凝结,可旋下检测器收集极帽,把水清理掉。在色谱工作站上判断氢火焰是否点燃的方法:观察基线在氢火焰点着后的电压值应高于点火之前。 5、打开电脑及工作站(通道一分析脂肪酸,通道二分析碘),打开一个方法文件:脂肪酸分析方法或碘分析方法。显示屏左下方应有蓝字显示当前的电压值和时间。接着可以转动色谱仪放大器面板上点火按钮上边的“粗调”旋钮,检查信号是否为通路(转动“粗调”旋钮时,基线应随着变化)。待基线稳定后进样品并同时点击“启动”按钮或按一下色谱仪旁边的快捷按钮,进行色谱数据分析。分析结束时,点击“停止”按钮,数据即自动保存。 8.关机程序:首先关闭氢气和空气气源,使氢火焰检测器灭火。在氢火焰熄灭后再将柱箱的初始温度、检测器温度及进样器温度设置为室温(20-30℃),待温度降至设置温度后,关闭色谱仪电源。最后再关闭氮气。

最新Agilent7820A气相色谱仪操作规程

1、目的 明确Agilent7820A型气相色谱仪的使用要求、基本操作步骤、维护、保养方法,以便于按照规程进行仪器操作。 2、范围 本规程适用于Agilent7820A型气相色谱仪的使用操作。 3、责任者 分析员执行本规程,QC经理及指定人监督本规程的实施。 4、内容 4.1 开机 4.1.1 依次打开气瓶氮气,空气,氢气。调节氮气与空气的压力值到0.5MPa,氢气的压力固定值为0.2~0.3MPa。 4.1.2 打开计算机。打开7820A GC电源,待自检完成后,双击“Instrument 1 Onlin e”图标,化学工作站自动与7820A GC通讯,进入工作站画面。 4.1.3 从“View”菜单中选择“Method and Run control”画面,点击“View”菜单中的“Instrument Actuals”,“GC Instrument diagram”,使其命令前有“√”标志,点击“Online signals”到“Signal window1”来调用所需的界面。 4.2 数据采集方法编辑 4.2.1 仪器配置:点击“Instrument”选项,选择“Agilent7820A Configuration”,进入一个界面,点击“Configuration”点击“Column”选项,点击第一行,输入毛细管柱的型号,编码,规格和最大耐受温度,点击“OK”。(也可以点击“Imentory”选项在已有柱子中选择)。 4.2.2 开始编辑完整方法:选择“Method”选项,点击“New Method”。 4.2.3 仪器参数设置: 4.2.3.1 进样口参数设定:在弹出的窗口中点选“Split-Splitless Intel”,输入进样口温度“Heater”如:250℃;选择模式;载气节省;输入分流比“Split Ratio”,如:7:1。 4.2.3.2 毛细管柱参数设定:点击柱子标识,检查柱子型号是否与所装柱子一致。选择控制模式:恒流“Flow”或者恒压“Pressure”,并输入数值,如:5ml/min;如需要还可设置流速变化程序以及后运行流速和时间。 4.2.3.3 柱温箱参数设定: 点选柱温标识输入柱温“Value ℃”如:40℃;输入升温速率“ Rate ℃/min”如:3℃/min;输入运行时间“Hold Time min”;如:5min;输入后运行时间“Post Run Time”如:10min;输入后运行温度“Post Run”如:40℃。 4.2.3.4 检测器参数设定:点选检测器图标进入“FID-Front”界面,输入检测器温度“Heater”如:300℃。点击“Resolve”。点击“Method” 选项,选中“Save method as”,为新方法命名,如“test”,点击“Ok”保存。 4.3 运行进样 4.3.1 手动进样 4.3.1.1 调用方法,点击“Method”选项,选择“Load Method”点击需要的方法,

气相色谱操作方法

气相色谱的使用方法 一、开机前准备 1 检查气体过滤器、载气、进样垫和衬管等 检查气体过滤器和进样垫,保证辅助气和检测器的用气畅通有效。如果以前做过较脏样品或活性较高的化合物,需要将进样口的衬管清洗或更换。 2 安装色谱柱 (1)保持色谱柱两端开口朝下,将密封垫、螺母和石墨卡套依次装在色谱柱上,然后轻轻弹色谱柱开口端,使其内部由于并将色谱柱两端要小心切平。 (2)将色谱柱一端连接于进样口上,色谱柱在进样口中插入的深度为5mm(使用仪器自带的尺子确定)。将色谱柱正确插入进样口后,用手把连接螺母拧上,拧紧后(用手拧不动)用扳手再多拧1/4-1/2圈,保证安装的密封程度。将色谱柱的另一端连接于检测器上,先将色谱柱深入到检测器底部,回拉约1-2mm,然后用手将连接螺母拧紧,用扳手再多拧1/4-1/2圈。 3 打开钢瓶总阀并检漏 观察氮气分压压力是否在0.2MPa左右,氢气压力是否有0.1Mpa,空气压力表是否有0.15Mpa,并使用表面活性剂涂于各个连接处,观察是否有气泡生成,若有,则表明有漏气,反之,则不漏气。 二开机 1 打开计算机,进入桌面。

2 打开7890A GC 电源开关。 3 双击桌面的“仪器1 联机”图标,进入工作站界面。 三、7890A 配置编辑 1 色谱柱配置 点击“配置”按钮,选择“色谱柱”,进入柱参数设定画面,点击“向目录添加色谱柱”按钮进入柱库,从柱库中选择安装的柱子,然后点击“确定”按钮,则该柱被加到目录中,选中它,点击“确定”。 2 自动进样器 点击“配置”按钮,选择“自动进样器”,设置注射器规格为10μl. 3 点击“运行控制”,选择“样品信息”,设定文件保存的路径。 4 点击“仪器”,选择“进样方式”,设定为“GC进样器”。 5 点击“方法”,选择“样品”,设定进样量及清洗方式。选择“进样口”,设定加热器温度、压力和隔垫吹扫流量。选择“柱箱”,设定升温程序。选择“检测器”,设定检测温度、氢气和空气流量、尾吹扫流量和火焰的开关。 6 点击方法,选择“保存方法”。 7 若样品为多个,则点击“序列”,选择“序列表”,编辑序列表。 四、运行及分析 1 点击“方法”,调用已保存的方法,或者点击“运行控制”直接运行编辑好的方法。 2 运行结束后。点击“数据分析”板块,点击“报告”,选择“设定报告”,对报告的格式根据需要进行设定。若采用外标法进行分析,

气相色谱仪原理和使用

实验七气相色谱仪原理和使用 一、目的要求 1、掌握气相色谱仪结构、工作原理和内标法应用。 2、熟悉气相色谱仪的操作 3、了解气相色谱法在中药分析中的应用。 二、基本原理 仪器工作原理图 样品测定原理 牛黄解毒片由牛黄、雄黄、石膏、大黄、黄芩、桔梗、冰片、甘草组成。其中冰片为龙脑和异龙脑的混合物,具挥发性。因此本实验采用GC法,对牛黄解毒片中所含冰片进行测定,并用内标法计算含量。 三、仪器与试药 1、气相色谱仪GC9800F(上海科创色谱仪器有限公司)、微量进样器。 2、水杨酸甲酯、乙醚、醋酸乙酯(AR)。 3、冰片对照品(中国药品生物制品检定所)。 4、牛黄解毒片(市售品)。 四、操作步骤 1、讲述仪器结构:N2钢瓶、空气钢瓶、氢气发生器,气体净化器;进样器、橡

胶垫片、衬管;柱温箱、毛细管柱、分流管、尾吹管;FID检测器 2、讲述仪器操作(详见附录): (1)顺时针打开氮气和空气钢瓶、接通氢气发生器电源。 (2)接通仪器电源。 (3)设置气化、柱箱、检测器温度,并运行。 (4)确定各气体流量。 (5)打开FID电源,设置灵敏度和衰减。 (6)打开电脑,打开N2000在线,选择通道1,设置方法、信息等。 (7)查看基线。 (8)点火。 (9)待基线稳定后进样。 (10)进入N2000离线,查看色谱图和数据。 (11)记录所需色谱峰保留时间、峰面积、分离度、塔板数、对称因子等。(12)利用内标法进行样品溶液浓度的计算。 (13)柱的老化。 (14)关机 3、样品分析 色谱条件以二甲基聚硅氧烷(SE-30)为固定相;柱温为130℃,气化室为200℃,; 载气为N 2;柱前压0.06MPa;H 2 0.03MPa(20ml/min);空气0.03MPa;尾吹0.03MPa; FID检测器,控制温度200℃。 校正因子测定 内标溶液配制取水杨酸甲酯0.5g,精密称定,置250ml量瓶中,加乙酸乙酯至刻度,摇匀,作为内标溶液(2mg/ml)。(已备) 对照品溶液配制取冰片对照品20mg,精密称定,置10ml量瓶中,加内标溶液至刻度,摇匀,作为对照品溶液(2mg/ml)。(已备) 测定校正因子取冰片对照品溶液1μl注入气相色谱仪,测定3次,计算校正因子。 测定法取本品6片,去薄膜衣,研细,取0.5g,精密称定,置15ml带塞试管中,加入乙醚10ml,密塞,冰水浴超声提取10min。提取液分两次转移至8ml 离心管中,离心(3000rpm,10min),倾出上清液,沉淀用5ml乙醚洗涤1次,离心,合并上清液,挥干,残渣用内标溶液溶解,移置10ml量瓶中,并稀释至刻度,摇匀,用微孔滤膜(0.45μm)滤过,取续滤液,即得。精密吸取1μl,注入气相色谱仪,测定,按内标法计算含量。(已备)

Agilent 7890B型气相色谱仪操作规程

无 六.工作程序 1.开机 1.1.开机前准备: 1.2.安装相应色谱柱,检查系统完整性。 1.3.流量的调节,开启钢瓶或减压阀,将氮气压力调节至0.5MPa;开启氢气发生器,保证正常供应氢气。

1.4.检漏,用皂液检查柱及各连接是否漏气。 2.检测 2.1.打开电脑,进入windows界面 2.2.Agilent 7890B气相 2.2.1.打开工作站软件双击7890B 联机,连接Agilent 7890B气相色谱仪,进入工作站界面。 2.2.2编辑参数及方法 点击方法---新建方法---点击方法---编辑完整方法---选择进样方式(自动进样),---设置方法参数(进样器、进样口、色谱柱、柱箱、检测器、配置就绪状态等),建立方法名、系统参数、存储 2.2. 3. 从“方法 2.2.4. 在“ 2.2.5. 2.2.6. 点击“选择 2.2.7. 单击“ 。 2.2.8.柱温箱温度参数设定: 点击“柱箱”图标,进入柱温箱参数设定,选中“柱箱温度开启”并输入初始温度(如40℃),最高柱箱温度;在表格中输入升温程序例如:40℃(2min)----10℃/min----90℃(0min)----15℃/min---170℃(2min),点击“应用”钮。 2.2.9.检测器参数设定: 单击“检测器”图标,进行检测器参数设定,选中加热器、空气流量、氢气燃烧流量、尾吹气流量、火焰并输入适当参数,单击“应用”。 2.2.10.信号参数设定:

点击“信号”图标,进入信号参数设定界面。 选择FID数据采集数率(如20HZ)保存,点击“应用”钮。 2.2.11.点击“序列”菜单中选择“新建序列表”选项编辑所需序列并保存,再在序列---序列参数”选项选择数据存储路径并设置新的计数。 2.2.12.待仪器就绪后,基线平稳,从序列菜单中选择“序列表”,运行序列。 2.3. Agilent 7890B气相+ Agilent7697A顶空 2.3.1打开工作站软件双击GC+HS联机Agilent 7890B气相色谱仪、顶空进样器,进入工作站界面中。 2.3.2. 点击方法 柱箱、 2.3.3. 从“方法 一界面。 2.3.4. 在“ 2.3.5. 2.3.6. 2.3.7. 点击“色谱柱”图标,则该图标对应的参数显示出来,从色谱柱库中选择您的柱子并安装,选择合适的柱前压、流速、线速度(三者只输一个即可),点击“应用”。 2.3.8.进样口参数设定: 单击“进样口”图标,进入进样口设定界面,选择进样口的位置(后);模式---选择分流模式,选择合适的分流比并将“加热器”、“压力”、“隔垫吹扫流量”选中,点击“应用”。 2.3.9.柱温箱温度参数设定: 点击“柱箱”图标,进入柱温箱参数设定,选中“柱箱温度开启”并输入初始温度(如40℃),最高柱箱温度;在表格中输入升温程序例如:40℃(2min)----10℃/min----90℃(0min)----15℃

相关文档
相关文档 最新文档