文档库 最新最全的文档下载
当前位置:文档库 › 汽轮发电机组振动的影响因素分析

汽轮发电机组振动的影响因素分析

汽轮发电机组振动的影响因素分析
汽轮发电机组振动的影响因素分析

龙源期刊网 https://www.wendangku.net/doc/923014146.html,

汽轮发电机组振动的影响因素分析

作者:罗琪

来源:《中国机械》2013年第24期

摘要:汽轮发电机组安装工程是工业安装工程中常见的关键工程,其安装质量的好坏关系到机组的稳定性及持续运行的能力,而机组的振动问题则是汽轮发电机组安装中最常见的问题。一般而言,汽轮发电机组的振动有很多方面的原因,既有设计制造方面的,又有安装和运行方面的原因。本文简单分析汽轮发电机组振动产生的原因,为今后汽轮发电机组的安装及检修做一定的参考。

关键词:汽轮机组;振动;影响因素

1.质量不平衡

汽轮发电机组是由汽轮机和发电机组成,通过轴承及端盖将汽轮机和发电机连接组装起来的,由汽轮机带动发电机转子在定子中高速旋转切割磁力线,从而产生感应电势[1]的设备机组。因此当转子的质心与旋转中心不重合时,就会在运行的过程中形成了离心力,产生周期性的摆动造成对轴承的压迫。质量不平衡时不仅会产生振动,还会造成机组的整体磨损。

汽轮发电机组转子的质量不平衡产生的原因一般有以下几方面:

1.1.由加工制造时机械加工精度不够和装配质量较差引起的原始不平衡。

1.2.转子发生热弯曲.此时不但引起振动,还很有可能引起汽轮机动静部件之间的摩擦。因转子热弯产生的振动表现为显著的轴向振动。尤其当通过临界转速时,其轴向振幅增大得更为明显。

1.3.转动部件飞脱、松动。机组在转动过程中,若叶片、围带、拉金以及平衡质量块产生飞脱,以及护环、转子线圈、槽楔、联轴器等产生松动,均会使汽轮发电机组产生振动。

所以,在制造时,汽轮发电机转子在装配时每装配一级叶片都应对该级叶片进行动平衡试验,整个转子装配完成后在出厂之前还应该对整个转子进行低速和高速动平衡,以确保转子的不平衡量在一个合格的范围内。在安装、维修时,要特别注意转动部件连接的牢固性,确保转动部件与轴的连接强度在要求的范围内,避免运转时飞脱及松动。在试运转时,要注意轴承的升温及振幅,及时排除影响因素及安装问题。不得在出现异常时任由轴承升温及振动而不停车,造成机组损坏。

2.机组安装坐标系偏差

(完整版)水轮发电机组振动标准的探讨

水轮发电机组振动标准的探讨 一、概述 水轮发电机组的振动由于其所具有机组在制造厂不能进行运行试验、各机组构造和支承条件各异的特点,设计单位和制造厂所编制的振动预测往往和机组的振动状态有着较大程度的差异。多年来国际电工委员会(IEC)和国际标准化组织(ISO)也曾组织制定过相关规程,有关国家先后提出过若干提案,但至今都未形成正式的国际标准。 1. 目前,在国内外广泛使用于水轮发电机组的振动判断标准如表1。 表1

二、国际电工委员会(IEC)和国际标准化组织(ISO)汇集各国、各知名标准化协会提案提炼的相关标准铸就了水轮发电机组振动测量、评判标准系列的基石 1.ISO 10816-5(2000)《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》是目前最具权威性的轴承座振动评定标准之一(目前,ISO 10816已替代了ISO 2372 和ISO 3945)。 GB/T 6075.5-2002《在非旋转部件上测量和评价机器的机械振动第 5部分:水力发电厂和泵站机组》实际上相当于ISO 10816-5(2000)的中译本,因此,完全可以GB/T 6075.5-2002替代国际标准化组织的相关标准ISO 10816-5(2000)。 相关的主要内容是: 1)对轴承座绝对振动的测量,通常用惯性传感器测量振动速度V rms,单位为mm/s(对于300~1800r/min的中高速机组而言,低于300r/min机组建议测量振动位移S P-P,单位为μm)。在支架振动响应可以忽略的情况下,也可将位移传感器固定在刚性支架上,直接测量振动位移S P-P。 2)上下导轴承座均支撑于基础上的立式机组,水轮机工况的推荐值参见表3、图1。 表3 的推荐值参见表4、图2。

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

中、小型汽轮发电机组安装工法

中、小型汽轮发电机组 安装工法

目录 1、前言 (1) 2、特点 (1) 3、适用范围 (2) 4、工艺原理 (2) 5、工艺流程及操作要点 (4) 6、材料 (18) 7、机具设备 (19) 8、安全措施 (20) 9、质量控制 (21) 10、环保措施 (22) 11、效益分析 (23) 12、应用实例 (23) 附:工程竣工报告 交工验收证明书 工程应用证明 经济效益证明

1、前言 汽轮发电机组是将热能转换成电能的机器,目前常用的汽轮发电机组有背压式、抽凝式和抽汽式等多种类型。背压式汽轮发电机组主要用于发电,抽凝式汽轮发电机组主要用于热电联产。中小型汽轮发电机组有3000KW、6000KW、9000KW、12000 KW等。 我国配套生产中小型汽轮发电机组的厂家主要有杭州汽轮机厂、南京汽轮机厂等。 作为安装施工企业,总结先进的施工经验,在汽轮发电机组安装行业里占领一席之地。这也是本工法编制的目的之一。 2、特点 2.1本工法比较先进、操作简便。汽轮发电机组的安装是一项复杂的工作,部件多、程序复杂、安装精度要求高,该工法对施工程序有最佳的安排,避免了重复工作造成的浪费。 2.2节约工期。以厦门国能新阳热电厂设备安装工程6000KW抽凝式汽轮发电机组安装为例,定额工期为90天,在该工法的指导下实际工期仅为60天,节约工期30余天。 2.3成本低、效益好。该工法提供了最佳的施工措施,节约了工期及人工费;同时节约了施工机械等费用。 2.4适用性广。适用于不同厂家生产的中小型汽轮发电机组的安装。 2.5施工质量高。该工法详细阐述汽轮发电机组的施工方法、操作要点,

水轮发电机组振动危害性分析及预防

水轮发电机组振动危害性分析及预防 水轮发电机组在运行中产生振动现象是不可避免的,这是由多种因素引发机组振荡的综合效应。在设备运行生产管理工作中,应注意加强对机组振动现象及其危害性的分析与预防。 1 水轮发电机组振动类型 1.1 机械类振动。由于机械部分的平衡力引起的振动称为机械类振动。例如,转动部分重量不平衡、轴线偏差、摆动过大等。其主要特点是振动频率与机组转速一致,有时振幅与转速成正比。 1.2 电气类振动。由于电气方面的原因造成发电机磁场不平衡而引起的振动称为电气振动。例如,发电机在三相电流不对称情况下运行磁场不均匀,发电机短路故障等。其主要特点是振幅与励磁电流大小成正比。 1.3 水施类振动。由于某些原因引起水轮机蜗壳内受力不平衡而造成的振动称为水施类振动。例如,尾水涡带、叶片水卡门涡列、转轮圆圈边间隙不均匀、转轮气蚀等。其特点是振幅与导叶开度有关,往往开度愈大,振幅愈大。 2 水轮机组振动所带来的危害 2.1 引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至断裂损坏而报废。 2.2 使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接部分的振动,促使它们加速损坏。 2.3 加速机组转动部分相互磨损程度。如大轴剧烈摆动可使轴与轴瓦

的温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使温度升高,使轴瓦烧毁;发电机转子振动过大增加滑环电刷磨损程度,并使电刷火花不断增大。 2.4 尾水管中形成的涡流脉动压力可使尾水管壁产生裂缝,严重时可使整体尾水设施遭到破坏。 2.5 水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂房遭到不同程度的损坏。 3 引起振动的原因及预防措施 3.1 机械方面的因素有:①由于主轴的弯曲或挠曲、推力轴承调整不良、轴承间隙过大、主轴法兰连接不紧和机组几何线中心点不准引起空载低速时的振动;②因转轮等旋转件与静止件相碰而引起的振动; ③转动部分重量不平衡引起的振动,且随转速上升振动增大而与负荷无关,这是常见的,特别是焊补转轮或更换浆叶后更容易发生。 对机械原因引起的振动应采取的措施:通过动平衡、调整轴线或调整轴瓦间隙等来提高相对同心度和精密度。 3.2 水施方面的因素有:①尾水管中水流涡带所引起的压力脉动诱发的水轮机振动,严重的还引起厂房共振;②卡门涡列引起的振动,当水流流经非流线型障碍物时,在其后面尾流中分裂一系列变态旋涡,即所谓卡门涡列,这种涡列交替地作顺时针或反时针方向旋转,在其不断旋转与消失过程中,会在垂直于主流方向发生交变力导致的叶片振动,严重时会发出响声,甚至使叶片根部振裂;③转轮止漏间隙不均匀引起的振动,间隙大处其流速较小而压力较大,其振频与止漏环

汽轮机振动大的原因分析及其解决方法[1]

汽轮机振动大的原因分析及其解决方法 摘要:为了保障城市经济的发展与居民用电的稳定,加强汽轮机组日常保养与维护,保障城市供电已经成为了火力发电厂维护部门的重要任务。文章就汽轮机异常振动的原因进行了分析与故障的排除,在振动监测方面应做的工作进行了简要的论述。 关键词:汽轮机;异常振动;故障排除;振动监测;汽流激振现象 对转动机械来说,微小的振动是不可避免的,振动幅度不超过规定标准的属于正常振动。这里所说的振动,系指机组转动中振幅比原有水平增大,特别是增大到超过允许标准的振动,也就是异常振动。任何一种异常振动都潜伏着设备损坏的危险。比如轴系质量失去平衡(掉叶片、大轴弯曲、轴系中心变化、发电机转子内冷水路局部堵塞等)、动静磨擦、膨胀受阻、轴承磨损或轴承座松动,以及电磁力不平衡等等都会表面在振动增大,甚至强烈振动。 而强烈振又会导致机组其他零部件松动甚至损坏,加剧动静部分摩擦,形成恶性循环,加剧设备损坏程度。异常振动是汽轮发电机运转中缺陷,隐患的综合反映,是发生故障的信号。因此,新安装或检修后的机组,必须经过试运行,测试各轴承振动及各轴承处轴振在合格标准以下,方可将机组投入运行。振动超标的则必须查找原因,采取措施将振动降到合格范围内,才能移交生产或投入正常运行。 一、汽轮机异常振动原因分析 汽轮机组担负着火力发电企业发电任务的重点。由于其运行时间长、关键部位长期磨损等原因,汽轮机组故障时常出现,这严重影响了发电机组的正常运行。汽轮机组异常振动是汽轮机常见故障中较为复杂的一种故障。由于机组的振动往往受多方面的影响,只要跟机本体有关的任何一个设备或介质都会是机组振动的原因,比如进汽参数、疏水、油温、油质、等等。因此,针对汽轮机异常震动原因的分析就显得尤为重要,只有查明原因才能对症维修。针对导致汽轮机异常振动的各个原因分析是维修汽轮机异常振动的关键。 二、汽轮机组常见异常震动的分析与排除 引起汽轮机组异常振动的主要原因有以下几个方面,汽流激振、转子热变形、摩擦振动等。 (一)汽流激振现象与故障排除 汽流激振有两个主要特征:一是应该出现较大量值的低频分量;二是振动的增大受运行参数的影响明显,且增大应该呈突发性,如负荷。其原因主要是由于叶片受不均衡的气体来流冲击就会发生汽流激振;对于大型机组,由于末级较长,气体在叶片膨胀末端产生流道紊乱也可能发生汽流激振现象;轴封也可能发生汽流激振现象。针对汽轮机组汽流激振的特征,其故障分析要通过长时间的记录每次机组振动的数据,连同机组满负荷时的数据记录,做出成组曲线,观察曲线的变化趋势和范围。通过改变升降负荷速率,从5T/h到50T/h的给水量逐一变化的过程,观察曲线变化情况。通过改变汽轮机不同负荷时高压调速汽门重调特性,消除气流激振。简单的说就是确定机组产生汽流激振的工作状态,采用减低负荷变化率和避开产生汽流激振的负荷范围的方式来避免汽流激振的产生。 (二)转子热变形导致的机组异常振动特征、原因及排除 转子热变形引发的振动特征是一倍频振幅的增加与转子温度和蒸汽参数有密切关系,大都发生在机组冷态启机定速后带负荷阶段,此时转子温度逐渐升高,材质内应力释放引起转子热变形,一倍频振动增大,同时可能伴随相位变化。由于引起了转子弯曲变形而导致机组异常振动。转子永久性弯曲和临时性弯曲是

风力发电振动加速度传感器安装选项

风力发电机组的加速度振动传感器
再生能源 风力发电是一种成长中的干净的可再生能 源。无论是单个机组还是组合机组的风力发 电场,它们都是目前世界上发展很快的新能 源。 风力发电机组原理是将风力机械能转化成电 能。风力发电的规模可以从 500 千瓦到 6 兆 瓦。 最常用的风力发电机组是水平轴布置。 有些是三桨叶,上风向并且带有偏航控制, 有的则是二桨叶,下风向,自然随风旋转。 偶尔你也会看到垂直布置的风力发电机组, 它们也被称为 Darrieus (打蛋形)风力发电 机组,根据法国发明家而命名。但是这种打 蛋形的设计不是很流行,逐渐被性能较好得 水平布置的风力发电机组所代替。 风力发电机组和低速电机驱动的风扇,例如 冷却塔,有很多相同之处。风力发电机组基 本上是一个大型低速风扇,但是它不是电能 驱动,没有将机械能通过减速箱驱动大型低 速风扇,相反的,它提供机械能,通过加速 箱驱动发电机产生电能。这个反向的过程带 有很多会产生振动的旋转部件,长时间的损 耗可能会导致最终失效。 ? ? ? 维修费用非常高 不可能的工作高度 电能的损失很昂贵
轴向振动传感器 径向振动传感器
发电机
齿轮箱
主要轴承
带有加速度振动传感器的水平布置的 风力发电机组
低频加速度振动传感器 主要轴承和转轴的速度大约是 30-60 rpm。这 也是齿轮箱输入轴的旋转速度。旋转频率范 围是 30 – 60 cpm (0.5 – 1.0 赫兹)的情况应采 用低频加速度振动传感器。 测量的范围包括 主轴旋转频率,叶片通过频率,主轴承频 率,齿轮箱输入轴轴承频率和齿轮啮合频率 等等。这些低频加速度振动传感器通常可以 提供 500mV/g 以及 12-180000 cpm (0.2 – 3000 赫兹) 的频率范围。
1

汽轮发电机组安装安全措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 汽轮发电机组安装安全措 施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7441-79 汽轮发电机组安装安全措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行 具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常 工作或活动达到预期的水平。下载后就可自由编辑。 汽机设备安装前先将汽机平台周围的栏杆安装好,孔洞全部盖好后方可进行。 临时支撑转子的支架在制作前经过校核计算。 清理端部轴封、隔板汽封或其它带有尖锐边缘的部件时,戴帆布手套。 下汽缸就位后,低压缸排汽口用临时堵板封严,汽缸两侧用木板铺满。 在吊起的汽缸下面进行清理和涂抹涂料时,在临时支撑将汽缸支稳后方可进行。 调整瓦枕垫片在翻转的轴瓦固定后进行,轴瓦复位时防止轴瓦滑下伤手。 盘动转子时遵守下列规定: 有统一指挥。 盘动前通知周围无关人员不得靠近转子。

用行车盘动转子时,不得站在拉紧钢丝绳的对面。 站在汽缸接合面上用手盘动转子时,不得穿带钉的鞋,鞋底必须干净;不得戴手套;严防衣服被叶轮钩挂。 在平衡台上校转子动平衡时,遵守下列规定: 有统一指挥。 工作场所拉设安全警戒线,无关人员不得入内。 用皮带拖动转子时,有防止皮带断裂或滑脱时伤人的措施。一旦皮带脱落,必须待转子停稳后方可重新装上。 试加重时必须装牢,严防脱落伤人。 发现异常情况,立即切断电源。 拆卸自动主汽门时,用专用工具均匀地放松弹簧,谨防弹簧弹出伤人。 在转动、调整、就位、拆装设备部件或在管子对口时,施工人员协调一致,严禁将手伸入接合面和螺丝孔内,清理时采取措施。 清洗机件使用无铅汽油或煤油。清洗地点严禁烟

汽轮发电机组的振动

汽轮发电机组的振动 第一节概述 汽轮发电机组在运行中总会存在一定程度的振动,关键在于应使机组振动值维持在允许范围内。机组振动是评价机组运行可靠性的重要依据之一,机组振动异常是运行中的常见故障。强烈振动表明机组内存在缺陷,如在此情况下不采取措施而继续运行,由于振动力的作用,会使机组各连接部位松动,削弱了连接刚性,振动将随之进一步加剧。振动过大会使机组动静部分及松动部位互相摩擦、轴承合金破坏、转子大轴疲劳甚至出现裂纹、叶片断裂、危急保安器误动作。为此,汽轮机组振动过大,应正确分析振动产生原因、振动性质,判断造成振动过大的部位,并采取相应措施,使振动减小到允许范围。汽轮机检修工作应掌握产生振动的规律及与振动联系密切的设备,提高检修质量,防止出现异常振动。 机组产生振动异常原因是多方面的,情况复杂,它涉及到机组制造、安装、检修和运行各个方面,所以无论是检修人员、还是运行人员均应具备这方面的基本知识。 机组振动过大,将引起设备损坏,甚至造成严重后果。振动过大的危害性主要表现在以下几个方面。 1 .直接造成机组停机事故 当机组振动过大,尤其在高压端振动过大,有可能引起危急保安器遮断油门动作而停机。 2 .机组振动造成动静部分摩擦

机组强烈振动会使轴封、隔板汽封产生磨损,间隙增加,使机组运行经济性下降、轴向推力上升甚至造成推力瓦块损坏。如果磨损严重还会造成转子弯曲,当热应力超过屈服极限,将使转子产生永久性弯曲。如果振动发生在发电机侧,会加速滑环与碳刷的磨损,线圈电气绝缘磨损而造成电气事故,最后导致机组火灾,这种事故在电厂时有发生。 3 .振动导致机组零部件损坏 振动过大动应力增加,会使叶片、围带等转动零件损坏,叶片、围带断裂又引起更大的质量不平衡振动。振动过大也会损坏轴承合金。 4 .振动使各连接件松动 机组振动过大时,将使轴承上的连接件、主油泵、凝汽器及发电机冷却管、法兰连接螺栓振松或损坏,甚至造成基础裂纹。 第二节振动标准 机组振动是客观存在的,振动过大会造成极大危害,所以运行中的机组振动值必须保持在一定范围内,这个范围就是振动的标准,我国电力部颁布了汽轮发电机组振动的振幅值标准,见表4-l 。 表4-1 汽轮发电机组振动标准(水电部1980年颁发) 机组的振动状况,应在额定转速下,通过测量任何运行工况时轴承座的振动峰值来评定,并以轴承座的垂直(⊥)、水平(一)、轴向(☉)

水轮发电机组振动分析

水轮发电机组振动分析 水轮发动机组振动有诸多原因以及危害。由于破坏了转轮结构和固定导叶,这种振动现象会威胁水电站运行的安全性和稳定性,降低水电站的经济效益。文章阐述了水轮发电机组原理、原因以及危害等问题,为了提高机组安全稳定运行延长机组使用寿命,我们要减少水轮发电机组振动这种现象。 标签:水轮发电机组振动;原理;振动;危害 1 概述 随着社会的发展,水利工程对人们的生活至关重要,我们应该采取有效措施保障水利工程项目内部机电设备的正常运行。为了提高水轮发电机组的稳定性,对水轮发电机组振动进行分析与研究。 2 水轮发电机组振动原理 在机组运转的状态下,在水轮机作为其原动力的前提下,水能的作用能够直接有效激发水轮发电机组振动,还能够间接维持机组振动。流体、机械、电磁三者是相互影响相互作用的,由于气隙在不对称的状态下,由于发电机定子与转子之间的磁拉力不平衡的情况,当流体激起机组转动部分振动时会造成机组转动部分的振動,而发电机的磁场和水轮机的水流流场也会受到转动部分的运动状态的影响。 3 关于水轮发电机组振动的原因 3.1 机械原因 (1)机组轴线不同心。因为轴心线受到水轮机轴与发电机轴不同心的现象导致不正,因此出现振动,造成机械故障。它的主要振动特征1倍频和2倍频为径向振动的主要频率;2倍频分量与轴系不对中成正比,2倍频分量比例越大,轴系不对中越的现象越显著,一般会超过1倍频分量。 (2)不平衡的转子质量。水轮发电机组转子质量不平衡是是旋转机械最常见的故障,也是导致机组振动的常见原因之一。其转子质量不平衡振动现象表现有三点:随着转速增加振动频率也随之增加;以圆或椭圆为轴心轨迹;以转频为主要振动频率。 (3)轴承缺陷。引起发生干摩擦的原因:导轴间隙过大、松动、润滑不好,或轴承与固定止漏环轴线不正等,这些因素都会使机组横向振动。为了解决机械原因引起的振动等问题不影响精密度和相对同心度的降低,需要利用动平衡来调节轴瓦间隙和轴线等。

汽轮发电机组安装安全措施详细版

文件编号:GD/FS-7263 (解决方案范本系列) 汽轮发电机组安装安全措 施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

汽轮发电机组安装安全措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 汽机设备安装前先将汽机平台周围的栏杆安装好,孔洞全部盖好后方可进行。 临时支撑转子的支架在制作前经过校核计算。 清理端部轴封、隔板汽封或其它带有尖锐边缘的部件时,戴帆布手套。 下汽缸就位后,低压缸排汽口用临时堵板封严,汽缸两侧用木板铺满。 在吊起的汽缸下面进行清理和涂抹涂料时,在临时支撑将汽缸支稳后方可进行。 调整瓦枕垫片在翻转的轴瓦固定后进行,轴瓦复位时防止轴瓦滑下伤手。 盘动转子时遵守下列规定:

有统一指挥。 盘动前通知周围无关人员不得靠近转子。 用行车盘动转子时,不得站在拉紧钢丝绳的对面。 站在汽缸接合面上用手盘动转子时,不得穿带钉的鞋,鞋底必须干净;不得戴手套;严防衣服被叶轮钩挂。 在平衡台上校转子动平衡时,遵守下列规定: 有统一指挥。 工作场所拉设安全警戒线,无关人员不得入内。 用皮带拖动转子时,有防止皮带断裂或滑脱时伤人的措施。一旦皮带脱落,必须待转子停稳后方可重新装上。 试加重时必须装牢,严防脱落伤人。 发现异常情况,立即切断电源。

试论述引起水轮发电机组振动的原因

试论述引起水轮发电机组振动的原因、振动机理及相应振动故障的处理措施 水轮发电机组的振动与一般动力机械振动有一定差异,机组振动的现象是比较明显的,但振源往往是隐蔽的,除了机器本身转动或固定部分引起的振动外,还需考虑发电机电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。引起水轮发电机组振动的原因多种多样,往往是几种振源同时存在,通常认为使机组产生振动的干扰力源主要来自水力、机械和电气三个方面,三者相互影响、相互作用,常常交织在一起,形成耦合振动。 水轮发电机组的一般振动不会危害机组,但当机组振动超过允许值,尤其是长期振动及发生共振时,对供电质量、机组使用寿命、附属设备及仪器是性能、机组基础和周围的建筑物,甚至对整个水电站的安全经济运行等,都会带来严重的危害。 其危害性大致有以下几类: 1)引起机组零部件金属和焊缝间疲劳破坏区的形成和扩大,从而使之产生裂纹,甚至 断裂损坏而报废。 2)使机组部分紧固部件松动,不仅会导致这些紧固件本身的断裂,而且加剧被其连接 部分的振动,促使它们加速损坏。 3)加速机组转动部分相互磨损程度。如大轴剧烈摆动,可使轴与轴瓦的温度升高,使 轴瓦烧毁;发电机转子振动过大增加滑环与电刷的磨损程度,并使温度升高,使轴瓦烧毁,并使电刷火花不断增大 4)尾水管中形成的涡流脉动压力,可使过水系统发生振荡,机组出力摆动,使尾水管 壁产生裂缝,严重时可使整体尾水设施遭到破坏。 5)水轮机组共振引起的后果更加严重。如机组设备与厂房的共振,可使整个设备和厂 房遭到不同程度的损坏 1、水力方面 水力振动由水轮机水力部分的动水压力的干扰造成的振动叫水力振动。产生振动的水力因素主要有:尾水管内低频涡带、卡门涡列、叶道涡引起的水力不稳定、过度过程中

浅谈金风风力发电机组的振动

浅谈金风风力发电机组的振动 姓名:张玉博 入职时间:2013年5月 部门:哈密总装厂

目录 摘要: (2) 一、引言 (3) 二、状态监测与故障诊断 (4) (一)、振动监测方式 (4) (二)、国内外发展现状 (4) (三)、振动故障诊断 (4) 三、金风风力发电机组振动故障案例 (6) (一)、石碑山A0701机组 (6) (二)、石碑山B1004机组 (7) 四、金风风力发电机组减振措施与保护 (8) (一)、对中概念 (8) (二)、造成不对中的原因 (8) (三)、不对中对风机的影响 (9) (四)、金风风力发电机组的减振措施 (9) (五)、独立于系统的硬件保护 (11) 五、小结 (11) 参考文献 (12)

浅谈金风风力发电机组的振动 摘要: 振动是自然界和工程界常见的现象。振动的消极方面是:影响仪器设备功能,降低机械设备的工作精度,加剧构件磨损,甚至引起结构疲劳破坏;振动的积极方面是:有许多需利用振动的设备和工艺(如振动传输、振动研磨、振动沉桩等)。振动分析的基本任务是讨论系统的激励(即输入,指系统的外来扰动,又称干扰)、响应(即输出,指系统受激励后的反应)和系统动态特性(或物理参数)三者之间的关系。20世纪60年代以后,计算机和振动测试技术的重大进展,为综合利用分析、实验和计算方法解决振动问题开拓了广阔的前景。 风力发电机组中减少振动很重要的一个举措就是对中。金风风力发电机组为了减少振动带来的消极影响,做了许多积极措施。从S43/600Kw机组的机械对中到S48/750Kw的激光对中等都有了质的飞跃。 关键词: 振动;振动分析;对中

汽轮发电机组安装技术与改进

汽轮发电机组安装技术与改进 汽轮发电机组本体设备的安装是安装行业中难度系数大、精度要求高、实施工艺较复杂的项目,因为其安装的好坏直接影响到设备工作的安全性、可靠性和工作效率。特别是安装不好产生的机组振动问题很难消除。汽轮发电机组安装的最基本原则是:基础牢固,对中精良,滑销顺畅。安装工艺并非死守陈规,应根据不同的实际环境,制定合理的施工方案。 标签:汽轮发电機组;安装工艺;工艺改进 1 汽轮发电机组的安装难点 汽轮机是用蒸汽推动高速旋转从而带动发电机发电,其安装过程是在常温环境下,而工作运转是在热态环境下,除安装精度要高于一般的机械设备安装外,安装时还需要考虑设备的热胀冷缩特性。由于汽轮发电机设备制造精度高,安装工序复杂,对汽轮机发电机组安装技术提出较高的要求。设计如下1000MW汽轮发电机组的安装步骤,分别为:第一,安置组装基架和地脚螺栓;第二,安装汽轮机的低压缸,在盖缸的状态下,用钢丝对低压缸进行找中,然后再依次安装后、前、中轴承箱,第三,安装发电机组的高中压缸,在不同的状态下,依次完成转子找中、通流间隙检查等工作。第三,对汽轮机进行灌浆,并对其进行最终的装配和找中。第四,安装低压B转子,并完成全部联轴器螺栓的紧固工作。第五,着手准备油冲洗等一系列工作,并完成2次的油冲洗。 2 厂家存在的问题 调整后低压缸前后轴承箱内侧水泥垫块与轴承基架、轴承基架与汽缸之间是否接触密实,有无间隙无法检查和调整,垫片也无法加装。制造厂给定的低压缸台板、中轴承基架、盘车箱基架和前轴承箱基架的标高和扬度值,都是理论计算值,若设计值与安装实际值有偏差,哪怕是几丝,台板消除张口时,都会增加非常大的工作量,有的甚至无法调整。低压缸体积大,变型也大,再加上加工方面的误差,也会造成理论与实际的偏差,给台板消除张口增加非常大的工作量,耗时费力。 3 1000MW超超临界汽轮发电机组新的安装技术措施 3.1 安装施工优化组织措施。 为了确保发电机组安装按照进度计划能够进行高效优质地安装,因此优先进行汽轮机方面的安装工作,主要包括高、中、低压缸的找正工作,隔板安装工作,高、中、低压A、低压B的找正工作,并按照厂家结构和安装技术指导要求进行汽轮机扣缸工作。待上述安装任务完成后,直接将汽轮机第一、二、三次油冲洗及冲洗后系统恢复工作,以及管道蒸汽吹洗清理及蒸汽吹洗后的系统恢复等工作提前,以确保汽轮机安装具有较高效率和质量水平。待1000MW超超临界汽

汽轮发电机组振动的各种因素

汽轮发电机组振动的各种因素 【摘要】汽轮机组从设计到运行的过程都可能产生振动,必将影响整个系统的功能发挥,对此,必须引起管理部门的重视,本文从其设计,制造,安装和检修几方面进行分析,找出了影响机组振动的因素,提出具有针对性的措施。 【关键词】汽轮发电机振动影响因素 汽轮机组的轴承振动程度直接影响到机组整体的运行情况,只有保证安全的运行,才能保证收益,引起发电机组异常振动的原因很多,可能是由于振动制造的问题,或者是安装检修不当造成的振动,本文就对其进行详细的分析。 1 设计制造不当导致的机组振动 汽轮发电机属于调整运转的机械,一旦质子与旋转中心无法重合,会产生离心力,对轴承产生激振力而使之引起机组振动异常,这就要求在安装时要对每片叶片进行平衡检查,保证其不平衡的数值在合格的范围内。 从制造的角度上来看,造成汽轮发电机组转子不平衡的原因是由于对机械的精度处理不当,装配工艺无法满足生产需要,因此,必须提高机械加工的精度,保证质量,降低转子的原始不平衡。 设计不当也会引起机组振动,轴承的选取,稳定性不足都会导致振动,引发机组运转危险。 2 安装检修不当导致的振动 安装与检修过程中的工艺质量对于机组振动的影响十分大,经过实践分析,由于安装和检修引起振动的情况十分普遍,其中主要有以下几个方面: 2.1 标高安装不当 由于轴承的标高没有按照设计的要求安装将会导致两端不平衡,引发自激振动,油膜振动和汽流激振等;而负面较重的一边,由于吃力太大,会引起轴瓦温度升高,当轴瓦乌金温度达到一定值时,很容易产生轴瓦乌金过热现象,从而造成机组的振动。这就要求在安装过程根据设计的要求进行安装,结合现场的实际情况调整标高,保持平衡。 2.2 轴承自身特征决定 轴承的轴瓦、顶隙对轴承的稳定性有一定的影响,外界因素影响下极容易导致振动。而其连接状况则主要影响其刚度,如果刚度不足,引起的异常振动将较大,这就要求必须做好刚度的控制。

水轮发电机组振动原因分析

水轮发电机组振动原因 分析 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

水轮发电机组振动原因分析水轮发电机组的振动问题与一般动力机械的振动有一定差异,除了机器本身转动或固定部分引起的振动外,尚需考虑发电机的电磁力以及作用于水轮机过流部分的流动压力对系统及其部件振动的影响。在机组运转的状态下,流体—机械—电磁三部分是相互影响的。例如,当水流流动激起机组转动部分振动时,在发电机转子与定子之间会导致气隙不对称变化,由此产生的磁拉力不平衡也会造成机组转动部分的振动,而转动部分的运动状态出现某些变化后,又会对水轮机的水流流场及发电机的磁场产生影响。因此,水轮机的振动是电气、机械、流体等多种原因引起的。可见,完全按照这三者的相互关系来研究系统的振动是不够的。鉴于问题的复杂性,将引起水轮机组振动原因大致分为机械、水力、电气三方面的因素来研究,为水电厂生产管理、运行、检修人员提供参考意见,以便制定出相应的预防和消振措施。 1水轮发电机组振动的危害振动是旋转机械不可避免的现象,若能将其振幅限制在允许范围内,就能确保机组安全正常运行。但较大振动对机组安全是不利的,会造成如下危害:

a)使机组各连接部件松动,使各转动部件与静止部件之间产生摩擦甚至扫膛而损坏; b)引起零部件或焊缝的疲劳、形成并扩大裂缝甚至断裂; c)尾水管低频压力脉动可使尾水管壁产生裂缝;当其频率与发电机或电力系统的自振频率接近时,将发生共振,引起机组出力大幅度波动,可能会造成机组从电力系统中解列,甚至危及厂房及水工建筑物。下面简单介绍几起天桥水电厂机组振动引起的事故,以便从中了解机组振动的起因。 a)20世纪80年代初,天桥水电站多次发生因振动摆度过大而引起的设备损坏事故。1980年8月3号机由于上导轴承摆度大导致4个上导瓦背垫块断裂;1982年10月3号机发生发电机扫膛严重事故,上导瓦架与上机架固定螺栓8只中的5只被剪断,1只定位销剪断、瓦架变形。上机架振幅达022mm,水导轴承处振幅达020mm。水轮机轴与发电机大轴法兰联接处摆度为074mm,后经测量分析为机组轴承中心不正,发电机转子外圆度超标,空气间隙不匀等原因所致。

影响汽轮发电机组振动的原因分析

影响汽轮发电机组振动的原因分析 在工业生产中,汽轮发电机组应用的比较广泛,是保证工业生产的主要设备。汽轮发电机组的振动对设备的稳定运行造成了一定的影响,所以要对其原因进行分析,然后找出解决的对策,保证汽轮发电机组的稳定运行,为工业生产的正常运行创造有利的条件。 标签:汽轮发电机组;振动;影响因素 前言 汽轮发电机组的振动对于设备的稳定运行有重要的影响,直接关系到企业的安全生产。对产生振动的影响因素进行分析,具有多方面的原因,设计、制造、安装以及后期的管理等,都可能会导致汽轮发电机组的振动。下面将从几个方面对影响振动的因素进行分析,为汽轮发电机组的稳定运行提供基础的理论依据。 1 设计制造环节的失误 汽轮发电机最为重要的运行设备,其设计的每一个环节都非常重要。在运行的过程中,其转子的运行速度非常快,如果在旋转中心方面发生偏离,将会对轴承造成激荡力,导致整个机组的振动。所以为了防止中心的偏离,在设计的过程中应该对生产工艺做出严格的规定,在进行转子装配时,每安装一级叶片就做一次平衡试验,在整体完成后再进行一次整体试验,只有保证整体的平衡性,才能够控制振动的产生。 在对机组进行加工制造的过程中,受到加工精度的影响会导致工艺质量不过关,易造成振动现象的产生。为了减少因为制造环节出现的振动,应该提高机械加工的精度,保证生产的质量。在生产的过程中,应该使用先进的生产工艺和材料,提高稳定性,降低因为生产环节造成的振动。 2 安装与检修方面的因素 对汽轮发电机组的安装需要具有很高的技术,并且在安装的过程中要严格按照说明书进行。在后期运行的过程中,要做好检修工作,保证汽轮发电机组能够正常的运行。在安装与检修的过程中,会因为工艺水平不高或者没有按照规范的要求执行,都会导致机组发生振动,所以在这两个环节要给予高度的重视。 2.1 轴承标高的选择 在汽轮发电机安装的过程中,需要轴承作为支撑,所以轴承的设置极为关键,两侧轴承的标高一定要在同一水平线上,保持汽轮发电机的平衡。如果两侧的轴承标高不同,那么其所承担的荷载也就不同,在负荷较轻的一端,就会出现自激振动,而较重的一端就会因为负荷较强而产生较大的力量,从而引起轴瓦温度的

风力发电机齿轮箱振动测试方法

风力发电机组齿轮箱振动测试与分析 唐新安谢志明王哲吴金强 摘要对齿轮箱做振动测试和分析,通过模式识别找到齿轮箱损坏时呈现的特性,为齿轮箱故障诊断提供依据。 关键词风力发电机组齿轮箱振动分析故障诊断 中图分类号 TH113. 21 文献标识码 A 我国风电场中安装的风力发电机组多为进口机组。因为在恶劣环境下工作,其损坏率高达40%~50%。随着清洁能源的普及,齿轮箱的故障诊断和预知维修已迫在眉睫。本文就齿轮箱的故障诊断作一些探索性研究。 一、齿轮箱振动测试 采用北京东方所开发的DASP(Data Acquisition and SignalProcessing)测振系统,对某风电场4#、5#机组齿轮箱的不同测点(图1)做振动测试和分析,4#机组刚进行过检修运行正常作为对照机组,5#机组噪声异常为待检机组,对两机组齿轮箱的振动信号对比分析,判断存在故障。齿轮箱特征频率见表1。 表1 齿轮箱特征频率表 Hz

二、信号分析 1.统计分析 由统计表2、表3可看出,5#机组振动值明显偏大,尤其是5~10测点振动值基本上是4#机组相应测点的2倍以上。 表2 4#机组幅域统计表 m/s2 表2 5#机组幅域统计表 m/s2 5#机组概率分布及概率密度函数反映其时间序列分布范围较宽(图2),峭度系数(即四阶中心距)与4#机组的(图3)明显,同(若以4#机组为标准g=0,那么5#机组g=0),预示5#机组存在古障。

2.时域分析 通过时域分析(图4、图5),发现5#机组齿轮箱振动信号有明显异常.幅值转大,且 有明显的周期性,其频率约大20Hz 。

3.频坷分析 由图6可见,5#机组齿轮箱的频谱图既有调幅成分又有调频成分(调制频率对中心频率 的幅值不对称)。

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

汽轮发电机组振动的影响因素分析(最新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 汽轮发电机组振动的影响因素 分析(最新版) Safety management is an important part of production management. Safety and production are in the implementation process

汽轮发电机组振动的影响因素分析(最新 版) 汽轮发电机组安装工程是工业安装工程中常见的关键工程,其安装质量的好坏关系到机组的稳定性及持续运行的能力,而机组的振动问题则是汽轮发电机组安装中最常见的问题。一般而言,汽轮发电机组的振动有很多方面的原因,既有设计制造方面的,又有安装和运行方面的原因。本文简单分析汽轮发电机组振动产生的原因,为今后汽轮发电机组的安装及检修做一定的参考。 质量不平衡 汽轮发电机组是由汽轮机和发电机组成,通过轴承及端盖将汽轮机和发电机连接组装起来的,由汽轮机带动发电机转子在定子中高速旋转切割磁力线,从而产生感应电势[1]的设备机组。因此当转子的质心与旋转中心不重合时,就会在运行的过程中形成了离心力,

产生周期性的摆动造成对轴承的压迫。质量不平衡时不仅会产生振动,还会造成机组的整体磨损。 汽轮发电机组转子的质量不平衡产生的原因一般有以下几方面: 1.1.由加工制造时机械加工精度不够和装配质量较差引起的原始不平衡。 1.2.转子发生热弯曲.此时不但引起振动,还很有可能引起汽轮机动静部件之间的摩擦。因转子热弯产生的振动表现为显著的轴向振动。尤其当通过临界转速时,其轴向振幅增大得更为明显。 1.3.转动部件飞脱、松动。机组在转动过程中,若叶片、围带、拉金以及平衡质量块产生飞脱,以及护环、转子线圈、槽楔、联轴器等产生松动,均会使汽轮发电机组产生振动。 所以,在制造时,汽轮发电机转子在装配时每装配一级叶片都应对该级叶片进行动平衡试验,整个转子装配完成后在出厂之前还应该对整个转子进行低速和高速动平衡,以确保转子的不平衡量在一个合格的范围内。在安装、维修时,要特别注意转动部件连接的

水轮发电机振动原因分析及处理

水轮发电机振动原因分析及处理 响洪甸水电站装有4台HL-211-LJ-200水轮发电机,每台机的容量为10 MW,于1958—1961年分批投入生产。 3号水轮发电机组于1960年7月投产,1987年底进行定、转子绝缘的更新改造,更换了定子铁芯,并对定位筋位置进行了修正。 1 振动概况 1991-05-16,运行人员发现3号机下导机架靠4号机方向的一条腿松动。检查后,用现场加焊补强的方法作了暂时处理。在经历了前所未有的高水头运行后,运行及检修人员发现该机振动加剧,再次检查发现,下机架的4条腿与基础之间均存在相互蠕动现象。 1991-10-25,用不同手段在不同工况下对3号机振动情况进行了测量。测量结果表明,3号机的水平振动和垂直振动在大部分工况下都已达到甚至超过规程规定的允许范围(水平0.07 mm,垂直0.03 mm),特别是转轮压水调相工况时,水平振动达到0.085 mm,垂直振动达0.065 mm。 1991-11-05,对电机气隙进行了测量。通过对28个磁极气隙测量,发现靠下游侧至2号机侧的半圆气隙普遍偏大,一般在12 mm左右,而另半圆的气隙则在8 mm左右,这个趋势和励磁机的气隙变化基本一致,说明3号发电机的某一部分由于某种原因发生了位移,位移幅度可能在2 mm左右。 2 振动原因分析 1992年9月下旬,对3号机组进行了较全面的振动和摆度测试,并做了频谱分析,得到了幅值和频率等实测数据。通过研究分析,得出机组振动的原因如下。 (1) 从上机架的垂直振动测量分析出机组在各种测试工况下都存在着明显的8倍转频的振动。这表明镜板与推力头之间的环氧玻璃垫板有气蚀磨损、镜板与推力头结合面有不平缺陷。由于镜板与推力头的连接螺栓是8个,故使镜板在运转中呈现8个波浪式变形。由于推力瓦块数是8块,因此镜板旋转时会受到8倍转频的轴向振动力,并且镜板联接螺栓与推力瓦块数相等,使得每块瓦对镜板产生的轴向振动力是同步的,从而加剧了振动力。久而久之,造成垫板严重气蚀磨损,并使联接螺栓产生疲劳,严重时发生断裂。 镜板与推力头结合面的不平缺陷,加剧了垫板的气蚀磨损,垫板的磨损使机组的振动变大,这是3号机振动增大的主要原因(在机组大修时检查证明了垫板确实严重气蚀)。 (2) 水导摆度在各种工况下都较大,达到0.45~0.51 mm,超出了允许值,表明橡胶水导瓦间隙变大,需更换或调整。 (3) 上导摆度在2.5 MW负荷工况下达到0.48 mm,超出了允许值;在7.5 MW 大负荷工况下仅为0.14 mm。 (4) 变速试验中,上机架径向振动的转频幅值几乎相同,小于0.04 mm,表明转子机械平衡性能良好,无需再做平衡试验。

相关文档
相关文档 最新文档