文档库 最新最全的文档下载
当前位置:文档库 › 伺服驱动器硬件设计方案

伺服驱动器硬件设计方案

伺服驱动器硬件设计方案
伺服驱动器硬件设计方案

伺服驱动器硬件设计方案

伺服驱动器得硬件研发主要包括控制板与电源板得设计,控制板承担与上位机进行交互与实时生成精准得PWM信号。电源板得作用根据PWM信号,利用调制得原理产生特定频率,特定相位与特定幅值得三相电流以驱动电机以达到最优控制。

一控制板研发

1)控制板得架构主要得任务就就是核心器件得选择。

安川、西门子等国际知名得公司都就是采样ASIC得方式得芯片,这样就可以按照自

己得设计需要来制造专用于伺服控制得芯片,由于采样ASIC方式,所以芯片得运行

速度非常快,那么就比较容易实现电流环得快速响应,并且可以并行工作,那么也很

容易实现多轴得一体化设计。采样ASIC得方式有很多得好处,比如加密等。但就

是采样ASIC得风险与前期得投入也就是非常得巨大得,并且还要受该国得芯片设计

与制造工艺得限制.

根据我国得实际得国情与国际得因素等多种原因,核心芯片比较适宜采样通用得

DSP,ARM等处理器,比如Ti得C2000飞思卡尔得K60,英飞凌得XE164等。

研究台达得伺服驱动器发现其架构就是采用Ti得DSP 2812+CPLD,这与我们公

司GSK得方案基本一样。我们也就是采用DSP2812加CPLD(EPM570T144)来实现核心得控制功能。

2)核心器件得控制功能得分工.

DSP实现位置环、速度环、电流环得控制以及利用事件管理器PWM接口实现产生

特定得PWM信号。可以利用其灵活得编程特性快速得运算能力实现特定得控制算法

等,还可以利用其自身得A/D完成对电机电流得转换,但就是DSP自身得A/D精度

普遍较低,并且还受基准电压电源得纹波PCB得LAYOUT模数混合电路得处理技巧

影响,所以高档得伺服几乎都采用了外部A/D来完成电流采样得处理。比如路斯特

安川等.也有一些高档得伺服使用一些特殊得电流传感器,该传感器得输出已经就

是数字信号,这样就可以节省了外部A/D芯片与增强抗干扰能力。如西门子得变

频器采用ACPL7860,发那克用于机器人得六驱一体得伺服也就是采用了ACPL7

860,西门子得伺服S120采用了Ti得芯片AMC1203。

CPLD得作用就是用来协助DSP以减少其自身得开销,比如完成速度得计算,位置得

计算,控制外部A/D对电机电流进行转换,因此当实现位置环速度环电流环所需要得

位置数据,速度数据,电流数据,那么DSP就可以直接从CPLD/FPGA处读取,不需要

耗费DSP得宝贵时间来计算这些数据。如果就是增量式编码器采用M/T法测速效

果就是最好得,但M/T法对DSP处理器得资源开销很大, 而CPLD/FPGA可以非常

方便使用M/T法进行测速。如果就是绝对式编码器也可以非常方便采用CPLD/FP

GA来解析通信协议,并实现测速.一些高档得伺服也采用了CPLD/FPGA实现总线与

以太网功能.

显示与参数管理国内得绝大多数公司都就是才DSP来承担该任务,研究台达得驱动

器发现,她们就是采用CPLD来实现该任务,这样DSP承担得任务就很单纯,可以

专注于运动控制。所以高档得伺服也应该借鉴与学习台达伺服关于显示与参数管理

得方法。

3)电源复位芯片等外围电路。

DSP与CPLD/FPGA得芯片都需要几路电源,比如1、2V、1、8V、2、5V、3、

3V等,DSP等处理器往往还需要模拟得电源.因此需要用电源芯片将5V转化为上述所需得几路电源。电源芯片得选择主要受整个PCB得布局与整机得结构决定,可以采用1转1,1转2或者1转3,最终达到电源就近抗干扰能力好得目得.

有些电源芯片本身带有复位输出也可以根据需要选用专用得复位芯片,注意复位芯片一定要就近DSP等核心芯片,提高抗干扰得能力避免误触发复位。

4)电流环支路得相关电路。

伺服驱动一般由位置换速度环电流环三环构成,而电流环就是基础就是内环,该环得电路就是模数混合型,与该环相关得元器件非常多包括:直流母线用得滤波电容,IGB T与其驱动电路,电流传感器,运算放大器,基准电源,A/D及相关得模拟部分得电源等。

关于传感器,高档得伺服如伦茨与路斯特得传感器就是用得霍尔传感器,其输出就是模拟信号,就是电流信号,抗干扰得能力较强、精度高、范围宽,但就是价格贵.台达安川及广数得伺服就是采用得线性光耦HCPL7840,其输出就是差动得电压信号,所以较霍尔其抗干扰得能力差一些.因此在电路得处理时要注意将运放置于控制板上,尽量提高电流信号得抗干扰能力。也有一些要求特别高得伺服如西门子就是S120法拉克与安川得用于机器人得伺服才用线性光耦HCPL7860等其输出就是数字信号,所以比以上两种方式得抗干扰能力都强很多并且可以省掉运放与A/D等相关电路。

关于运放,霍尔与7840得输出得模拟信号需要运放进行相应得放大以转化成A/D可以接受得电压范围比如0-3V等,所以要求运放选用低噪声,高输入阻抗,高转化速率,高分离度。比如

关于A/D,DSP自带得A/D精度较低,台达得高档伺服ASDA2采用了非常巧妙得方法利用自身DSP2812得A/D提高其自身得精度。

观察国外得伺服往往都就是采用外部A/D,比如路斯特,安川,伦茨,好处就是精度高,处理得工艺不复杂,并且可以采用过采样来提高控制得性能,但就是价格比较贵。

关于模拟部分电源与基准等,模拟部分电路得电源要求纹波要很低,且在电路得处理工艺上要尽量让数字电路对其产生得影响最低,可以从电路布局,布线,地平面得分割,滤波等方式来加以解决.信号调理电路与A/D都需要基准电压,它对整个信号得保真度有很重要得影响,高档得伺服因此尽量采用专用得基准电压芯片。5)模数混合电路得处理及PCB得布局与LAYOUT工艺等。

伺服驱动器不仅要处理数字信号,还要处理模拟信号比如电机得电流信号,直流母线得电压信号,速度控制时得外部模拟电压,还有一些编码器输出就是模拟得正弦信号,因此布局要尽量将模拟部分与数字部分画出不同得区域,并且数字部分也要分出高速区与低速区,注意跨分割区得延时突变等等问题,利用地平面减小信号收到得干扰,条件允许可以采用6层板,最值得目得就是达到模拟信号收到数字电路得影响最低,与数字信号保持较好得完整性。

二电源板研发

国内外各种伺服驱动器得电源板部分可分为几种电路:整流电路,母线滤波电路,吸收电路,IGBT逆变电路,制动电路,IGBT驱动电路,电流采样电路,报警检测电路,辅助电源.

下面就关键得电路进行选择合适得方案。

1)IGBT逆变电路

对比国外高档得伺服驱动装置,日系驱动器由于在IPM方面技术工艺优势,其采用得

IPM模块都就是量身定做得,采用IGBT模块得架构或者IPM模块得架构都能取得很

好得性能,欧美得驱动器很少使用IPM,几乎都采用IGBT模块得架构,比如伦茨,艾默生,KMG,西门子等。

IPM得优点:小体积,小型化;缩短研发周期;驱动电路与IGBT之间连线短,驱动电路得阻抗低,不需要负电源;集成了IGBT得驱动,欠压保护,过热保护,过流短路保护,可靠性高。

IPM得缺点:过流或者过温保护点已经定死,如果因为某些特殊得需求就无法作更改,灵活性不够;IPM只有一个报警信号输出,不能分辨究竟就是过热还就是过流还就是欠压等.如果就只有驱动或者保护部分电路损坏,但就是我们只能无奈得换掉整个模块;尤其就是大功率IPM得采购成本非常高.

IGBT得优点:采用IGBT架构电路结构灵活,过载能力强(其额定电流就是在80℃定义,而IPM就是在25℃定义得),采购成本低,可以通过调整驱动电阻得阻值来取得合适得开关时间,以产生最小得EMI与最大得效率。

IGBT得缺点:体积大,还需要设计如驱动电路、外围得报警保护电路等保证IGBT 得可靠运行.因此设计难度大,稳定性与可靠性很难把握,并且驱动电源往往需要负电源,需要提供得电源相对多,布局布线存在困难。

在高档得伺服驱动装置得研发中,我们恰恰需要它得灵活性。只有从工艺、电路、布局布线以及软件上进行优化,才能打造出可靠稳定得硬件平台。因此一般采用IGBT架构。

2)IGBT驱动电路

IGBT驱动电路必须具备2个功能:一就是实现控制电路与被驱动IGBT栅极得电隔离;二就是提供合适得栅极驱动脉冲.

IGBT得驱动得结构形式:分离元件;专用集成驱动电路;光耦驱动;变压器驱动。随着大规模集成电路得发展及贴片工艺得出现,这类分离元件式得驱动电路,因结构复杂、集成化低、故障率高已逐渐被淘汰.光耦器件构成得驱动电路具有线路简单、可靠性高、开关性能好等特点,在IGBT驱动电路设计中被广泛采用.如东芝公司得TLP系列、夏普公司得PC系列,安华高得HCPL系列等.目前已开发得专用集成驱动电路,主要有IR公司得IR2136,三菱公司得EXB系列厚膜驱动.此外,现在得一些欧美厂商在IGBT驱动电路设计上采用高频隔离变压器,如CONCEPT得焊机,丹佛斯VLT系列变频电源。通过高频变压器对驱动电路电源及信号得隔离,增强驱动电路得可靠性,同时也有效地防止主电路出现故障时对控制电路得损坏,故障率低,寿命长,响应快。但缺点就是工艺复杂.

目前国外得高档IGBT驱动方案伺服驱动器使用得驱动器主流就是驱动光耦,因此选择光耦来进行驱动IGBT。

3)外围保护电路

IGBT模块可能由于过电流、过电压这类异常情况而受损,因此,在IGBT模块得运用中,设计能够避免这种异常情况从而保护元件得保护电路显得尤为重要。

短路保护通常有两种方案,一种就是通过电流检测器,如电流传感器或者互感器直接检测IGBT得集电极电流,另外一种通过检测IGBT得饱与压降。在短路电流出现时,为了避免关断电流得di/dt过大形成得过电压,导致IGBT锁定无效与损坏,以及降低电磁干扰,通常采用软关断技术。一些驱动光耦同时具备这两种功能,因此采用带检测IGBT得饱与压降功能驱动光耦得方案。过电流检测通过检测电机电流来实现.

因为IGBT得开关速度很快,IGBT 关断时,或FWD反向恢复时会产生很高

得di/dt,由模块周边得杂散电感引发L·(di/dt)电压(关断浪涌电压)。抑制发生过电压得原因得关断浪涌电压得方法有:尽量将电解电容器配置在IGBT 得附近,减小杂散电感;调整IGBT得驱动电路得驱动电阻,减小di/dt;在IGBT 中加上缓冲电路,吸收浪涌电压。在缓冲电路得电容器中使用薄膜电容,并配置在IGBT 附近,使其吸收高频浪涌电压。

其她得外围报警保护电路还包括母线电压检测,缺相掉电检测,过热保护电路,制动故障检测电路等等来保证硬件平台得可靠性。

电流采样电路

由于矢量控制就是通过控制电流来控制交流同步电机得转矩,因此电流检测电路得精度尤为重要。电流检测可以通过霍尔电流传感器或者线性光耦来进行,霍尔电流传感器线性度好,而且一般用于大电流检测;线性光耦线性度也不错,但就是响应比霍尔电流传感器慢.FANUC得一款六轴驱动器中采用ACPL—7860,其输出为数字信号,抗干扰能力强,其A/D采样精度最高可以达到16位;公司常用ACPL—7840输出得就是模拟信号,容易受到干扰,并且A/D采样精度最高可以达到12位.因此电流检测电路采用ACPL-7860方案。

伺服驱动器硬件设计方案

伺服驱动器硬件设计方案 伺服驱动器的硬件研发主要包括控制板和电源板的设计,控制板承担与上位机进行交互和实时生成精准的PWM信号。电源板的作用根据PWM信号,利用调制的原理产生特定频率,特定相位和特定幅值的三相电流以驱动电机以达到最优控制。 一控制板研发 1)控制板的架构主要的任务就是核心器件的选择。 安川、西门子等国际知名的公司都是采样ASIC的方式的芯片,这样就可以按照自己 的设计需要来制造专用于伺服控制的芯片,由于采样ASIC方式,所以芯片的运行速 度非常快,那么就比较容易实现电流环的快速响应,并且可以并行工作,那么也很 容易实现多轴的一体化设计。采样ASIC的方式有很多的好处,比如加密等。但是采 样ASIC的风险和前期的投入也是非常的巨大的,并且还要受该国的芯片设计和制造 工艺的限制。 根据我国的实际的国情和国际的因素等多种原因,核心芯片比较适宜采样通用的 DSP,ARM等处理器,比如Ti的C2000飞思卡尔的K60,英飞凌的XE164等。研究 台达的伺服驱动器发现其架构是采用Ti的DSP 2812+CPLD,这和我们公司GSK的方 案基本一样。我们也是采用DSP2812加CPLD(EPM570T144)来实现核心的控制功能。 2)核心器件的控制功能的分工。 DSP实现位置环、速度环、电流环的控制以及利用事件管理器PWM接口实现产生特 定的PWM信号。可以利用其灵活的编程特性快速的运算能力实现特定的控制算法等,还可以利用其自身的A/D完成对电机电流的转换,但是DSP自身的A/D精度普遍较 低,并且还受基准电压电源的纹波PCB的LAYOUT模数混合电路的处理技巧影响, 所以高档的伺服几乎都采用了外部A/D来完成电流采样的处理。比如路斯特安川等。 也有一些高档的伺服使用一些特殊的电流传感器,该传感器的输出已经是数字信 号,这样就可以节省了外部A/D芯片和增强抗干扰能力。如西门子的变频器采用 ACPL7860,发那克用于机器人的六驱一体的伺服也是采用了ACPL7860,西门子的伺 服S120采用了Ti的芯片AMC1203。 CPLD的作用是用来协助DSP以减少其自身的开销,比如完成速度的计算,位置的 计算,控制外部A/D对电机电流进行转换,因此当实现位置环速度环电流环所需要 的位置数据,速度数据,电流数据,那么DSP就可以直接从CPLD/FPGA处读取,不 需要耗费DSP的宝贵时间来计算这些数据。如果是增量式编码器采用M/T法测速效 果是最好的,但M/T法对DSP处理器的资源开销很大, 而CPLD/FPGA可以非常方便 使用M/T法进行测速。如果是绝对式编码器也可以非常方便采用CPLD/FPGA来解 析通信协议,并实现测速。一些高档的伺服也采用了CPLD/FPGA实现总线和以太网 功能。

270V高压大功率永磁同步电机驱动器设计

270V高压大功率永磁同步电机驱动器设计 摘要:近年来270V高压直流供电体制在各种装备上开始大量应用,本文给出了 一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS管组成的高压 大功率永磁同步电机驱动控制方案,详细描述了系统的硬件组成和软件设计结构。试验结果表明,该系统较好的解决了高压供电带来的干扰问题,具有调速性能良好、效率高、抗干扰能力强等特点,满足型号的使用要求。 关键词:270V高压;永磁同步电机驱动器;抗干扰 0 引言 随着我国对高压直流电源系统的深入研究,新一代装备已开始采用270V高压直流供电系统,这种新型电源体制不但具有传输功率大、传输效率高、供电可靠 性高和电源配电重量轻的特点,而且还将大大减小低压直流供电系统的电器设备 的大电流电弧干扰,提高了武器装备的综合能力[1]。 本文给出了一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS 管组成的大功率PMSM驱动控制方案,详细叙述了系统的硬件组成和软件设计结构。并在此基础上,设计了一套大功率PMSM驱动控制系统,该系统具有调速性 能良好,效率高等特点,满足型号的使用要求。 1 系统总体设计 1.1 永磁同步电机(PMSM)数学模型 永磁同步电机由于具备小体积、高效率及功率密度、调速性能良好等优点得 到了越来越广泛的应用。PMSM的数学模型包括电动机的运动方程,物理方程和 转矩方程,这些方程是永磁同步电机数学模型的基础。控制对象的数学模型能够 准确的反应被控系统的静态和动态特性。为方便分析,先做以下假设[2~4]: 1)磁路不饱和,即电机电感大小不受电流变化影响,不计涡流和磁滞损耗; 2)忽略齿槽、换相过程和电枢反应等的影响; 3)三相绕组完全对称,永久磁钢的磁场沿气隙周围正弦分布; 4)电枢绕组在定子内表面均匀连续分布; 5)驱动开关管和续流二极管为理想元件。 优化设计后的永磁同步电机经过Park变换后,其dq坐标系下的数学模型可 表示为方程式: 式1.1 式1.2 式1.3 式中:、—定子电压dq轴分量;、—定子电流dq轴分量; —定子电阻;—转子极对数; —转子角速度;—定子电感; —电磁转矩;—永磁体产生的磁链,为常数; 从电磁转矩方程可以看出只要能准确地检出转子空间位置(d轴),通过控 制逆变器使三相定子的合成电流在q轴上,那么永磁同步电机的电磁转矩只与定 子电流的幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。 1.2 驱动控制策略 永磁同步电机的控制策略有很多种,如直接转矩控制、转子磁场定向控制等[5~6],本系统采用转子磁场定向控制,其基本原理是通过坐标变换,在转子磁场 定向的同步坐标系上对电机的磁场电流和转矩电流进行解耦控制,使其具有和传

第2章-ABB-ACS800变频器的硬件组成

第2章 ABB ACS800硬件组成 ABB用R2,R3…直到R8来标记不同的外形规格、技术数据和尺寸图,外形规格不标在传动单元的型号标签上。传动单元的外形规格请参见选型手册技术数据章节的等级表一栏。 ACS800-01 ACS800-04 R2~R6 R7~R8 变频器由以下基本单元组成 1 整流单元

● 2 储能单元 ● 3 逆变单元 ● 4 制动单元 ● 5 控制单元 一整流单元 整流器与供电电网相连,将三相交流电整流为直流电,为中间直流环节提供能量。能量既能从电网流向直流环节,又能从直流环节流向电网。 ? 1 二极管整流 ? 2 二极管+晶闸管整流 ? 3 晶闸管反向并联整流 ? 4 IGBT整流

二储能单元 ? 1 电容储能 ? 2 电感储能 三逆变单元 ?IGBT 四控制单元

RDCU-02C或RDCU-12C RMIO-01C或RMIO-11C RMIO-02C或RMIO-12C 1功率板 AINP+AINT+APOW+AGDR-------R7,R8 + + AINP-01C AINT-02C APOW-01C + = RINT

AGDR-71C 2电路板连接图 主电路:完成对电机提供驱动功率的变换过程 电路板: 控制电路完成计算,通讯,数据采集和电机控制等功能。 3 诊断和控制盘接口板(ADPI) 板上有控制盘的连接座,红色指示灯和绿色指示灯,每个模块可以并联两块这样的电路板(用于平板式安装和书架式安装),控制盘即插即用,两个控制盘不能同时工作。

4 电机控制和I/O 板(RMIO-02C或RMIO-12C) 5 ACS800-04主电路板(AINT) 它的功能包括:

变频器设计方法

变频器设计方法 一、变频调速系统设计的一般 性方法 (一)变频调速系统设计的内 容和步骤 变频调速系统设计的主要内容 和步骤如下: (1)控制系统总体方案设计, 明确系统的总体要求及技术条件。包括系统的基本功能、控制方案选 择以及性能指标(响应时间、稳态 精度、通信接口)等; (2)设计主电路拓扑结构,选 定逆变器件类型; (3)确定控制策略和控制方式; (4)选择主控制芯片; (5)选择各物理量的传感器和检测电路; (6)系统硬件设计,包括主电路模块、驱动与保护电路,与CPU 相关的电路、外围设备、接口电路、逻辑电路及键盘显示模块; (7)系统软件设计,包括应用程序的设计、管理以及监控程序的设计; 图4-25 变频调速系统的研发过程

(8)在各单元软硬件调试合格的基础上,进入系统实验与统调阶段。 变频调速系统的研制开发过程如图4-25所示。 (二)变频调速系统总体方案的确定 确定变频调速系统总体方案是设计系统的第一步。总体方案直接影响整个控制系统的投资、性能品质及实施难度。确定控制系统的总体方案必须根据实际应用的要求,结合具体被控对象而定。但在总体设计中还是有一定的共性,大体上可以从以下几个方面考虑。 1.选择主电路拓扑结构根据系统容量的大小以及实际要求选择合理的变频调速系统主电路拓扑结构。20世纪80年代以来,以GTO、BJT、MOSFET为代表的自关断器件得到长足的发展,尤其是以IGBT为代表的双极型复合器件的惊人发展,使得电力电子器件正沿着大容量、高频率、易驱动、低损耗、智能模块化的方向迈进。伴随着电力电子器件的飞速发展,逆变器主电路的结构也日趋多样化。 (1)普通三相变频器通常也称为二电平变频器,即第二章中所讲的交-直-交型变频器,这种拓扑结构比较简单,为了获得大功率可采用器件的串并联来实现。 (2)交-交变频电路普通二电平逆变器直流侧电压通常由交流电整流获得,因为存在直流环节,所以逆变器效率不高,主电路相对复杂。而交-交直接变频电路省去中间直流环节一次功率

xxx硬件详细设计方案-模板

xxx硬件详细设计方案 2010年11月26日

目录 xxx硬件详细设计方案 (1) 1 产品概述 (3) 2需求描述(来自于需求规格书) (3) 2.1功能描述 (3) 2.2性能描述 (3) 2.3 其它需求描述 (3) 3硬件总体框图和各功能单元说明 (3) 3.1硬件总体框图 (3) 3.2功能单元1 (3) 3.3功能单元2 (3) 3.4功能单元3 (3) 3.5其它 (4) 3.5.1 其它 (4) 4硬件外部接口描述 (4) 4.1硬件主要外部接口 (4) 4.2外部接口1 (4) 4.3外部接口2 (4) 5硬件的软件需求 (4) 5.1系统软件 (4) 5.2配置软件 (4) 5.3应用软件 (5) 6硬件的产品化 (5) 6.1可靠性设计 (5) 6.2电源 (5) 6.3电磁兼容设计与安规设计 (5) 6.4环境适应性与防护设计 (5) 6.5工艺路线设计 (5) 6.6结构设计 (5) 6.7热设计 (5) 6.8监控设计 (6) 6.9可测试性与可维护性设计 (6) 7硬件成本分析 (6) 8硬件开发环境 (6) 9其它 (6)

1产品概述 2需求描述(来自于需求规格书) 2.1功能描述 2.2性能描述 2.3 其它需求描述 3硬件总体框图和各功能单元说明3.1硬件总体框图 3.2功能单元1 3.3功能单元2 3.4功能单元3

3.5其它 3.5.1其它 4硬件外部接口描述4.1硬件主要外部接口 4.2外部接口1 4.3外部接口2 5硬件的软件需求5.1系统软件 5.2配置软件

5.3应用软件 6硬件的产品化 6.1可靠性设计 6.2电源 6.3电磁兼容设计与安规设计6.4环境适应性与防护设计6.5工艺路线设计 6.6结构设计 6.7热设计

基于STM32的无刷直流电机驱动器设计

基于STM32的无刷直流电机驱动器设计 利用主控制器STM32所具有的优势,设计无位置传感器无刷直流电机为控制对象的驱动器,包括功率驱动电路、三相逆变电路、反电动势检测电路和电流与电压监测电路。该驱动器设计成本较低,具有一定的应用价值。 标签:STM32;无位置传感器;无刷直流电机 1 概述 与8位单片机有限指令和性能相比,32位STM32处理器的工作频率达到72MHZ,处理能力达到1.25DMIPS,能实现高端运算能力;与32位DSP高成本和高功效相比,32位STM32处理器具有出众的功耗控制和明显价格优势,同时其内部高度集成,具有创新而丰富的外设,更加利于控制系统的开发。同时STM32中的STM32F103增强型系列具有专门为实现电机控制的高级定时器,以及转换速度为1MHZ、精度为12位的ADC[1]。 无刷直流电机既具有直流电机调速性能良好、运行效率较高等的特征,又具有交流电机构造简单、故障率低等的特点,具备两者优势,具有广阔应用前景。无刷直流电机分为有位置传感器和无位置传感器两种,两者相比,后者具有许多优势:缩小了无刷电机的体积和成本;增强了抗干扰能力,扩大在高温、高腐蚀性等特殊场合的使用范围;提高了系统可靠性,降低电机的维护工作量[2]。本设计以无位置传感器无刷直流电机为控制对象。 2 硬件设计 2.1 硬件总体结构 利用STM32较强控制性能及丰富外设,使硬件设计较为简单,所占空间较小,进一步降低成本,图1所示为驱动器硬件框图,以STM32为控制核心,包括电源电路、功率驱动电路、三相逆变电路、反电动势检测电路、电流监测电路、电压监测电路和串口通信电路。 在设计中选用STM32F103型号,其I/O口分配为:PA8端口(TIM1_CH1)、PA9(TIM1_CH2)端口和PA10(TIM1_CH3)端口分别与功率驱动电路的高边控制端HIN相连,PD9、PD10和PD11端口分别与低边控制端LIN相连;PA1(ADC1_IN1)、PA2(ADC1_IN2)和PA3(ADC1_IN3)端口与反电动势检测电路相连;PC0(ADC1_IN10)端口与电流监测电路相连;PC1(ADC1_IN11)端口与电压监测电路相连;PD5、PD6端口与通信电路相连;PC6、PC7端口分别与两个LED灯相连,作为警报信息;预留的IO管脚可用于后期的扩展开发。 2.2 电源电路设计

通用变频器的设计

摘要 使异步电动机实现性能好的调速一直是人们的理想,过去如变极调速、绕线转子异步电动机转子回路串电阻调速均属于有级调速;而调压调速虽能平滑调速,但调速范围不大,耗能多,仅限于小功率,无法和直流调速系统相比。随着新技术、新理论的不断发展,变频调速技术应运而生,其控制方式完全可以和直流调速系统相媲美。因此变频器的应用日益广泛,变频器性能的优劣直接影响着电机的运行特性,所以如何提高变频器的优化控制成为变频技术的关键。在变频调速中关键的一项就是控制端SPWM波的产生,它不仅要求电压和频率变化呈线性关系,而且要求输出波形尽可能接近于正弦波,特别是对于一些性能指标要求较高的全控型开关器件如IGBT等,其开关频率很高,因此就要求SPWM波发生器要达到一定的开关频率,基波频率也要求相对较高。为了解决这个问题,可以利用SLE4520这块集成芯片,来生成满足要求的SPWM波。本设计就是利用AT89C51单片机作为控制主机,与三相PWM集成芯片SLE4520配合工作,设置一种SPWM波生成的算法,通过单片机的定时模块产生脉冲,并将其送入SLE4520中,最后将SPWM脉冲送至逆变桥臂上下的IGBT中来控制逆变电路。本设计的优势在于可以通过键盘/显示来进行变频器的智能控制。在不同的工作状态下,可以显示不同的数据,再配合上各种故障保护电路,可以使得变频器安全的工作。 关键词:SLE4520 单片机 SPWM脉冲

ABSTRACT To achieve good performance asynchronous motor speed is ideal, such as speed regulating pole change motor rotor asynchronous and winding speed rotor circuit resistance of all belong to have stepless speed regulation, And although speed regulating speed can be smooth, but not more than energy-consuming, speed limits, only small power, compared with dc speed control system. With the new technology, the new theory of frequency conversion technology unceasing development, the control mode, and can completely Dc speed control system. But in the frequency conversion control is one of the key is the wave of SPWM not only requires the voltage and frequency variation, and the requirements of a linear relationship between output waveform in sine as close as possible, especially for some performance index to demand higher all-controlling switching device IGBT etc, such as the high frequency switching, so requires SPWM wave generator to reach a certain switching frequency wave frequency also require relatively high. In order to solve this problem, you can use SLE4520 this integration chip, to meet the requirements of SPWM wave generated.This design is to use AT89C51 as host, and three-phase PWM control SLE4520 integrated chips, setting an SPWM wave generated by MCU timing algorithms, and will produce pulses module to SLE4520, finally will SPWM inverter pulse to bridge the arm upper-and-lower IGBT inverter circuits to control. The design of the keyboard/strengths can display for converter intelligent control. In different working conditions, can show the different data, combined with the various fault protection circuit, can make the job security. Keywords:SCM(Single Chip Microcomputer)SLE4520 SPWM(Sinusoidal Pulse Width Modulation)

FTU硬件详细设计说明书

FTU硬件详细设计说明书 产品线:配电终端 产品类别: 产品型号: 产品版本: 文件状态文档版本 作者 完成日期 编制部门硬件开发部

批准:审核:初审:编写:

1.引言 (4) 1.1.前言 (4) 1.2.文档术语 (4) 1.3.参考文档 (4) 2.开发环境 (4) 3.硬件详细设计 (5) 3.1.系统架构 (5) 3.2.主板 (5) 3.2.1.主板硬件框图 (6) 3.2.2.模块1:CPU核心板 (6) 3.2.3.模块2:时钟模块 (18) 3.2.4.模块3:无线通讯 (19) 3.2.5.模块6 以太网接口 (24) 3.2.6.RS232/RS485电路 (26) 3.2.7.SD卡模块电路 (27) 3.2.8.直流量采集模块 (28) https://www.wendangku.net/doc/932671823.html,B HOST接口 (30) 3.3.遥控遥信板 (31) 3.3.1.硬件框图 (31) 3.3.2.遥信电路模块 (31) 3.3.3.遥控电路模块 (33) 3.4.遥测板 (34) 3.4.1.遥测板框图 (34) 3.4.2.遥测电路模块 (34) 3.4.3.电源模块 (38) 3.4.4. (40) 3.4.5.元器件总成本: (40) 3.5.硬件测试方法 (40) 4.FPGA逻辑设计 (41) 4.1.子板逻辑 (41) 4.1.1.架构概述 (41) 4.2.主板逻辑 (44) 5.结构工艺设计 (44) 5.1.外观设计................................................................................. 错误!未定义书签。 5.1.1.外形结构......................................................................... 错误!未定义书签。 5.1.2.铭牌................................................................................. 错误!未定义书签。 5.1.3.终端内部结构................................................................. 错误!未定义书签。 5.2.组屏方案................................................................................. 错误!未定义书签。 5.3.其他......................................................................................... 错误!未定义书签。 5.4 (44)

变频器硬件设计方案

一.设计思路 通用型变频器的硬件电路主要由3部分组成:整流电路、开关电源电路以及逆变电路。整流电路将工频交流电整流为直流,并经大电容滤波供给逆变单元;开关电源电路为IPM和计算机控制电路供电;逆变电路是由PM50RSAl20组成。二.控制回路 1.整流电路 整流电路中,输人为380V工频交流电。YRl~YR3为压敏电阻,用于吸收交流侧的浪涌电压,以免造成变频器损坏。输人电源经二极管整流桥6R130G-160整流为直流,并经电的作用。发光二极管用于指示变频器的工作状态。Rl是启动过程中的限流电阻,由El~E4大电容滤波后成为稳定的直流电压,再经电感和电容滤波后作为逆变单元和开关电源单元的电源。R2和R3是为了消除电容的离散性而设置的均压电阻,同时还起到放于E1~E4容量较大,上电瞬间相当于短路,电流很大,尺l可以限制该电流大小,电路正常状态后由继电器RLYl将该电阻短路以免增加损耗。继电器的控制信号SHORT来自于计算机,上电后延时一定时间计算机发出该信号将电阻切除。R1应选择大功率电阻,本电路中选择的是20W的水泥电阻,而且为了散热该电阻安装时应悬空。电路中的+5V、+12V和±15V电压是由开关电源提供的电压。LVl是电压传感器,用于采集整流电压值,供检测和确定控制算法用。UDCM是电压传感器的输出信号。通过外接插排连接至外接计算机控制电路。 2.开关电路 输出电压进行变换,为IPM模块和外接的计算机控制电路提供电源,提供的 电压为±该电路主要由PWM控制器TL3842P、MOSFETK1317和开关变压器组成, 其功能是对整流电路的流15V、+1直2V、+5v。

硬件方案设计

硬件方案设计 硬件是计算机硬件的简称,下面是小编整理的硬件方案设计,欢迎阅读参考! 平台的选择很多时候和系统选择的算法是相关的,所以如果要提高架构,平台的设计能力,得不断提高自身的算法设计,复杂度评估能力,带宽分析能力。 常用的主处理器芯片有:单片机,ASIC,RISC(DEC Alpha、ARC、ARM、MIPS、PowerPC、SPARC和SuperH ),DSP和FPGA 等,这些处理器的比较在网上有很多的文章,在这里不老生常谈了,这里只提1个典型的主处理器选型案例。 比如市场上现在有很多高清网络摄像机的设计需求,而IPNC的解决方案也层出不穷,TI的解决方案有DM355、DM365、DM368等,海思提供的方案则有Hi3512、Hi3515、Hi3520等,NXP提供的方案有PNX1700、PNX1005等。 对于HD-IPNC的主处理芯片,有几个主要的技术指标:视频分辨率,视频编码器算法,最高支持的图像抓拍分辨率,CMOS的图像预处理能力,以及网络协议栈的开发平台。 Hi3512单芯片实现720P30 编解码能力,满足高清IP Camera应用, Hi3515可实现1080P30的编解码能力,持续提升高清IP Camera的性能。

DM355单芯片实现720P30 MPEG4编解码能力,DM365单芯片实现720P30 编解码能力, DM368单芯片实现1080P30 编解码能力。 DM355是XX Q3推出的,DM365是XX Q1推出的,DM368是xx Q2推出的。海思的同档次解决方案也基本上与之同时出现。 海思和TI的解决方案都是基于linux,对于网络协议栈的开发而言,开源社区的资源是没有区别的,区别的只在于芯片供应商提供的SDK开发包,两家公司的SDK离产品都有一定的距离,但是linux的网络开发并不是一个技术难点,所以并不影响产品的推广。 作为IPNC的解决方案,在720P时代,海思的解决方案相对于TI的解决方案,其优势是支持了编解码算法,而TI 只支持了MPEG4的编解码算法。虽然在XX年初,MPEG4的劣势在市场上已经开始体现出来,但在当时这似乎并不影响DM355的推广。 对于最高支持的图像抓拍分辨率,海思的解决方案可以支持支持JPEG抓拍3M Pixels@5fps,DM355最高可以支持5M Pixels,虽然当时没有成功的开发成5M Pixel的抓拍,但是至少4M Pixel的抓拍是实现了的,而且有几个朋友已经实现了2560x1920这个接近5M Pixel的抓拍,所以在这

伺服驱动器原理应用及选型

伺服驱动器原理应用及选型 伺服驱动器简介伺服驱动器(servo drives)又称为伺服控制器、伺服放大器,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要应用于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服电机进行控制,实现高精度的传动系统定位,目前是传动技术的高端产品。 伺服驱动器是现代运动控制的重要组成部分,被广泛应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器已经成为国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制系统,特别是速度控制性能的发挥起到关键作用。 在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。为寻求测量精度与系统成本的平衡,一般采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T测速法。M/T测速法虽然具有一定的测量精度和较宽的测量范围,但这种方法有其固有的缺陷,主要包括: 1)测速周期内必须检测到至少一个完整的码盘脉冲,限制了最低可测转速; 2)用于测速的2个控制系统定时器开关难以严格保持同步,在速度变化较大的测量场合中无法保证测速精度。因此应用该测速法的传统速度环设计方案难以提高伺服驱动器速度跟随与控制性能。 伺服驱动器原理伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化;功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。

1通用变频器的硬件电路设计

1通用变频器的硬件电路设计 1.1通用变频器的总体设计 本设计的系统以TI公司的TMS320LF2407A为控制核心,由主电路、系统保护电路和控制电路组成,其总体设计图如图3.1所示。 图1.1 基于DSP的通用变频调速系统总体设计图 其中主电路部分由整流电路、滤波电路、逆变电路(IPM)和IPM驱动电路与吸收电路组成。其工作原理是把单相交流电压通过不可控整流模块变为直流电压,整流后的脉动电压再经过大电容C1,C2平滑后成为稳定的直流电压。IPM逆变电路对该直流电压进行斩波,形成电压和频率均可调的三相交流电,提供给电机。

系统保护电路包括过压、欠压保护、限流启动、IPM故障保护与泵升控制等。过压、欠压保护是利用电阻分压采集母线电压,与规定值相比较;限流启动是由于开启主回路时,大电容充电瞬间引起的电流过大,这样可能会损坏整流桥,因此在主回路上串联限流电阻R1,当电容电压达到规定值时,启动继电器把R1短路,主回路进入正常工作状态;IPM故障保护是IPM内部集成的各种保护功能,包括过电流保护功能、短路保护功能、控制电源欠电压保护和管壳及管芯温度过热保护。把上述各种故障信号进行综合处理后形成总的故障信号送入DSP(TMS320LF2407A)的PDPINTA故障中断入口,进而封锁DSP的PWM波输出。 控制电路包括DSP最小系统电路、频率输入电路、光耦隔离电路等。最小系统由DSP本身和外扩的数据SRAM、程序SRAM、复位电路、晶振、译码电路、电源转换电路和仿真接口JTAG电路组成,仿真接口JTAG电路是为了实现在线仿真,同时在调试过程装载数据代码和程序代码;频率输入电路可以设置系统要输出的SPWM波的频率;光耦隔离电路是为了把DSP输出的弱电信号和主电路的强电信号进行可靠隔离。 1.2主电路的设计

硬件设计文档规范 -硬件模板

SUCHNESS 硬件设计文档 型号:GRC60定位终端 编号: 机密级别:绝密机密内部文件 部门:硬件组 拟制:XXXX年 XX月 XX日 审核:年月日 标准化:年月日 批准:年月日

文档修订历史记录

目录 1系统概述 (3) 2系统硬件设计 (3) 2.1硬件需求说明书 (3) 2.2硬件总体设计报告 (3) 2.3单板总体设计方案 (3) 2.4单板硬件详细设计 (3) 2.5单板硬件过程调试文档 (3) 2.6单板硬件测试文档 (4) 3系统软件设计 (4) 3.1单板软件详细设计 (4) 3.2单板软件过程调试报告 (4) 3.3单板系统联调报告 (4) 3.4单板软件归档详细文档 (4) 4硬件设计文档输出 (4) 4.1硬件总体方案归档详细文档 (4) 4.2硬件信息库 (5) 5需要解决的问题 (5) 6采购成本清单 (5)

1系统概述 2系统硬件设计 2.1、硬件说明书 硬件需求说明书是描写硬件开发目标,基本功能、基本配置,主要性能指标、运行环境,约束条件以及开发经费和进度等要求,它的要求依据是产品规格说明书和系统需求说明书。它是硬件总体设计和制订硬件开发计划的依据,具体编写的内容有:系统工程组网及使用说明、硬件整体系统的基本功能和主要性能指标、硬件分系统的基本功能和主要性能指标以及功能模块的划分等 2.2、硬件总体设计报告 硬件总体设计报告是根据需求说明书的要求进行总体设计后出的报告,它是硬件详细设计的依据。编写硬件总体设计报告应包含以下内容:系统总体结构及功能划分,系统逻辑框图、组成系统各功能模块的逻辑框图,电路结构图及单板组成,单板逻辑框图和电路结构图,以及可靠性、安全性、电磁兼容性讨论和硬件测试方案等 2.3、单板总体设计方案 在单板的总体设计方案确定后出此文档,单板总体设计方案应包含单板版本号,单板在整机中的位置、开发目的及主要功能,单板功能描述、单板逻辑框图及各功能模块说明,单板软件功能描述及功能模块划分、接口简单定义与相关板的关系,主要性能指标、功耗和采用标准 2.4、单板硬件详细设计 在单板硬件进入到详细设计阶段,应提交单板硬件详细设计报告。在单板硬件详细设计中应着重体现:单板逻辑框图及各功能模块详细说明,各功能模块实现方式、地址分配、控制方式、接口方式、存贮器空间、中断方式、接口管脚信号详细定义、时序说明、性能指标、指示灯说明、外接线定义、可编程器件图、功能模块说明、原理图、详细物料清单以及单板测试、调试计划。有时候一块单板的硬件和软件分别由两个开发人员开发,因此这时候单板硬件详细设计便为软件设计者提供了一个详细的指导,因此单板硬件详细设计报告至关重要。尤其是地址分配、控制方式、接口方式、中断方式是编制单板软件的

电机变频调速系统硬件设计..

第三章 系统的硬件设计及其实现 3.1系统硬件结构总体设计 硬件部分包括主电路、保护电路、驱动电路、控制电路。 本文所涉及到的主电路的参数是三相完全对称的,其中整流部分采用二极管不可控整流,逆变部分采用的功率器件是IGBT 。系统结构框图如图3- 1所示。380V 三相交流电输入到整流器主电路,调节交流输入变压器使输出直流电压稳定在540V 左右。DSP 的主要任务是输出SVPWM 触发脉冲对逆变器的输出进行控制。在实际的系统组成中,分为强电部分和弱电部分。强电部分和弱电部分相互隔离分开能够减少强电部分对弱电部分的影响,这点对于DSP 的正常运行,变频器的正常工作有很重要的影响。 图3-1系统硬件结构总框图 主电路:采用交一直一交电压型变频装置。它主要由整流电路、滤波电路、逆变器三部分组成。整流电路是利用二极管三相桥式不可控整流模块将三相工频交流电整流成直流电;滤波电路采用电容滤波,将整流输出的脉动电压转化为平直的直流电压Vdc;逆变器是由IGBT 构成的三相全桥式逆变器。 3.2主电路工作原理 在交流变频调速系统中,主回路作为直接执行机构,其可靠性及稳定性直接影响整个系统的运转。主电路一般是由整流电路、中间滤波电路和逆变器三部分组成。本课题选用的是电压型交一直一交变频装置。它包括不可控整流器、大电容滤波、三相桥式逆变器、采样电路、保护电路以及能耗制动电路,其电路原理整流器 TMS320F2812 DSP 直流 母线 逆变器 开关电源 CT1 CT2 M 光耦隔离 驱动电路 过流保护 滤波电路 光电 编码器 上位机 键盘 A B C 六路PWM 信号

图如图3-2 图3-2系统硬件主电路图 主电路主要包括整流器和逆变器,需要用到整流桥、滤波电容器组、限流电阻和开关、电源指示器、整流二极管等器件。 三相交流电源经三相整流桥全波整流成直流电,如电源的线电压为,则三相全波整流后平均直流电压的大小是=1.35UL ,我国三相电源的线电压为380V ,考虑滤波电容的因素,全波整流后的电压是=1.414UL ,故直流电压大约为540V 。滤波电容的功能主要有两点:一是滤平全波整流后的电压纹波;二是当负载变化时,使直流电压保持平稳。由于受到电解电容的电容量和耐压能力的限制,滤波电路通常由若干个电容器并联成一组,又由两个电容器组串联而成,由于电解电容器的电容量有较大的离散性,故电容器组和的电容量不能完全相等,这将使它们承受的电压不相等,为了使它们承受的电压相等,在和二旁各并联一个阻值相等的均压电阻和。 限流电阻和开关,当变频器合上电源的瞬间,滤波电容器的充电电流是很大的。过大的冲击电流可能使三相整流桥的二极管损坏,同时也使电源电压瞬间下降而受到“污染”。为了减少冲击电流,在变频器刚接通电源后的一段时间里,电路内串入限流电阻,其作用是将电容器的充电电流限制在允许范围之内。当充电到一定程度时,令开关接通,将电阻短路掉。电源指示, 除了表示电源是否接通以外,还有一个十分重要的功能,即在变频器切断电源后,指示滤波电容器上的电荷是否己经释放完毕。由于的容量较大,而切断电源又必须在逆变电路停止工作的状态下进行,所以没有快速放电的回路,其放电时间长达数分钟。又由于上的电压较高,如不放完.对人身安个将构成威胁。 3.2.1整流二极管及IGBT 的选择 (1)整流二极管的选择 a.确定电压额定值整流二极管的耐压按式((6-1)确定。根据电网电压,考虑A B C M 整流桥

单板硬件详细设计报告模板

****产品详细设计报告 目录 1概述 6 1.1 背景 6 1.2 产品功能描述 6 1.3 产品运行环境说明 6 1.4 重要性能指标 6 1.5 产品功耗 6 1.6 必要的预备知识(可选) 6 2 产品各单元详细说明 6 2.1 产品功能单元划分和功能描述 6 2.2 单元详细描述 7 2.2.1 单元1 7

2.2.2 单元2 7 2.2.3 单元N (8) 2.3 产品各单元间配合描述 8 2.3.1 总线设计 8 2.3.2 时钟设计 8 2.3.3 产品上电、休眠、复位设计 8 2.3.4 各单元间的时序关系 9 2.3.5 产品整体可测试性设计 9 2.3.6 软件加载方式说明 9 3 产品电源设计说明 9 3.1 产品供电原理框图 9 3.2 产品电源各功能模块详细设计 9 4 产品接口说明 10 4.1 产品单元内部接口 10 4.2 对外接口说明 10 4.3 软件接口 10 4.4 调测接口 11

5 产品可靠性、可维护性设计说明 11 5.1 产品可靠性设计 11 5.1.1 关键器件及相关信息 11 5.1.2 关键器件可靠性设计说明 11 5.1.3 关键信号时序要求 12 5.1.4 信号串扰、毛刺、过冲及保障措施: 12 5.1.5 其他重要信号及相关处理方案 12 5.1.6 机械应力 12 5.1.7 可加工性 12 5.1.8 电应力 12 5.1.9 环境应力 12 5.1.10 温度应力 13 5.2 产品可维护性设计说明 13 6 EMC、ESD、防护及安规设计说明 13 6.1 产品电源、地的分配图 13 6.2 关键器件和关键信号的EMC设计 13 6.3 防护设计 13

伺服驱动器硬件设计

伺服驱动器的硬件设计 永磁同步电机伺服驱动器的硬件由控制部分和功率部分组成,控制电路以ARM为控制核心,包括编码器接口电路、外围接口电路等等。控制电路实现以下功能:获得相关指令信号和反馈信号,运行矢量控制算法,生成用于控功率模块的PWM信号。功率电路包括整流电路、逆变电路、能耗制动电路、电流采样电路、功率模块及其驱动电路、辅助电源等,用以实现能量的交流-直流-交流形式变换,驱动电机实现对电机力矩、速度、位置的精确控制。 一、编码器接口电路 本系统针对采用增量式编码器的伺服电机设计,增量式编码器共有六对差分输出信号:A+-、B+-、Z+-、U+-、V+-、W+-,如下图所示6对差分信号的处理电路,其中选用了芯片AM26C32芯片。 器接口电路首先由AM26C32解差分,然后再由后经过RC低通滤波电路进行整形,得到3.3V 电平的单端信号。最后得到的Y_A-、Y_B-、Y_Z-输出到XMC4500,以获得电机的位置和速度信息,Y_U-、Y_V-、Y_W-输出给单片机以获得伺服电机的初始相角信息。 二、主回路设计 本系统主要是采用交-直-交电压型逆变的器的形式,主要有不控整流电路滤波电容、电流检测电路、只能功率模块(IPM)及电流采样电路。主回路的结构框图如下:

(一)整流电路设计 本系统采用的是电容滤波的单相不可控整流电路,这部分电路由输入保护电路、整流桥如下图所示: 主回路侧有220V交流进来先接一个2A断路器,以防止过电流,起到保护作用。然后安规电容增加3个安全电容来抑制EMI传导干扰。交流电源输入分为3个端子:火线(L)/零线(N)/地线(G)。在火线和地线之间以及在零线和地线之间并接的电容,一般统称为Y电容。这两个Y电容连接的位置比较关键,必须需要符合相关安全标准,以防引起电子设备漏电或机壳带电,容易危及人身安全及生命。它们都属于安全电容,从而要求电容值不能偏大,而耐压必须较高,Y电容的取值为4700PF。在火线和零线抑制之间并联的电容,一般称之为X 电容。由于这个电容连接的位置也比较关键,同样需要符合相关安全标准。X电容同样也属于安全电容之一。根据实际需要,X电容的容值允许比Y电容的容值大,但此时必须在X电容的两端并联一个安全电阻,用于防止电源线拔插时,由于该电容的充放电过程而致电源线插头长时间带电。选X2电容,电容值为0.47uF. (二)储能稳压及滤波电路 (三)功率模块及其驱动和保护电路 三、辅助电源设计

硬件设计思路.doc

步进电机 随着微电子和计算机技术的发展,步进电机的需求量与日俱增,它广泛用于打印机、电动玩具等消费类产品以及数控机床、工业机器人、医疗器械等机电产品中,其在各个国民经济领域都有应用。研究步进电机的控制系统,对提高控制精度和响应速度、节约能源等都具有重要意义。 步进电机是一种能够将电子脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步进电动机。单相步进电动机有单路电脉 冲驱动,输出功率一般很小,其用途为微小功率驱动。多相步进电动机有多 相方波脉冲驱动,用途很广。 使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转为多相 脉冲信号,在经过功率放大后分别送入步进电机各项绕组。每输入一个脉冲 信号,电动机电动机各项的通电状态就发生变化,转子会转过一定的角度, 也就是步距角。 正常情况下步进电机转过的总角度和输入的脉冲的频率保持严格的对 应关系,不受电压波动和负载变化的影响。由于步进电机能直接接受数字量 的输入,所以特别适合微机控制。 步进电机的一些特点: 1.一般步进电机的精度为步进角的3-5%,且不累积。 2.步进电机外表允许的最高温度。 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃 至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 3.步进电机的力矩会随转速的升高而下降。 当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率 越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相 电流减小,从而导致力矩下降。 4.步进电机低速时可以正常运转,但若高于一定速度就无法启动,并伴有 啸叫声。

变频器安装方案说明

温州市综合材料生态处置中心 焚烧、固化及附属设施设备安装及调试项目变频器施工方案 编制: 审核: 批准:

上海灿州环境工程有限公司、中易建设有限公司(联合体) 二0一五年10月 目录 1、适用范围 2、施工准备 3、安装操作流程 4、安装人员 5、风险分析及预防措施

说明:因变频器是柜体式(配电柜)安装,所以先安装柜体根据成套配电柜及动力开关柜安装施工工艺标准 (HFWX.QB/1-6-009-2004)施工。 1.适用范围: 温州市综合材料生态处置中心焚烧及附属设施设备安装及调试工程电气安装成套配电柜,动力开关柜安装及二次回路接线。 2、施工准备 2.1设备及材料要求 2.1.1设备及材料均要符合国家或部颁发现行行 业技术标准,符合设计要求并有出厂合格证。设备应有铭牌并注明厂家名称,附件备件齐全。 2.1.2安装使用的材料 2.1.2.1型钢应无明显锈蚀,并有材质证明,二次接线导线应有 “长城”标志合格证。 2.1.2.2镀锌螺丝、螺母垫圈、弹簧垫。 2.1.2.3其他材料:防锈漆,尼龙卡贷,绝缘胶垫,电焊条,氧

气,乙炔气,均符合质量要求。 2.2主要机具 2.2.1吊装搬运机具,电瓶车,倒链,麻绳索具等。 2.2.2安装工具:台钻,手电钻,电锤,砂轮,电焊机,气焊工具电工刀,锉刀,套筒扳手等。 2.2.3测试检验工具:水准仪,兆欧表,万用表,水平尺,测试笔,钢直尺,钢圈尺,线锤等。 2.3施工材料准备工期:半天 3、安装操作流程 3.1安装流程 设备开箱检查——设备搬运——基础槽钢制作安装——原接触器开关柜体的拆除搬运——调频器柜体安装及开关柜体安装——调频器的安装——控制调频器接触器、开关的安装——二次回路接线——送电调试变频器——动力电缆施放对接——试验调整——送电联动试车——联动试车成功交付运行 3.2设备开箱检查 3.2.1安装单位,供货单位或建设单位共同进行,并做好检查记录。 3.2.2按照设备清单,施工图纸及设备技术资料核对设备本体及附件,备件的规格型号应符合设计图纸要求。附件备件齐全,产品合格,证件,技术资料说明书齐全。

相关文档
相关文档 最新文档