文档库 最新最全的文档下载
当前位置:文档库 › Cellular materials as porous scaffolds for tissue engineering

Cellular materials as porous scaffolds for tissue engineering

Cellular materials as porous scaffolds for tissue engineering
Cellular materials as porous scaffolds for tissue engineering

Cellular materials as porous sca olds for tissue engineering

T.M.Freyman a ,I.V.Yannas b ,L.J.Gibson a,*

a Department of Materials Science and Engineering,Massachusetts Institute of Technology,Cambridge,MA 02139,USA

b Department of Mechanical Engineering,Massachusetts Institute of Technology,Cambridge MA 02139,USA

Abstract

A major goal of tissue engineering is to synthesize or regenerate tissues and organs.Today,this is done by providing a synthetic porous sca old,or matrix,which mimics the body's own extracellular matrix,onto which cells attach,multiply,migrate and function.Porous sca olds are currently being developed for regeneration of skin,cartilage,bone,nerve and liver.The microstructures of many porous sca olds ressemble that of an engineering foam.In this paper,we describe the microstructural requirements for porous sca olds,review several pro-cesses for making them and show typical microstructures.Clinical studies have found that a collagen-based sca old for skin regeneration reduces wound contraction during the healing process,reducing scar formation.The process of wound contraction is not well understood.Here,we describe the measurement of contraction of collagen-based sca olds by ?broblasts in vitro using a cell force monitor.#2001Elsevier Science Ltd.All rights reserved.

Keywords:Porous sca olds;Matrix;Tissue engineering;Cell-matrix

interactions

Progress in Materials Science 46(2001)273±https://www.wendangku.net/doc/9f2805454.html,/locate/pmatsci

0079-6425/01/$-see front matter #2001Elsevier Science Ltd.All rights reserved.P I I :S 0079-6425(00)00018-9

Contents

1.Introduction (274)

2.Materials used as matrices (274)

3.Case study:skin regeneration (276)

4.Wound contraction...........................................................................................277*Corresponding author.Tel.:+1-617-253-7107;fax:+1-617-258-627

5.E-mail address:ljgibson@https://www.wendangku.net/doc/9f2805454.html, (L.J.Gibson).

1.Introduction

A major goal of tissue engineering is to synthesize or regenerate tissues and organs.Today,this is done by providing a synthetic porous sca old,or matrix,which mimics the body's own extracellular matrix,onto which cells attach,multiply,migrate and function.In a typical application,donor tissue is harvested from the patient and dissociated into individual cells using enzymes.The cells are then seeded onto a porous sca old,or matrix,in vitro,in a cell culture medium.The diseased or damaged tissue is removed and the matrix and attached cells are then implanted in the patient.Over time,the synthetic matrix resorbs into the body and the cells pro-duce their own natural extracellular matrix.Tissues currently being studied for regeneration include skin,cartilage,bone,nerve and liver.In this paper,we ?rst describe the processing and microstructure of matrix materials.We then present a case study in the use of a collagen-based matrix for skin regen-eration and describe our current research on the mechanical interactions between this matrix and skin cells.

2.Materials used as matrices

Matrix materials must satisfy a number of requirements.The solid phase must be biocompatible and promote cell adhesion and growth.Over time,as the cells produce their own natural extracellular matrix,the synthetic matrix should degrade into non-toxic components that can be eliminated from the body.The processing technique must be able to produce irregular shapes to match those of the tissue to be replaced.Examples of materials used in synthetic matrices include poly l lactic acid (PLLA),polyglycolic acid (PGA)and poly dl lactic-co-glycolic acid (PLGA);all of these are currently used in resorbable sutures.Collagen-based synthetic matrices are also available.The cellular structure must also be designed to satisfy several requirements.High porosity is needed for cell seeding and ingrowth (typical porosities are greater than 90%).The pore size must be within a critical range (usually 100±200m m):the lower bound is controlled by the size of the cells ($20m m)while the upper bound is related to the speci?c surface area through the availability of binding sites.The porosity must be interconnected to allow ingrowth of cells,vascularization and di usion of nutrients.And the material has to have su cient mechanical integrity to resist handling during implantation and in vivo loading.

5.Cell±matrix interactions in the collagen±GAG sca old used in skin regeneration (278)

6.Summary...........................................................................................................281Acknowledgements................................................................................................282References . (282)

274T.M.Freyman et al./Progress in Materials Science 46(2001)273±282

Matrix materials can be produced by a variety of routes.Freeze drying is used to produce collagen-based matrices for skin regeneration [1,2].Fibrillar collagen from bovine tendon is ?rst mixed with acetic acid in a blender and glycosaminoglycan (GAG)from cow or shark cartilage is added,producing a collagen±GAG co-pre-cipitate.The mixture is then freeze-dried.Since ice has a low solubility for the co-pre-cipitate,freezing the mixture forces the co-precipitate into the spaces between the growing ice crystals to form a continuous interpenetrating network of ice and the co-precipitate.A reduction in the chamber pressure causes the ice to sublimate,leaving a highly porous solid (Fig.1a).The size and volume fraction of the pores can be con-trolled by the rate of cooling and the volume fraction of the precipitate,respectively.Typical pore sizes are in the range of 100±200m m while typical porosities are in the range of 90±99%.Fibre bonding has been used to make matrices for attachment of liver cells (hepato-cytes)[3,4].A non-bonded structure of PGA ?bres is immersed in a solution of PLLA (which is not a solvent for PGA).The solvent is evaporated,leaving an interpenetrating network of PGA and PLLA which is then heated to above the melting temperature of PGA to bond the ?bres at their junctions.The PLLA is then dissolved in methylene chloride to give a porous sca old of PGA (Fig.1b).Foaming can also be used to create a porous structure [6,7].Carbon dioxide gas is dissolved in a polymer under high pressure (800psi and 25 C)and then expanded

to Fig.1.Micrographs of porous synthetic matrices made by:(a)freeze-drying (collagen±GAG);(b)?bre bonding (PGA,image from [3].Copyright 1993,John Wiley and Sons.Reprinted by permission of John Wiley and Sons Inc.);(c)foaming (PLLA,image from [5].Copyright 1994,with permission from Elsevier Science);(d)salt-leaching (tyrosine-derived polycarbonate,SEM image of a porous sca old prepared in the laboratory of Professor Kohn at Rutgers University,as described in Lhommeau et al.[7]).T.M.Freyman et al./Progress in Materials Science 46(2001)273±282275

276T.M.Freyman et al./Progress in Materials Science46(2001)273±282

form bubbles by releasing the pressure.Sca olds with a porosity of93%and pore sizes of roughly100m m have been made this way(Fig.1c).

Salt-leaching gives a microstructure similar to a foam[6,7].Sieved NaCl particles are combined with PLLA or PLGA powder in a solution of chloroform or methyl chloride.The solvent is evaporated(NaCl is insoluble in PLLA or PLGA).The remaining solid is then heated to above the melting point of the polymer to dis-tribute it more uniformly.After cooling,the material is immersed in water to leach out the salt,leaving a porous structure(Fig.1d).Porosities in the range of20±93% and pore sizes in the range of30±120m m have been achieved with this technique. Three-dimensional printing can also be used to create porous structures[8].A powder of PLA or PGA is mixed with NaCl and a layer of the powder is then spread into a powder bed.A printhead nozzle is then used to deposit chloroform solvent over the layer;the chloroform acts as a binder by partially dissolving the polymer. After the nozzle passes over the?rst layer,the powder bed is lowered,a second layer of powder is placed in the bed and bonded by the deposition of more chloroform. After the desired size of sample is built up by repeating this process,any remaining chloroform is removed by drying and the salt is leached out by immersion in water. Porosities up to95%can be achieved by this technique.The pore size,controlled by the size of the NaCl particles,is typically100m m.Hydroxyapatite powder can also be added to the initial mixture for possible use as a sca old for bone regeneration.

3.Case study:skin regeneration

Patients with extensive burns require treatment to prevent dehydration and infection. The standard treatment is an autograft:a section of skin is removed from another part of the body and is grafted onto the wound.But the removal of the dermis and epidermis is a serious operation and if the burns are widespread,there is insu cient healthy skin available to graft onto all the burnt areas.Recent developments in the regeneration of skin by tissue engineering has overcome these di culties. Collagen±GAG porous sca olds made by the freeze-drying process are success-fully being used to regenerate skin in burn patients;this material received FDA approval for clinical use in1996.The matrix is designed to have a pore size of20±120m m and a porosity of over95%.On one side the sheet is coated with silicone to reduce dehydration.The matrix is?rst placed over the area of the wound with the silicone-coated side outermost.Over the?rst week,cells migrate into the matrix and the matrix begins to resorb.Within about15days,physiological dermis regenerates.

A layer of epidermis from an area of healthy skin is then removed,perforated, expanded to cover a larger area,and grafted onto the regenerated dermal bed. Epidermal cells migrate and proliferate rapidly,?lling the surface of the wound site with epidermal tissue,closing the wound.If the matrix is seeded with keratinocytes before implantation,epidermis and dermis are synthesized simultaneously in about 15days.

Conventionally,if an area of dermis is removed,the wound contracts and a scar forms.Scar tissue,which is lessˉexible than physiologically normal dermis,can lead

to restricted motion at a joint.If,instead,a synthetic matrix is used,contraction is inhibited and there is little scar formation (Fig.2).The formation of scar tissue is associated with wound contraction [2].

4.Wound contraction

Wound contraction occurs by the following sequence of events [9].In normal dermis,skin ?broblasts are inactive.After wounding,?broblasts proliferate and synthesize a new collagen-containing matrix called granulation tissue.Migrating ?broblasts at the edges of the wound initiate contraction.As contraction continues,the resistance of the wound to further contraction increases and the contracting ?broblasts at the edges of the wound di erentiate into myo?broblasts.Myo?bro-blasts are elongated cells with actin ?lament bundles (also known as ``stress ?bres'')oriented along the lines of greatest resistance,allowing them to contract the wound further.Di erentiation from ?broblasts to myo?broblasts has been shown to depend at least in part on the extent to which the wound resists contraction.After the wound has healed,the ?broblast population decreases and extracellular matrix remodelling begins.Fibroblasts have also been shown to contract collagen matrices in vitro.Con-traction occurs as ?broblasts spread and elongate,trying to migrate through the matrix,rather than by retraction of the extensions of elongated cells [10,11].Several groups have measured the forces associated with contraction of a synthetic matrix or substrate.Kolodney and Wysolmerski [12]and Eastwood et al.[13]both seeded ?broblasts onto collagen gels in cell culture medium in a culture well.The collagen gel was adhered to polymer bars attached to wires.In the device used by

Kolodney Fig.2.Photograph of wound healing.The lower half of the wound was treated with the collagen-based matrix while the upper half was not.The use of the collagen matrix reduces scar formation.

T.M.Freyman et al./Progress in Materials Science 46(2001)273±282277

and Wysolmerski [12]the wire on one end was attached to a load cell while the wire on the other end was attached to a ?xed stand,preventing the gel from contracting,giving an isometric test.In the device used by Eastwood et al.[13]the wire on one end was attached to a ?xed stand while the wire on the other end was attached to a ˉexible cantilevered beam,allowing the gel to contract;the beam was intended to represent the resistance of the wound margins to contraction.Strain gauges on the cantilevered beam allowed it to be calibrated for force measurement.In both tests,the force generated by the ?broblasts increased over the ?rst 24h and then reached a roughly constant value.Kolodney and Wysolmerski [12]reported that the force per unit cell cross-sectional area of matrix was 4.5?103N/m 2.Eastwood et al.[13]reported a force of 1?10à10N/cell.In our studies,we use a device similar to that of Eastwood et al.[13]to measure the contractile response of ?broblasts on the collagen±GAG porous sca old used in skin regeneration.

5.Cell±matrix interactions in the collagen±GAG sca old used in skin regeneration Contraction of the collagen±GAG matrix (pore size=138m m,relative den-sity=5%)by ?broblasts is measured by a cell force monitor (Fig.3).A piece of the matrix of gauge length 25mm and cross-section 70?3mm,seeded with ?broblasts,is held between two clamps,one ?xed and the other attached to the free end of a vertical cantilever beam which has been instrumented with strain gauges.Calibration of the cantilever beam allows the force generated by the ?broblasts over time to be measured.The linear relationship between the end force acting on the beam and the strain gauge voltage output is found by orienting the beam horizontally and hanging known weights from it.The sti ness of the beam is found by displacing the beam a known deˉection using a micrometer and using the force±displacement calibration.The measured beam sti ness is 2.0N/m.The compressive stress±strain curve for the matrix is found by compressing a small rectangular piece of matrix (roughly 5?5?3

mm)Fig.3.Schematic of the cell force monitor used to measure the contractile response of the ?broblasts on the collagen±GAG matrix.

278T.M.Freyman et al./Progress in Materials Science 46(2001)273±282

between the clamp at the end of the cantilever beam and the end of a micrometer mounted on a ?xed base.Deformation was imposed in increments using the micro-meter.After each increment of deformation was imposed,the force was allowed to equilibrate;this typically took about 2min.The equilibrium force data was then averaged over the next minute.The compressive stress±strain curve for the matrix is shown in Fig.4.Data were obtained for strains in the range of 5±35%;the contractile strains the ?broblasts induce in the matrix are typically up to 20%.Over this range,the slope of the stress±strain curve is extremely low (29.7Pa).At the strains applied in these tests,the struts in the matrix deform by elastic buckling;the low slope of the stress±strain curve corresponds to the slope of the elastic buckling plateau.A typical force±time curve is shown in Fig.5.The force rises to an almost con-stant value over the ?rst 8±10h.In a single test,the density of attached cells is found to increase only slightly over time,suggesting that the increase in force is due to the contraction of the cells attached at the beginning of the test rather than by additional cells becoming attached over time.The change in cell morphology as rounded ?broblasts di erentiate into elongated myo?broblasts is apparent (Fig.6).In some instances,the cells appear to attach to the matrix at either end of the cell,deforming the matrix between the attachment points.In one test,run to 65h,the nutrients in the culture medium became depleted,causing the cells to relax and the matrix to recover the contraction;images of the recovered deformation suggest that cells are capable of inducing large deformations by buckling struts in the matrix (Fig.7).Myo?broblasts are distinquished by their elongation and the presence of a smooth muscle actin.We are currently measuring the aspect ratio of the cells after a time t =0,4,8and 22h as well as staining the cells for actin to correlate the di erentia-tion of the cells with the force they generate.In addition,we plan to use dual

photon

Fig.4.Stress±strain curve for the collagen±GAG matrix in compression.

T.M.Freyman et al./Progress in Materials Science 46(2001)273±282279

microscopy,which allows imaging of living cells throughout a depth of ?eld of about 100m m,to observe the elongation of the cells and the contraction of the matrix in the same sample over time.There is substantial evidence that the con-tractile response of cells depends on their mechanical environment.We plan

to Fig.6.Micrographs of ?broblasts attached to the collagen±GAG matrix,showing elongation of the cells at longer

times.

Fig.5.Force±time response curve for ?broblasts contracting on the collagen±GAG matrix.Time is measured post-seeding.There were 6?106cells attached onto a matrix sample of nominal dimensions 70?25?3mm.280T.M.Freyman et al./Progress in Materials Science 46(2001)273±282

repeat our tests with cantilever beams of varying sti nesses to measure any changes in the contractile response.

6.Summary

Porous sca olds are used in tissue engineering to mimic the extracellular matrix.They can be made by a number of processes (e.g.freeze-drying,?bre bonding,foaming,salt leaching and 3D printing).Their microstructure resembles that of an engineering foam.A collagen-based sca old is currently being used clinically for skin regeneration in patients with burns.Studies have found that the sca old inhibits wound contraction,reducing scar formation.The mechanical interaction between this sca old and ?broblasts is being studied in vitro using a cell force monitor.During the tests,the ?broblasts contract,producing strains of up to 20%.Images of the recovered deformation as the cells release their force (due to nutrient depletion)suggest that the matrix accommodates large deformations by buckling.The force generated by the ?broblasts increases to a plateau level over a period of about 8±10h.The density of attached cells remains roughly constant during the test,suggesting that the increase in force is not due to increasing numbers of cells attaching during the test.Future work includes relating the contraction to the elong-ation of the cells and the expression of actin within the cells,as well as observing cell elongation and matrix deformation at various times using dual photon

microscopy.Fig.7.Micrographs showing recovery of buckling deformation of matrix wall during unloading by a ?broblast.

T.M.Freyman et al./Progress in Materials Science 46(2001)273±282281

282T.M.Freyman et al./Progress in Materials Science46(2001)273±282 Acknowledgements

We are grateful for the?nancial support of an NIH Training Grant in Bioma-terials(DE07311-01),jointly held by the Department of Materials Science and Engineering at MIT and the Harvard School of Dental Medicine(TMF),the Matoula S.Salapatas Professorship in Materials Science and Engineering at MIT (LJG),and NIH Grant1RO1DE13053(IVY).

References

[1]Chen CS,Yannas IV,Spector M.Biomaterials1995;16:777±83.

[2]Yannas IV,Lee E,Orgill DP,Skrabut EM,Murphy GF.Proc Natl Acad Sci USA1989;86:933±7.

[3]Mikos AG,Bao Y,Cima LG,Ingber DE,Vacanti JP,Langer R.J Biomed Res1993;27:183±9.

[4]Lu L,Mikos AG.MRS Bulletin1996;21(11):28±31.

[5]Mikos AG,Thorsen AJ,Czerwonka LA,Bao Y,Winslow DN,Vacanti JP,Langer R.Polymer

1994;35:1068±77.

[6]James K,Kohn J.MRS Bulletin1996;21(11):22±6.

[7]Lhommeau C,Levene H,Abramson S,Kohn J.Tissue Engineering1998;4:468.

[8]Park A,Wu B,Gri th LG.J Biomat SciDPolymer.1998;9:89±110.

[9]Grinnell F.J Cell Biology1994;124:401±4.

[10]Harris AK,Stopak D,Wild P.Nature1981;290:249±51.

[11]Grinnell F,Lamke CR.J Cell Sci1984;66:51±63.

[12]Kolodney MS,Wysolmerski RB.J Cell Biology1992;117:73±82.

[13]Eastwood M,McGrouther DA,Brown RA.Biochimica et Biophysica Acta1994;1201:186±92.

Material studio软件介绍

单击此处编辑母版标题样式
单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Materials Studio分子模拟软件
Version 2011
Copyright ?2010, Neotrident Technology Ltd. All rights reserved.

虚拟 “实验”(分子模拟技术)
C R E A T V I T Y
决定依据
单击此处编辑母版标题样式
单击此处编辑母版副标题样式
虚拟设计
表征材料结构,以及与结构相关的性质 —— 解释 设计材料结构,以及与结构相关的性质 —— 预测

Materials Studio是整合的计算模拟平台
? 可兼顾科研和教学需求 ? 可在大规模机群上进行并行计算 ? 客户端-服务器 计算方式 – Windows Linux Windows, – 最大限度的使用已有IT资源 – – – – – – – – DFT及半经验量子力学 线形标度量子力学 分子力学 QM/MM方法 介观模拟 统计方法 分析仪器模拟 …… ? 全面的应用领域 - 固体物理与表面化学 - 催化、分离与化学反应 - 半导体功能材料 - 金属与合金材料 - 特种陶瓷材料 - 高分子与软材料 - 纳米材料 - 材料表征与仪器分析 - 晶体与结晶 - 构效关系研究与配方设计 - ……
单击此处编辑母版标题样式 ? 包含多种计算方法
单击此处编辑母版副标题样式

Materials Studio?
Menu Toolbar
单击此处编辑母版标题样式 Property
View
单击此处编辑母版副标题样式
Job s us status
Project

Materials studio简介

Materials studio简介 1、诞生背景美国Accelrys公司的前身为四家世界领先的科学软件公司――美国Molecular Simulations Inc.(MSI)公司、Genetics Computer Group(GCG)公司、英国Synopsys Scient ific系统公司以及Oxford Molecular Group(OMG)公司,由这四家软件公司于2001年6月1日合并组建的Accelrys公司,是目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商。 Accelrys材料科学软件产品提供了全面完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质。Accelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。Accelrys软件用于材料科学研究的主要产品包括运行于UNIX工作站系统上的Cerius2软件,以及全新开发的基于PC平台的Materials Studio软件。Accelrys材料科学软件被广泛应用于石化、化工、制药、食品、石油、电子、汽车和航空航天等工业及教育研究部门,在上述领域中具有较大影响的世界各主要跨国公司及著名研究机构几乎都是Accelrys产品的用户。 2、软件概况 Materials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。 多种先进算法的综合应用使Materials Studio成为一个强有力的模拟工具。无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,我们都可以通过一些简单易学的操作来得到切实可靠的数据。 Materials Studio软件采用灵活的Client-Server结构。其核心模块Visualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover,Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows2000、NT、SGIIRIX以及Red Hat Linux。浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源。 任何一个研究者,无论是否是计算机方面的专家,都能充分享用Materials Studio软件所带来的先进技术。Materials Studio生成的结构、图表及视频片断等数据可以及时地与其它PC软件共享,方便与其他同事交流,并能使你的讲演和报告更加引人入胜。 Materials Studio软件能使任何研究者达到与世界一流研究部门相一致的材料模拟的能力。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 3、模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件

Materials Studio是Accelrys专为材料科学领域开发的可运行于PC机上的新一代材料计算软件,可帮助研究人员解决当今化学及材料工业中的许多重要问题。Materials Studio 软件采用Client/Server结构,客户端可以是Windows 98、2000或NT系统,计算服务器可以是本机的Windows 2000或NT,也可以是网络上的Windows 2000、Windows NT、Linux或UNIX系统。使得任何的材料研究人员可以轻易获得与世界一流研究机构相一致的材料模拟能力。 Materials Studio 由分子模拟软件界的领先者--美国ACCELRYS公司在2000年初推出的新一代的模拟软件Materials Studio,将高质量的材料模拟带入了个人电脑(PC)的时代。 Materials Studio是ACCELRYS 公司专门为材料科学领域研究者所涉及的一款可运行在PC上的模拟软件。他可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows98、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。 任何一个研究者,无论他是否是计算机方面的专家,都能充分享用该软件所使用的高新技术,他所生成的高质量的图片能使你的讲演和报告更引人入胜。同时他还能处理各种不同来源的图形、文本以及数据表格。 多种先进算法的综合运用使Material Studio成为一个强有力的模拟工具。无论是性质预测、聚合物建模还是X射线衍射模拟,我们都可以通过一些简单易学的操作来得到切实可靠的数据。灵活方便的Client-Server结构还是的计算机可以在网络中任何一台装有NT、Linux或Unix操作系统的计算机上进行,从而最大限度的运用了网络资源。 ACCELRYS的软件使任何的研究者都能达到和世界一流工业研究部门相一致的材料模拟的能力。模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。 Materials Studio采用了大家非常熟悉Microsoft标准用户界面,它允许你通过各种控制面板直接对计算参数和计算结构进行设置和分析。 模块简介: 基本环境 MS.Materials Visualizer 分子力学与分子动力学 MS.DISCOVER https://www.wendangku.net/doc/9f2805454.html,PASS

Materials Studio软件介绍(非常详细)

1、诞生背景美国Accelrys公司的前身为四家世界领先的科学软件公司――美国Molecular Simulations Inc.(MSI)公司、Genetics Computer Group(GCG)公司、英国Synopsys Scient ific 系统公司以及Oxford Molecular Group(OMG)公司,由这四家软件公司于2001年6月1日合并组建的Accelrys公司,是目前全球范围内唯一能够提供分子模拟、材料设计以及化学信息学和生物信息学全面解决方案和相关服务的软件供应商。 Accelrys材料科学软件产品提供了全面完善的模拟环境,可以帮助研究者构建、显示和分析分子、固体及表面的结构模型,并研究、预测材料的相关性质。Accelrys的软件是高度模块化的集成产品,用户可以自由定制、购买自己的软件系统,以满足研究工作的不同需要。Accelrys软件用于材料科学研究的主要产品包括运行于UNIX工作站系统上的Cerius2软件,以及全新开发的基于PC平台的Materials Studio软件。Accelrys材料科学软件被广泛应用于石化、化工、制药、食品、石油、电子、汽车和航空航天等工业及教育研究部门,在上述领域中具有较大影响的世界各主要跨国公司及著名研究机构几乎都是Accelrys产品的用户。 2、软件概况 Materials Studio是专门为材料科学领域研究者开发的一款可运行在PC上的模拟软件。它可以帮助你解决当今化学、材料工业中的一系列重要问题。支持Windows 98、2000、NT、Unix以及Linux等多种操作平台的Materials Studio使化学及材料科学的研究者们能更方便地建立三维结构模型,并对各种晶体、无定型以及高分子材料的性质及相关过程进行深入的研究。 多种先进算法的综合应用使Materials Studio成为一个强有力的模拟工具。无论构型优化、性质预测和X射线衍射分析,以及复杂的动力学模拟和量子力学计算,我们都可以通过一些简单易学的操作来得到切实可靠的数据。 Materials Studio软件采用灵活的Client-Server结构。其核心模块Visualizer运行于客户端PC,支持的操作系统包括Windows 98、2000、NT;计算模块(如Discover,Amorphous,Equilibria,DMol3,CASTEP等)运行于服务器端,支持的系统包括Windows2000、NT、SGIIRIX以及Red Hat Linux。浮动许可(Floating License)机制允许用户将计算作业提交到网络上的任何一台服务器上,并将结果返回到客户端进行分析,从而最大限度地利用了网络资源。 任何一个研究者,无论是否是计算机方面的专家,都能充分享用Materials Studio软件所带来的先进技术。Materials Studio生成的结构、图表及视频片断等数据可以及时地与其它PC软件共享,方便与其他同事交流,并能使你的讲演和报告更加引人入胜。 Materials Studio软件能使任何研究者达到与世界一流研究部门相一致的材料模拟的能力。模拟的内容包括了催化剂、聚合物、固体及表面、晶体与衍射、化学反应等材料和化学研究领域的主要课题。 3、模块简介 Materials Studio采用了大家非常熟悉的Microsoft标准用户界面,允许用户通过各种控制面板直接对计算参数和计算结果进行设置和分析。目前,Materials Studio软件包括如下功能模块: Materials Visualizer: 提供了搭建分子、晶体及高分子材料结构模型所需要的所有工具,可以操作、观察及分析结构模型,处理图表、表格或文本等形式的数据,并提供软件的基本环境和分析工具以及支持Materials Studio的其他产品。是Materials Studio产品系列的核心模块。

实验1:Materials_Studio软件简介及基本操作

《计算材料学》实验讲义 实验一:Materials Studio软件简介及基本操作 一、前言 1.计算材料学概述 随着科学技术的不断发展,科学研究的体系越来越复杂,理论研究往往不能给出复杂体系解析表达,或者即使能够给出解析表达也常常不能求解,传统的解析推导方法已不敷应用,也就失去了对实验研究的指导意义。反之,失去了理论指导的实验研究,也只能在原有的工作基础上,根据科研人员的经验理解、分析与判断,在各种工艺条件下反复摸索,反复实验,最终造成理论研究和实验研究相互脱节。近年来,随着计算机科学的发展和计算机运算能力的不断提高,为复杂体系的研究提供了新的手段。 在材料学领域,随着对材料性能的要求不断的提高,材料学研究对象的空间尺度在不断变小,纳米结构、原子像已成为材料研究的内容,对功能材料甚至要研究到电子层次,仅仅依靠实验室的实验来进行材料研究已难以满足现代新材料研究和发展的要求。然而计算机模拟技术可以根据有关的基本理论,在计算机虚拟环境下从纳观、微观、介观、宏观尺度对材料进行多层次研究,进而实现材料服役性能的改善和材料设计。因此,计算材料学应运而生,并得到迅速发展,目前已成为与实验室实验具有同样重要地位的研究手段。 计算材料学是材料科学与计算机科学的交叉学科,是一门正在快速发展的新兴学科,是关于材料组成、结构、性能、服役性能的计算机模拟与设计的学科,是材料科学研究里的“计算机实验”。计算材料学主要包括两个方面的内容:一方面是计算模拟,即从实验数据出发,通过建立数学模型及数值计算,模拟实际过程;另一方面是材料的计算机设计,即直接通过理论模型和计算,预测或设计材料结构与性能。计算材料科学是材料研究领域理论研究与实验研究的桥梁,不仅为理论研究提供了新途径,而且使实验研究进入了一个新的阶段。 计算材料学的发展是与计算机科学与技术的迅猛发展密切相关的。从前,即便使用大型计算机也极为困难的一些材料计算,如材料的量子力学计算等,现在使用微机就能够完成,可以预见,将来计算材料学必将有更加迅速的发展。另外,随着计算材料学的不断进步与成熟,材料的计算机模拟与设计已不仅仅是材料物理以及材料计算理论学家的热门研究课题,更将成为一般材料研究人员的一个重要研究工具。由于模型与算法的成熟,通用软件的出现,

Material-Studio建模学习资料

铁基块体非晶合金-纳米晶转变的动力学模拟过程 Discover模块 1 原子力场的分配 在使用Discover模块建立基于力场的计算中,涉及几个步骤。主要有:选择力场、指定原子类型、计算或指定电荷、选择non-bond cutoffs。 在这些步骤中,指定原子类型和计算电荷一般是自动执行的。然而,在某些情形下需要手动指定原子类型。原子定型使用预定义的规则对结构中的每个原子指定原子类型。在为特定的系统确定能量和力时,定型原子使工作者能使用正确的力场参数。通常,原子定型由Discover使用定型引擎的基本规则来自动执行,所以不需要手动原子定型。然而,在特殊情形下,人们不得不手动的定型原子,以确保它们被正确地设置。 图 3-1 1)计算并显示原子类型:点击Edit→Atom Selection,如图所示

弹出对话框,如图所示 从右边的…的元素周期表中选择Fe,再点Select,此时所建晶胞中所有Fe原子都将被选中,原子被红色线圈住即表示原子被选中。再编辑集合,点击Edit→Edit Sets,如图所示 弹出对话框见图,点击New...,给原子集合设定一个名字。这里设置为Fe,则3D视图中会显示“Fe”字样,再分配力场: 在工具栏上点击Discover按钮,从下拉列表中选择Setup,显示Discover Setup对话框,选择Typing选项卡。

图3-2 Discover Setup对话框Typing选项卡 在Forcefield types里选择相应原子力场,再点Assign(分配)按钮进行原子力场分配。注意原子力场中的价态要与Properties Project里的原子价态(Formalcharge)一致。 2力场的选择 1)Energy 力场的选择: 力场是经典模拟计算的核心,因为它代表着结构中每种类型的原子与围绕着它的

Materials Studio软件常见问题与解答

目 录 Q1:为什么使用Discover进行Dynamics计算时,如果设定了Pressure=1GPa,在计算结果中会出现Pressure等于0,而Stress的XX、YY、ZZ方向为1GPa的情况? (4) Q2:如何在Discover计算中分别对相同环境原子分配不同力场类型? (4) Q3:如何在CASTEP计算中限制某个原子的移动方向? (4) Q4:在安装新的MS时,事先没有停掉License Server,在卸载、安装MS后,发现MS的License Server 无法正常启动。 (5) Q5:如何修改Windows或者Linux下的端口号: (5) Q6:如何使用DMol3进行动力学计算? (6) Q7:如何让Discover程序输出.arc文件? (7) Q8:如何使用rattle关键词来限制水分子的几何结构? (7) Q9,如何使用Standalone方式运行DMol程序? (7) Q10:如何在DMol中加入外界电场? (7) Q12,如何以Standalone方式运行Discover作业? (8) Q13:为什么我在QSAR模块中无法找到新加入的Jurs和DMol3描述符? (8) Q14:如何在DMol模块中,对某一分子只允许其沿着Z方向进行优化,而XY方向则不变? (8) Q15:如果CASTEP计算过程中断电,怎么能够重新开始计算呢?在Keywords中有两个关键词Reuse 和Continuation,它们有什么差异呢? (8) Q16:如果我在Cleave一个平面的时候,选择的是(111)面,或者该晶体原来就是一个三斜晶胞,我怎么才能切出一个长方形的表面来呢? (9) Q17:在使用DMol进行结构优化的时候失败,通过对轨迹的回放发现,整个分子在平面上下进行翻转,并由此导致能量振荡,这种情况应当如何处理? (9)

Materials Studio 5.5 软件安装说明

Materials Studio 5.5软件安装说明 (注:如果之前您的电脑上装有Materials Studio 5.0,请将其卸载后再进行此安装过程) Step 1: 首先将Materials Studio 5.5软件安装程序下载至您的电脑。Materials Studio 5.5软件安装程序具体下载地址:登录东华大学主页(https://www.wendangku.net/doc/9f2805454.html,/)/材料科学与工程学院主页( https://www.wendangku.net/doc/9f2805454.html,/)左下角/下载中心/研究生教学课件/ Materials Studio 5.5软件安装程序/下载。 或直接链接:https://www.wendangku.net/doc/9f2805454.html,/mainAction.do?topNav=159&sideNav=187下载“Materials Studio 5.5软件安装程序” Step 2:打开控制面板/Windows 防火墙/关闭/确定(建议安装前将360等杀毒软件也关闭)。 Step 3:将Materials Studio 5.5软件安装程序解压缩(一般装至非系统盘),点击安装文件setup.exe。

点击Next。 点击Next。

改变安装路径(点击Change),尽量安装至非系统盘,点击Next。 选择Complete,点击Next。

选择Start the Gateway now, with default security settings.选项,点击Next。 选择Install。 Step 4: 打开目录C:\WINDOWS\system32\drivers\etc,用记事本或写字本打开hosts文件,在文本最后一行下面添加219.228.78.3 SERVER,保存,关闭。

MaterialsStudio6.0软件客户端的安装

Materials Studio6.0软件客户端的安装 1.在每台客户端,先修改文件C:\WINDOWS\system32\drivers\etc\hosts,在其末尾加入一 行:License服务器IP地址 License服务器机器名,如: 192.168.0.1 Server 2.将光盘上的MaterialsStudio60.exe文件复制到硬盘上,比如D:\ 3.双击MaterialsStudio60.exe,会将该文件解压到D:\ MaterialsStudio60 4.进入D:\ MaterialsStudio60,执行setup.exe,如下图:

5.弹出下面界面后,Next到下一步: 6.弹出下面界面后输入用户名和组织,然后Next到下一步:

7.弹出下面界面后请选择安装目录,空间大约需要1.2G,然后Next到下一步: 8.弹出下面界面后一定要选择Complete(默认),然后Next到下一步:

9.弹出下面界面后选择默认值Start the Gateway now,Next到下一步: 10.在下面界面选择Install后,开始安装,请稍等:

11.弹出下面界面后表示客户端软件安装完成,点击 Finish进入到License配置界面:

12.在下面界面选择 Connect to remote license server进入下一步: 13.弹出下面界面后,如下填写: Host name:输入license服务器的机器名; Port:1715(默认); 不要勾选I have redundant license server 然后Next到下一步:

利用materialstudio软件制作catio3的晶体结构

2012级专业课程设计(Ⅱ) 题目:利用material studio软件制作CaTiO3的晶体结 构 姓名:文美乐 班级:应物1203 学号: 指导教师:王会娴

一、课程设计目的、意义 目的: 1. 根据课堂讲授内容,我们做相应的自主练习,便于消化课堂所讲解的内容。 2. 通过多次反复调试程序进而积累相应的经验。 3. 通过完成要求的课题,逐渐培养学生的编程能力,用计算机解决实际问题的能力。 意义: 1. 有助于加深我们对操作软件MS的理解,通过课程设计,我们可以真正理解其应用方向,应用方法。 2. 有利于我们空间思维的锻炼,MS制图能直接有效地训练学生的立体思维、培养分析问题、解决问题能力。即使是一个简单的空间绘图,依然需要学生有条不理的构思。 3. 有利于培养严谨认真的学习态度,在软件应用过程里,如果不够认真或细心,可能就无法得出正确的运行结果。我们反复调试,反复修改的过程,其实也是对我们认真严谨治学的一个锻炼。 应用: 1.MaterialsStudio 在晶体结构教学中的应用 在涉及晶体结构的课程中,学生往往需要掌握晶体的结构和对称性,但单纯板书式教学对学生的理解作用不大,利用MaterialsStudio 的建模功能可以方便的建立各种晶体的三维模型,直观化的展示其结

构和对称性等特点。 2.MS在能带结构计算中的应用 固体中电子能带结构的计算是固体物理学的主要理论问题,晶体电子能带的理论计算方法很多,但对学生的知识结构要求很高,学生学习起来往往感到无从下手。而只有让学生参与实际晶体的能带结构计算,学生对该部分内容的理解才更加深刻。MaterialsStudio中的CASTEP模块可以完成此方面的内容。CASTEP基于总能量的平面波赝势理论,运用原子数目和种类来预测和计算包括晶格参数、分子对称性、结构性质、能带结构、固态密度、电荷密度和波函数、光学性质。由于避免了繁杂的理论推导,一般学生可以很快上手,把重点放到计算结果的分析和讨论上,激发了学生的学习兴趣。 在X射线衍射教学中的应用 X射线衍射内容在固体物理中占有重要地位,通过X射线衍射实验,人们可以对未知晶体进行结构标定.而一般的固体物理教材只介绍X射线衍射的原理,学生对其应用知之甚少。我们利用Mater ialsStudio中的Reflex模块模拟晶体材料的X光、中子以及电子等多 种粉末衍射图谱,确定晶体的结构、解析衍射数据并用于验证计算和实验结果。 4.MS在理论化学计算软件的应用 在众多材料化学理论计算软件中,MS是比较合适一般学生使用。可视化是深奥的材料周期性结构和结果直观表达。MS的操作简单,

Materials Studio软件

一、Materials Studio软件的主要应用领域包括: ? 金属材料研究 ? 无机非金属材料研 ? 纳米材料研究 ? 高分子及其复合材料研究 ? 表界面研究 ? 化学反应研究 ? 含能材料研究 ? 生物、医药研究 ? 在晶体结构、形貌研究中的应用 ? QSAR 的应用 ? Perl 语言的应用 Accelrys(美国)公司是世界领先的计算科学公司,是一系列用于科学数据的挖掘、整合、分析、模建与模拟、管理和提交交互式报告的智能软件的开发者,是目前全球范围内唯一能够提供分子模拟、材料设计、化学信息学和生物信息学全面解决方案和相关服务的软件供应商,所提供的全面解决方案和科技服务满足了当今全球领先的研究和开发机构的要求。 Materials Studio多尺度分子模拟平台是Accelrys公司(美国)在材料设计领域的核心产品。它融合多种模拟方法,整合多达23 个功能模块,实现从电子结构解析到宏观性能预测的全尺度科学研究。在国内拥有近400家用户,分布在石油、化工、环境、能源、制药、电子、食品、航空航天和汽车等工业领域和教育科研部门;相关的研究工作在Nature、Science等各类权威期刊上发表论文过万篇。 Materials Studio分子模拟软件采用了先进的模拟计算思想和方法,如量子力学(QM)、线性标度量子力学(Linear Scaling QM)、分子力学(MM)、分子动力学(MD)、蒙特卡洛(MC)、介观动力学(MesoDyn)和耗散粒子动力学(DPD)、统计方法QSAR(Quantitative Structure - Activity Relationship )等多种先进算法和X射线衍射分析等仪器分析方法;同时产品提供了界面友好的的模拟环境,研究者能方便地建立三维结构模型,并对各种小分子、纳米团簇、晶体、非晶体以及高分子材料的性质及相关过程进行深入的研究,得到切实可靠的数据。 Materials Studio分子模拟软件支持Windows和Linux操作平台,用户可以自由定制、购买自己的模拟方法和模块,以满足特定领域研究需求。 Materials Studio软件使任何研究者都能得到和世界一流研究部门相一致的材料模拟技术。 二、Materials Studio软件与Pipeline Pilot流程处理平台的整合 三、Materials Studio软件的系统要求

material_studio中文教程

欢迎 欢迎使用Materials Studio Materials Studio是一个采用服务器/客户机模式的软件环境,它为你的PC机带来世界最先进的材料模拟和建模技术。 Materials Studio使你能够容易地创建并研究分子模型或材料结构,使用极好的制图能力来显示结果。与其它标准PC软件整合的工具使得容易共享这些数据。 Materials Studio的服务器/客户机结构使得你的Windows NT/2000/XP,Linux和UNIX服务器可以运行复杂的计算,并把结果直接返回你的桌面。 Materials Studio采用材料模拟中领先的十分有效并广泛应用的模拟方法。Accelry’s的多范围的软件结合成一个集量子力学、分子力学、介观模型、分析工具模拟和统计相关为一体容易使用的建模环境。卓越的建立结构和可视化能力和分析、显示科学数据的工具支持了这些技术。 无论是使用高级的运算方法,还是简单地利用Materials Studio增强你的报告或演讲,你都可以感到自己是在用的一个优秀的世界级材料科学与化学计算软件系统。 易用性与灵活性 Materials Studio可以在Windows 98,Me,NT,2000和XP下运行。用户界面符合微软标准,你可以交互控制三维图形模型、通过简单的对话框建立运算任务并分析结果,这一切对Windows用户都很熟悉。 Materials Studio的中心模块是Materials Visualizer。它可以容易地建立和处理图形模型,包括有机无机晶体、高聚物、非晶态材料、表面和层状结构。Materials Visualizer 也管理、显示并分析文本、图形和表格格式的数据,支持与其它字处理、电子表格和演示软件的数据交换。 Materials Studio是一个模块化的环境。每种模块提供不同的结构确定、性质预测或模拟方法。你可以选择符合你要求的模块与Materials Visualizer组成一个无缝的环境。你也可以把Materials Visualizer作为一个单独的建模和分子图形的软件包来运行。 如果你安装了Materials Studio的其它模块,后台运算既可以运行在本机,也可以通过网络运行在远程主机上。这取决于你建立运算时的选择和运算要求。Materials Studio的客户机/服务器模式支持服务器端运行在Windows NT/2000/XP,Linux或UNIX下,使得你可以最大化利用计算资源。 效率和交流 所以的研究人员都可以从Materials Studio强大功能中获益。这份文档的“演示”部分给出了一些简单的分子和材料的模型。这能使你获得对材料的更好的理解并能创建优秀的图形。与其它Windows软件的协同工作使得能容易地拷贝粘贴这些图形到其它文档。结构和性质的数据能容易地从电子表格和数据库中导入导出。Materials Studio帮助你显示和共享数据。Materials Visualizer也可以安装在研究部门、生产部门、

相关文档
相关文档 最新文档