文档库 最新最全的文档下载
当前位置:文档库 › 开关电源闭环设计

开关电源闭环设计

开关电源闭环设计
开关电源闭环设计

6.4 开关电源闭环设计

从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。反馈越深,干扰引起的输出误差越小。但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。

开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref ,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准一定时,取样电路分压比(k v )也是固定的(U o =k v U ref )。开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。

对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。如果恒流输出,就是电流串联负反馈。

如果是恒压输出,对电压取样,闭环稳定输出电压。因此,首先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极小的动态电阻和温度漂移。其次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。根据不同的电路条件,可以采用Venable 三种补偿放大器。补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。

6.4.1 概述

图6.31为一个典型的正激变换器闭环调节的例子。可以看出是一个负反馈系统。PWM 控制芯片中包含了误差放大器和PWM 形成电路。控制芯片也提供许多其他的功能,但了解闭环稳定性问题,仅需考虑误差放大器和PWM 。 对于输出电压U o 缓慢或直流变化,闭环当然是稳定的。例如输入电网或负载变化(干扰),引起U o 的变化,经R 1和R 2取样(反馈网络),送到误差放大器EA 的反相输入端,再与加在EA 同相输入端的参考电压(输入电压)U ref 比较。将引起EA 的输出直流电平U ea 变化,再送入到脉冲宽度调制器PWM 的输入端A 。在PWM 中,直流电平U ea 与输入B 端0~3V 三角波U t 比较,产生一个矩形脉冲输出,其宽度t on 等于三角波开始时间t0到PWM 输入B 三角波与直流电平相交时间t1。此脉冲宽度决定了芯片中输出晶体管导通时间,同时也决定了控制晶体管Q1的导通时间。U dc 的增加引起U y 的增加,因U o =U y t o n /T ,U o 也随之增加。U o 增加引起Us 增加,并因此U ea 的减少。从三角波开始到t1的t on 相应减少, U o 恢复到它的初始值。当然,反之亦然。 PWM 产生的信号可以从芯片的输出晶体管发射极或集电极输出,经电流放大提供Q1基极驱动。但不管从那一点-发射极还是集电极-输出,必须保证当U o 增加,要引起t on 减少,即负反馈。 应当注意,大多数PWM 芯片的输出晶

体管导通时间是t0到t1。对于这样的芯片,U s 送到EA 的反相输入端,PWM 信号如果驱动功率NPN 晶体管基极(N 沟道MOSFET 的栅极),则芯片输出晶体管应由发射极输出。

然而,在某些PWM 芯片(TL494)中,它们的导通时间是三角波U t 与直流电平(U ea )相交时间

图6.31 典型的正激变换器闭环控制

到三角波终止时间t2。对于这样的芯片,如果驱动NPN 晶体管,输出晶体管导通(如果从芯片的输出晶体管发射极输出),这样会随晶体管导通时间增加,使得U o 增加,这是正反馈,而不是负反馈。因此,TL494一类芯片,U s 送到EA 的同相输入端,U o 增加使得导通时间减少,就可以采用芯片的输出晶体管的发射极驱动。

图6.31电路是负反馈且低频稳定。但在环路内,存在低电平噪音电压和含有丰富连续频谱的瞬态电压。这些分量通过输出L o ,C o 滤波器、误差放大器和U ea 到U y 的PWM 调节器引起增益改变和相移。在谐波分量中的一个分量,增益和相移可能导致正反馈,而不再是负反馈,在6.2.7节我们已讨论过闭环振荡的机理。以下就开关电源作加体分析。

6.4.2 环路增益

还是来研究图6.31正激变换器。假定反馈环在B 点-连接到误差放大器的反相输入端断开成开环。任何一次谐波分量的噪声从B 经过EA 放大到U ea ,由U ea 传递到电压U y 的平均值,和从Uy 的平均值通过L o ,C o 返回到B b (正好是先前环路断开点)都有增益变化和相移。这就是6.2.7讨论的环路增益信号通路。

如果假定某个频率f 1的信号在B 注入到环路中,回到B 的信号的幅值和相位被上面提到回路中的元件改变了。如果改变后的返回的信号与注入的信号相位精确相同,而且幅值等于注入信号,即满足GH =-1。要是现在将环闭合(B 连接到B b ),并且注入信号移开,电路将以频率f 1继续振荡。这个引起开始振荡的f 1是噪声频谱中的一个分量。

为达到输出电压(或电流)的静态精度,误差放大器必须有高增益。高增益就可能引起振荡。误差放大器以外的传递函数一般无法改变,为避免加入误差放大器以后振荡,一般通过改变误差放大器的频率特性(校正网络),使得环路频率特性以-20dB/dec 穿越,并有45°相位裕度,以达到闭环的稳定。以下我们研究误差放大器以外的电路传递函数的频率特性。

1. 带有LC 滤波电路的环路增益G f

除了反激变换器(输出滤波仅为输出电容)外,这里讨论的所有拓扑都有输出滤波器。通常滤波器设计时根据脉动电流为平均值(输出电流)的20%选取滤波电感。根据允许输出电压纹波和脉动电流值以及电容的ESR 选取输出滤波电容。如果电解电容没有ESR (最新产品),只按脉动电流和允许纹波电压选取。由此获得输出滤波器的谐振频率,特征阻抗,ESR 零点频率。在频率特性一节图6.7示出了LC 滤波器在不同负载下的幅频和相频特性。

为简化讨论,假定滤波器为临界阻尼R o =1.0Z o ,带有负载电阻的输出LC 滤波器的幅频特性如图

6.32(a)中12345所示。此特性假定输出电容的ESR 为零。在低频时,X c >>X L ,输入信号不衰减,增益为1即0dB 。在f 0以上,每十倍频C o 阻抗以20dB 减少,而L o 阻抗以20dB 增加,使得增益变化斜率为-40dB/dec 。当然在f 0增益不是突然转变为-2斜率的。实际上在f 0前增益曲线平滑离开0dB 曲线,并在f 0后不久渐近趋向-40dB/dec 斜率。这里为讨论方便,增益曲线突然转向-40dB/dec 。

如果使相应于R o =1.0Z o 条件下稳定,那么在其它负载也将稳定。但应研究电路在轻载(R o >>1.0Z o )时的特性,因为在LC 滤波器转折频率f= f 0增益谐振提升。

滤波电容有ESR 的LC 滤波器幅频特性如图6.35b 的曲线123456。大多数滤波电容具有ESR 。在f 0以上的低频段,容抗远远大于ESR ,从U o 看到阻抗仅是容抗起主要作用,斜率仍为-40dB/dec ;在更高频时,esr R C <<1

,从输出端看的阻抗只是ESR ,在此频率范围,电路变为LR 滤波,而不是LC 滤波。即

o o o

(a) (b)

图6.32 临界阻尼LC 滤波器输出电容无ESR (a )和有ESR(b)幅频特性

e s r

e s r in o

f f j R L j U U G +=+==1111ω& (6-55) 式中转折频率f esr =R esr /(2πL )。在此频率范围,感抗以20dB/dec 增加,而ESR 保持常数,增益以-20dB/dec 斜率下降。

幅频特性由-40dB/dec 转为-20dB/dec 斜率点为f esr ,这里电容阻抗等于ESR 。ESR 提供一个零点。转变是渐近的,但所示的突然转变也足够精确。

2. PWM 增益

图6.32(a)中由误差放大器输出到电感输入电压U y 的平均值U aU 的增益是PWM 增益,并定义为G m 。 一般电压型控制芯片中误差放大器的输出U ea 与内部三角波比较产生PWM 信号调整输出电压。三角波的幅值0~3V(实际上是0.5~3V)。如果芯片控制推挽(桥式、半桥)电路,变压器频率是芯片频率的一半,占空比D 随误差放大器输出可以在0~1之间改变。如果是正激,只采用一半脉冲,占空度在0~0.5之间改变。

在图6.34b 中,当U ea =0,D =t on /T =0,在U y 的宽度为零, U aU 也为零。如果U ea 移动到3V ,在三角波的峰值,t on /T =D =0.5,U y 的平均值就是U aU =(U sp -1)D ,其中U sp 是变压器次级电压,1为整流二极管压降。则调制器的直流增益为U aU 与U ea 的比值

3

)1(5.0-==sp ea oU m V U U G (6-56) 此增益与频率无关。

3. 取样增益-反馈系数

图6.31中还有一个增益衰减,就是R 1和R 2组成的采样电路。大多数PWM 芯片的误差放大器的参考输入端不可能大于2.5V ,因此如果输出电压一旦决定,此增益即为

2

12R R R U U G o s s +== (6-57) 如果输出5V ,采样电阻R 1=R 2,U s (U ref )与U o 之间的增益为-6dB ,即1/2。

4. 输出LC 滤波器加上PWM 和采样网络的总增益

为了得到环路增益波特图,我们先将输出LC 滤波器增益G f 、PWM 增益G m 和采样网络增益G s 之和G t 如图6.33所示。从0Hz (直流)到频率LC f π210=的增益是G m +G s ,这里LC 滤波器增益为零。在f 0转折为-40dB/dec 斜率,并保持此斜率一直到f esr ,这里电容阻抗等于R esr 。在这个频率它转折为斜率-20dB/dec 。由这个曲线可以确定误差放大器的幅频和相频特性以满足稳定环路的两个判据。

6.4.3 误差放大器的幅频特性整形

如果将开关电源的闭环作为一个放大器来研究,放大器输入信号为开关电源的参考电压。从负反馈组态来说是一个电压串联负反馈。这里误差放大器是一个同相放大器。从误差放大器的同相端到误差放大器输出、PWM 发生、电源输出和取样返回到误差放大是反相输入端,在任何频率在增益下降到0dB 时附加相位移小于135°。以下来讨论误差放大器的补偿。为讨论方便,取样信号加在反相端,放大器输出总是反相,反馈信号返回到反相端附加相移不能超过135°,即45°相位裕度。

第一步首先建立穿越频率f c0,在此频率总增益为0dB 。然后选择误差放大器的增益,迫使总环路增益在f c 0为0dB 。下一步设计误差放大器的增益斜率,以使得总开环增益在f c 0以斜率-20dB/dec 穿越(图

6.18)。最后,调整幅频特性达到希望的相位裕度。

采样理论指出,为了闭环的稳定,f c 0必须小于开关频率的一半。但必须远远小于开关频率,否则有较大幅值的开关频率纹波。一般经验取f c 0为开关频率的1/4~1/5。

参考图6.33中除误差放大器以外的环路增益G t 是LC 滤波器增益G f 、调节器增益G m 和检测网络增益G s 之和。假定滤波电容有ESR ,在f esr 由斜率-40dB/dec 转折为-20dB/dec 。假定f c 0=1/5f s ,f s -开关频率。要使f c 0增益为0dB ,误差放大器的增益应当等于G t 在此频率读取增益衰减量。

在大多数情况下,滤波电容具有ESR ,且f esr 低于f c 0。因此在f c 0 的G t =G f +G m +G s 的曲线总是斜

率为-20dB/dec 。要使得在f c 0的总开环增益为零,误差放大器在f c 0的增益与G t 值相等符号相反。同时

如果误差放大器幅频特性在f c 0为水平线,则合成

的总开环幅频特性G t 在f c 0以斜率-20dB/dec 穿越。这就满足了稳定电路的第二个判据。 运算放大器的反相比例运算(图6.34)就可以获得水平的增益曲线,调整G ea =-R 2/R 1的大小获得所需的增益。 环路增益是误差放大器的增益和G t 之和。如果运放保持常数增益一直到直流,总的开环增益在100Hz 就比较小,不能有效抑制交流电源纹波。为了在输出端将交流纹波降到很低水平,开环增益在低频时尽可能高,因此在f c0的左边开环增益应当迅速增加。为此,在误差放大器反馈电阻电路R 2串联一个电容C 1(图6.34b )。低频增益如图6.36所示。在高频范围,C 1的大容抗小于R 2,增益是水平线,而在低频范围,C 2容抗大于R 2,增益为X c /R 2。增益以+20dB/dec 向低频增加,并在100Hz 处产生较高的增益。向高频方向,斜率-20dB/dec,并在f z =(2

πR 2C 1)-1处转向水平。

在f c 0的右端的高频端(图6.33),如果误差放大器保持常数,总开环增益在高频增益相当高。但高频高增益就有可能接收高频尖峰噪声,并以较大的幅值传递到输出端。所以高频时应当降低增益。

这很容易做到,只要在误差放大器的反馈支路(R 2串联C 1)上并联一个C 2。在f c 0,X c 1已经比R 2小,电路特性与C 1无关。在高频C 1的容抗比R 2小,R 2不影响电路特性,电路增益由X c 2/R 1决定。在f c0以上,幅频特性是水平的,直到f p =(2πR 2C 2)-1,在这个频率转折,以后以斜率-20dB/dec 衰减(如图6.33)。高频增益低避免高频噪声进入到输出端。

如何选择转折频率f z 和f p ?一般这样选取f c 0/f z =f p / f c 0。f z 与f p 之间分开越大,在f c 0有较大的相位裕度。一般希望较大的相位裕度,但如果f z 选择得太低,在100Hz 低频增益比选择较高频增益低(图6.35),这样对100Hz 信号衰减很差。如果在f p 选择得太高,高频增益比选择较低频率高,这样高频噪声尖峰可能很高幅值通过。f z 与f p 之间分开距离在增加相位裕度和减少距离之间折中,以求得100Hz 衰减和低的高频噪声尖峰输出。折中和更加精确地分析,用传递函数、极点和零点概念很容易做到。 6.4.4 误差放大器的传递函数,极点和零点

如果一个反相运算放大器的输入Z 1和反馈Z 2都用复阻抗,电

路如图6.36所示。其增益为-Z 2/Z 1。如果Z 1是纯电阻R 1,而Z 2

也是纯电阻R 2,如图6.34(a),则增益是-R 2/R 1,并与频率无关。

负号说明U o 与U in 之间的相位移是180°,因为输入是反相端。

如果阻抗Z 1,Z 2以复变量s=j (2πf )=j ω表示,电容C 1的阻抗

为1/sC 1,而R 1与C 1串联为R 1+1/s C 1。R 1和C 1串联再一起与电容

C 2并联的阻抗为 211211/1/1)/1)(/1(sC sC R sC sC R Z +++= (6-58) 误差放大器的增益或传递函数写成阻抗Z 1,Z 2,用复变量s

表示,即G (s )=Z 2(s)/Z 1(s)。通过代数处理,将G (s)分子和分母简

化成s 的函数:G (s)=N (s)/D (s)。表示为多项式相乘:

)

1)(1)(1()1)(1)(1()()()(3210321sp sp sp sp sz sz sz s D s N s G ++++++== (6-59) 这些z 和p 值是RC 乘积,并代表频率。令这些项为零,可以求得这些频率。即

- - - -

U (a) Uo

图6.34 误差放大器幅频特性整形

021)2(111111=+=+=+C fR j fz j s sz ππ

1

1121C R f π= (6-60) 相应于z 值的频率叫做零点频率,而相应于p 值的频率叫做极点频率。在分母中总有一项没有1,如上式中的sp 0。这表示一个重要的极点频率f p 0=(2πR 0C 0)-1。称为原点极点。

由原点极点和极点以及零点频率,可以画出误差放大器的幅频特性。

6.4.5 有零点和极点频率增益斜率变化规律

零点和极点代表了误差放大器的频率变化点。

零点表示增益斜率变化到+20dB/dec 。在图6.37(a)中,如果在一个增益为零点频率点出现零点时,将由此斜率转向+20dB/dec 。如果原先增益斜率为-20dB (图6.37(b)),增益斜率将转向为0。如果在相同的频率有两个零点(两个RC 具有相同的乘积),原先斜率为-1-20dB/dec 时,增益斜率第一个转向0,第二个零将转向+20dB/dec (图6.37(c))。

一个极点表示增益按斜率-20dB/dec 变化。如果原先增益斜率为水平线(斜率为零)处出现一个极点,增益斜率转向-20dB/dec (图6.37(d));如果原先+20dB/dec 斜率的相同频率有两个极点,第一个极点转为0,而第二个极点在相同频率转为-20dB/dec (图6.37(e))。

原点极点和任何极点一样,增益斜率为-20dB/dec 。它表示一个增益为1即0dB 的频率。画总误差放大器增益曲线从原点极点开始。从0dB 原点极点频率f p 0=(2πR 0C 0)-1画起,反向画一条直线,斜率为-20dB/dec(图6.38)。如果在这个直线某点,在高频方向-20dB/dec 斜率,传递函数在f z =(2πR 1C 1)-1点为零(零点),在f z 转向增益斜率为水平。将水平增益无限伸展,但在某个较高频率f p =(2πR 2C 2)-1传递函数有一个极点,在f p 将由水平转向斜率-20dB/dec (图6.38)。传递函数水平部分的增益是-R 2/R 1。

U o

10 102 103 104 105 106 107 108 f/Hz

图6.36 一般误差放大器

图6.35 f z 和f p 定位

(b)

斜率+-20dB/dec

(d) (e)

图6.37 典型幅频特性

在f c 0它等于并相反于G t (图6.33)的衰减量。

在原点有一个单极点,一个单零点和另一个单极点的误差放大器增益曲线具有图6.38希望的形状,用图6.34(b)来实现。余下来的事情就是选择零点和极点频率的位置,以产生希望的相位裕度。

6.4.6 从电路图推导单极点和单零点误差放大器的传递函数

上面已经指出如果误差放大器具有单极点、单零点和一个原点极点,它的幅频特性如图6.38所示。现在证明一个误差放大器的传递函数如何推导,以及图 6.34(b)电路确实具有一个单极点、一个单零点和一个原点极点。图6.34(b)电路的增益为

)

11()1)(1(212121212C j C j R R C j C j R Z Z dU dU G i o ωωωω+++-=-== (6-61) 引入复变量s=j ω,于是 )11()1)(1(2121212sC sC R R sC sC R G +++-= (6-62) 经过代数处理 ))

/(1)((12121221112C C C C sR C C sR C sR G ++++-= 同时因为一般C 2<

(图6.34(b))在f p 0=(2πR 0C 0)-1具有一个原点极点。在此频率以-20dB/dec 斜率向低频方向画一直线。

由式(6-63)在频率f z =(2πR 2C 1)-1电路有一个零点。在f z 由斜线转成水平。再由式(6-63)电路在f p =(2πR 2C 2)-1有一个极点,在此频率f p 再由水平转向斜率-20dB/dec 。

Ⅱ型误差放大器的传递函数可由它的极点和零点频率画出来,并将它们定位(选择R 1,R 2,C 1,C 2)以获得希望的相位裕度。

6.4.7 从Ⅱ型误差放大器的零点和极点的位置计算相移

采用Venable 图,选取f c 0 /f z =k = f p / f c 0。像RC 微分电路(图6.28(a))一个零点,引起相位超前。一个极点,像积分电路(图6.27(a))引起相位滞后。由于在f z 的零点在频率f 相位超前是

z

ld f f 1tan -=? 但对在f c 0超前的相位感兴趣,大小为

k M 1tan -=? (6-64)

在f =f c 0因极点f p 引起的相位滞后为 p

L f f 1tan -=? 因极点f p 在f =f c 0引起的相位滞后为 k L 1tan 1

-=? (6-65) 在 f =f c 0由于极点在f p 滞后和零点在f z 超前的总相位是式(6-64),(6-65)两者之和。

误差放大器是反相运算,在低频时输出与输入相差180°。因为这个相移是固定的,如果从参考电压来研究,相位差是零。以下之只考虑附加相移,不考虑固定相移。在低频原极点相移90°。从图6.34(b)

p000 图6.38 直接由传递函数画图6-37的误差放大器的增益曲线

可见,低频时误差放大器是一个电阻输入、电容反馈的积分器,这是因为低频时,电容C 1阻抗远远大于电阻R 2,反馈回路变为C 1与C 2并联。因为原点极点相移90°,加上零点超前和极点滞后总的相位滞后为

k k t 1tan tan 9011--+-= ? (6-66) 应当注意到当k 很大(零点和极点分开很大)时,净相位仍然滞后,零点最大超前90°,极点滞后为零。计算结果如表6.1所示。 6.4.8 经过LC 滤波器的相移-输出电容有ESR 总环路相移包括误差放大器和输出滤波电容相移。图 6.7(b)中R o =20Z o 且输出滤波电容没有ESR 时,通过滤波器在1.2f c 0处已经是

175°。如果输出滤波电容有ESR ,如图6.32(b)所示,相位滞后大大改

善。图中在f=f esr =(2πC o ESR )-1时,幅频特性由斜率-40dB/dec 转为-20dB/dec 。在f>f esr 时,C o 的容抗小于ESR ,电路的幅频特性相似于LR 电路,而不是LC 电路。而LR 电路最大相移位90°,不是LC 电路最大可能的180°。这样ESR 零点产生一个相位提升,由于f esr 在任一个频率f 的相位滞后为

esr L f f

1tan 180--= ?

因为对f c 0因f esr 零点的相位滞后感兴趣,此点相移

esr c Lc f f 01tan 180--= ? (6-67) 对于不同的f c 0/f esr 值,输出电容具有ESR (图6.33)的LC 滤波器的滞后相位(式(6-67))如表6.2所示。因此,设置误差放大器幅频特性的水平部分数值相等,但符号相反于G t 在f c 0的损耗。将f c 0定位在希望的位置。

因为在大多数情况下,f c 0位于总相频特性G t 以斜率-20dB/dec 穿越。由表6.1和6.2选取适当地k (零点和

极点的位置)值,产生所希望的相位裕度。

6.4.9 设计举例-稳定一个带Ⅱ型误差放大器的正激变换器反馈环路

通过设计的例子说明所有先前各节讨论的很多资料的相互关系。稳定闭环的正激变换器参数如下: U o = 5V; I o =10A;

I o min =1A;

f s =100kHz -开关频率;

输出最小纹波U p = 50mV 。

假定输出滤波电容具有ESR ,同时f c 0位于LC 滤波的斜率-20dB/dec 处。这可以使用幅频特性如图6.34的Ⅱ型误差放大器。电路如图6.39所示。

首先计算LC 滤波器参数。根据正激变换器原理得到

()m i n

21o o I D T U L -= 如果D =D max =0.4,I o min =I o /10

()o o o o o o

I T U I T U I D T U L 33.021m i n m i n ==-=65

101510

1053--?=??=(H) 因为输出纹波主要是输出电容的R esr (ESR )和电感的脉动电流引起的,电感的脉动电流为ΔI = 2I o min 。U p =R esr ×ΔI ,根据经验有R esr C o =65×10-6,所以

F U I C p o o μ2600106505.021065266min =??=??=-- 输出滤波器的转折频率为

表6.1不同k 值Ⅱ型误差放大器

80610

26001015212166=???==--ππo c LC f Hz 由前面分析可知,ESR 零点频率使得幅频特性由斜率-40dB/dec 突然转到-20dB/dec,此点频率为 2500106521216

=??==-ππesr o esr R C f Hz 在调制器中G m =0.5(U sp -1)/3,当占空度D =0.5时,U o =5V,U sp =11V,因为U o =(U sp -1)T on /T ,于是,G m =0.5(11-1)/3=1.67,即+4.5dB.

对于普通SG1524型PWM 芯片,误差放大器的参考输入为2.5V ,当U o =5V 时,R 1=R 2,采样网路增益G s -6dB,所以G m +G s =4.5-6=-1.5dB 。 幅频特性G t 是各单元幅频特性相加G L + G m + G s 如图6.40中曲线ABCD 所示。A 到转折频率806Hz (B )为G m +G s =-1.5dB 。在B ,曲线转折为斜率-40dB/dec,并一直继续到ESR 的2500Hz 零点(C )。在C 转折为-20dB/dec 斜率。 现在选择穿越频率为开关频率达1/5,即20kHz 。从幅频特性G t 上,20kHz 处是-40dB (数值为1/100)。因此,为保证环路增益在此频率为零,对应20kHz 穿越频率误差放大器的增益应为+40dB 。误差放大器增益加上曲线ABCD 的总增益必须以斜率-20dB/dec 穿越,误差放大器的幅频特性如图6.40所示曲线EFGH.曲线上的F 到G 斜率为零,因为在20kHz 处曲线ABCD 斜率已经

是-20dB/dec.

用Ⅱ型误差放大器就可以获得相频特性在F 到G 水平增益。Ⅱ型误差放大器水平部分增益是R 2/R 1。如果R 1任意取1k Ω,R 2则为100k Ω.

在f z 有一个零点来增加低频增益,以衰减电网纹波;极点位于G 点,用来降低高频增益,以减少尖峰噪声传到输出。很好分配零点和极点位置,获得希望的相位裕度。

假定相位裕度为45°.环路在20kHz 的总相移位180-45=135°。但LC 滤波器产生滞后相移如式(6-66)。由此式得到对于f c0=20kHz 和f esa =2.5kHz 相位滞后是97°(表6.2)。于是,误差放大器仅允许135-97=38°.表6.1中若误差放大器滞后38°,k 稍大于3即可。

为了保证足够的裕度,假定k =4,产生相移为28°,加上LC 滤波器的97°滞后相移,总的相移滞后125°,因此相位裕度为180-125=55°,即在f c0有55°裕度。

k =4时,零点频率f z =20/4=5kHz ,式(6-59)中f z =(2πR 2C 1)-1.R 2=100k Ω,C 1=(2π×105×5×103)-1=318×10-12F =318pF 。极点在f p =20×4=80kHz 。由式(6-59)得到f p = (2π×R 2C 2)-1.R 2=100k Ω,则C 2=(2π×

105×8×104)-1=20×10-12=20pF 。设计完成的幅频特性如图6.40所示。曲线是总环路幅频特性。它是

曲线ABCD 和EFGH 之和。

T

图 6.39 正激变换器反馈环路设计举例

I E +60

J

+40 F G +20 K

L H

0 M A B N

-20

C

-40 O

-60

102 103 104 105 D f /Hz

图6.40 幅频特性-Ⅱ型误差放大器

还应当注意到取样电阻是R 1的一部分,实际R 1’= R 1- R s1// R s2

6.4.10 采用的Ⅲ型误差放大器和传递函数

当输出滤波电容具有ESR 时,输出纹波为R esr ΔI ,其中

R esr =ESR ,而ΔI 是两倍的最小直流电流。大多数铝电解

电容具有ESR 。同时大多数电解电容有ESR ×C =65×10

-6。因此减少纹波,减少ESR ,就是增加电解电容的电容量,

当然增加了电容的体积,可能增加得太大。

近年来,有些厂能生产出基本上没有ESR 的电解电容,

以适合要求绝对最小纹波场合。如采用这样零ESR 的电容,

大大影响误差放大器反馈环路的设计。在输出电容有ESR

时,通常f c 0在输出滤波的斜率-20dB/dec 上。这需要幅频特

性在f c 0处水平的Ⅱ型误差放大器(图6.33)。

如果电容ESR=0,LC 的幅频特性在转折频率f c =(2πLC )-1 以后,幅频特性以斜率-40dB/dec 继续下降(图

6.41(a))。这样可以将误差放大器幅频特性设计成在希望的

f c 0与LC 的损耗数值相等,符号相反。而环路增益以斜率

-20dB/dec 穿越f c 0,必须将误差放大器的幅频特性在f c 0中

心区设计成+20dB/dec 斜率(图6.41(b)中曲线EFGHI)。

误差放大器的幅频特性不允许在低频方向下降。如果下降,

不能保证对电网低频纹波的抑制能力。在某频率f z (图

6.41(a)),幅频特性必须转向在低频方向形成+20dB/dec 斜

率。在6.4.5节已经说明,误差放大器的传递函数中相同频率f z 提供两个零点得到由-20dB/dec 转向-20dB/dec 。在f z 以下,增益向高频方向以-20dB/dec 下降。因为由假定的原点极点提供。在f z 第一个零点将增益斜率转为水平。第二个零点转向+20dB/dec 。在远大于f c 0以上的频率不允许增益继续以+20dB/dec 上升。如果这样,增益在高频时很高,并将高频噪声传递到输出端。正如4.5节讨论的,在H 点的频率f p 提供两个极点,第一个极点转向水平,第二个转向-20dB/dec 。具有图6.41(a)幅频特性的的误差放大器叫做Ⅲ型误差放大器(Venable 命名的)。

因为对于Ⅱ型误差放大器,两个零点f z 和两个极点f p 的位置决定了f c 0的相位滞后。在f z 和f p 之间的分开越宽,相位裕度就越大。同时对于Ⅱ型误差放大器,f z 越移向低频,对100Hz 纹波衰减越差。f p 越移向高频,抑制高频噪声也越差。在通过到输出端高频分量就越大。

系数k 说明f z 和f p 之间的相对位置。这里设定k =f c 0/f z =f p /f c 0。在下一节,将计算由于f z 点双零点在f c 0的相位提升和由于f p 的双极点在f c0的相位滞后。

6.4.11 由于传递函数零点和极点Ⅲ型误差放大器的相位滞后

在6.4.7节指出由于频率f z 零点在f c 0的相位提升为k f f z c zb 101tan )/(tan --==?(式(6-64))。如果在频率f z 有两个零点,提升的相位相加。因此由于两个相同频率f z 的零点在f c0的提升为k zb 12tan 2-=?。

相似的,因频率f p 的极点在f co 的相位滞后为)/1(tan 1k lp -=?(式(6-65))。由于在频率f p 的两个极点的相位滞后也是相加。在f c0因频率f p 的两个极点的相位滞后为)/1(tan 212k lp -=?。相位提升和相位滞后加上90°滞后,此90°是固有原点极点90°。因此Ⅲ型误差放大器总相位滞后为

k

k tl 1tan 2tan 29011--+-= ? (6-68) 通过Ⅲ型误差放大器的总的相位滞后根据不同的k 值按式(6-68)计算,如表6.3所示。 比较表6.3和表6.1可以看到,带有两个零点和两个极点的Ⅲ型误差放大器远小于Ⅱ型误差放大器的相位滞后。Ⅱ型仅有一个极点和一个零点。然而Ⅲ型误差放大器用于滤波电容无ESR 的 LC 滤波器,以减少相位滞后低于180°。因此低相位滞后的Ⅲ型误差放大器上必

图6.41 输出电容无ESR 和需要误差放大器校正幅频特性

开关电源EMI滤波器典型电路

开关电源EMI滤波器典型电路 开关电源EMI滤波器典型电路 开关电源为减小体积、降低成本,单片开关电源一般采用简易式单级EMI滤波器,典型电路图1所示。图(a)与图(b)中的电容器C能滤除串模干扰,区别仅是图(a)将C接在输入端,图(b)则接到输出端。图(c)、(d)所示电路较复杂,抑制干扰的效果更佳。图(c)中的L、C1和C2用来滤除共模干扰,C3和C4滤除串模干扰。R为泄放电阻,可将C3上积累的电荷泄放掉,避免因电荷积累而影响滤波特性;断电后还能使电源的进线端L、N不带电,保证使用的安全性。图(d)则是把共模干扰滤波电容C3和C4接在输出端。 EMI滤波器能有效抑制单片开关电源的电磁干扰。图2中曲线a为加EMI滤波器时开关电源上0.15MHz~30MHz传导噪声的波形(即电磁干扰峰值包络线)。曲线b是插入如图1(d)所示EMI滤波器后的波形,能将电磁干扰衰减50dBμV~70dBμV。显然,这种EMI滤波器的效果更佳。

电磁干扰滤波器电路 电磁干扰滤波器的基本电路如图1所示。该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地 。电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。L对串模干扰不起作用,但当出现共模干扰时,由于两 个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流 圈。它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。L的 电感量与EMI滤波器的额定电流I有关,参见表1。需要指出,当额定电流较大时,共模扼流圈的线径也要相应增大,以便能 承受较大的电流。此外,适当增加电感量,可改善低频衰减特性。C1和C2采用薄膜电容器,容量范围大致是0.01μF~0.47μ F,主要用来滤除串模干扰。C3和C4跨接在输出端,并将电容器的中点接地,能有效地抑制共模干扰。C3和C4亦可并联在 输入端,仍选用陶瓷电容,容量范围是2200pF~0.1μF。为减小漏电流,电容量不得超过0.1μF,并且电容器中点应与大地接

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

反激式开关电源变压器的设计方法

反激式开关电源变压器的设计方法 1引言 在开关电源各类拓扑结构中,反激式开关电源以其小体积、低成本的优势,广泛应用在高电压、小功率的场合。反激式开关电源设计的关键在于其变压器的设计。由于反激变压器可以工作在断续电流(DCM )和连续电流(CCM )两种模式,因此增加了设计的复杂性。本文考虑到了两种工作模式下的差异,详细介绍了反激变压器的设计方法和步骤。 2基本原理 R 1 V o 图1 反激变换器原理图 反激变压器实际上是一个耦合电感,首先要存储能量,然后再将磁能转化为电能传输出去[1]。如图1所示,当开关管r T 导通时,输入电压i V 加在变压器初级线圈上。由于初级与次级同名端相反,次级二极管1D 截止,能量储存在初级线圈中,初级电流线性上升,变压器作为电感运行。当r T 关断时,励磁电感的电流使初级和次级绕组电压反向,1D 导通,储存在线圈中的能量传递给负载。按照电感线圈中电流的特点,可分为断续电流模式(DCM )和连续电流模式(CCM )。电流波形如图2所示。

初级 次级 初级 次级 I p2I p1I s2 I s1 I p2 I p1 I s2 I s1 DCM CCM 图2 DCM 和CCM 电流波形 DCM 为完全能量转换,在开关管开通时,初级电流从零开始逐渐增加,开关管关断期间,次级电流逐渐下降到零。 CCM 为不完全能量转换,开关管开通时,初级电流有前沿阶梯,开关管关断期间,次级电流为阶梯上叠加的衰减三角波。 3设计步骤 (1)各项参数的确定 反激式开关电源变压器的设计中涉及到很多参数,因此在计算之前必须要明确已知量和未知量。 已知参数一般由电源的设计要求和特点来确定,包括:直流输入电压i V (i min i i max V V V ≤≤),输出电压o V ,输出功率o P ,效率o i P = P η,工作频率1 f=T 。 未知量即所要求的参数包括:磁芯型号,初级线圈匝数p N ,次级线圈匝数s N ,初级导线直径p d ,次级导线直径s d ,气隙长度g l 。 另外,为了能够对未知参数进行求解,我们还必须要指定开关管的耐压值或开关的最大占空比。本文中,以规定满载和最小输入电压条件下最大占空比为 max D 来进行后续的计算。 为简化计算公式,本文中忽略开关管及二极管导通压降。

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

开关电源课程设计报告

现代电源技术课程实践报告 院系:物理与电气工程学院 班级:电气自动化一班 姓名: 李向伟 学号: 111101007 指导老师:苗风东

一、设计要求 (1)输入电压:AC220±10%V (2)输出电压: 12V (3)输出功率:12W (4)开关频率: 80kHz 二、反激稳压电源的工作原理

图2-1 反激稳压电源的电路图 三、 反激电路主电路设计 (1)(1)Np Vdc Ton Vo Tr Nsm -=+ (3-1) 1. 反激变压器主电路工作原理 反激式变换器以其电路结构简单,成本低廉而深受广大开发工程师的喜爱,它特别适合小功率电源以及各种电源适配器.但是反激式变换器的设计难点是变压器的设计,因为输入电压范围宽,特别是在低输入电压,满负载条件下变压器会工作在连续电流模式(CCM),而在高输入电压,轻负载条件下变压器又会工作在不连续电流模式(DCM);另外关于CCM 模式反激变压器设计的论述文章极少,在大多数开关电源技术书籍的论述中, 反激变压器的设计均按完全能量传递方式(DCM

模式)或临界模式来计算,但这样的设计并未真实反映反激变压器的实际工作情况,变压器的工作状态可能不是最佳.因此结合本人的实际调试经验和心得,讲述一下不完全能量传递方式(CCM) 反激变压器的设计. 1)工作过程: S 开通后,VD 处于断态,W1绕组的电流线性增长,电感储能增加; S 关断后,W1绕组的电流被切断,变压器中的磁场能量通过W2绕组和VD 向输出端释放。 反激电路的工作模式: 反激电路的理想化波形 S u S i S i V D t o t o ff t t t t U i O O O O 反激电路原理图

开关电源设计步骤(精)

开关电源设计步骤 步骤1 确定开关电源的基本参数 ① 交流输入电压最小值u min ② 交流输入电压最大值u max ③ 电网频率F l 开关频率f ④ 输出电压V O (V ):已知 ⑤ 输出功率P O (W ):已知 ⑥ 电源效率η:一般取80% ⑦ 损耗分配系数Z :Z 表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级, Z=1表示发生在次级。一般取Z=0.5 步骤2 根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3 根据u ,P O 值确定输入滤波电容C IN 、直流输入电压最小值V Imin ① 令整流桥的响应时间tc=3ms ② 根据u ,查处C IN 值 ③ 得到V imin 步骤4 根据u ,确定V OR 、V B ① 根据u 由表查出V OR 、V B 值 ② 由V B 值来选择TVS 步骤5 根据Vimin 和V OR 来确定最大占空比Dmax V OR D m a x = ×100% V OR +V I m i n -V D S (O N ) ① 设定MOSFET 的导通电压V DS(ON) ② 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6 确定C IN ,V Imin 值

步骤7 确定初级波形的参数 ① 输入电流的平均值I A VG P O I A VG= ηV Imin ② 初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③ 初级脉动电流I R ④ 初级有效值电流I RMS I RMS =I P √D max ×(K RP 2/3-K RP +1) 步骤8 根据电子数据表和所需I P 值 选择TOPSwitch 芯片 ① 考虑电流热效应会使25℃下定义的极限电流降低10%,所选芯片的极限电流最小值 I LIMIT(min)应满足:0.9 I LIMIT(min)≥I P 步骤9和10 计算芯片结温Tj ① 按下式结算: Tj =[I 2RMS ×R DS(ON)+1/2×C XT ×(V Imax +V OR ) 2 f ]×R θ+25℃ 式中C XT 是漏极电路结点的等效电容,即高频变压器初级绕组分布电容 ② 如果Tj >100℃,应选功率较大的芯片 步骤11 验算I P IP=0.9I LIMIT(min) ① 输入新的K RP 且从最小值开始迭代,直到K RP =1 ② 检查I P 值是否符合要求 ③ 迭代K RP =1或I P =0.9I LIMIT(min) 步骤12 计算高频变压器初级电感量L P ,L P 单位为μH 106P O Z(1-η)+ η L P = × I 2P ×K RP (1-K RP /2)f η 步骤13 选择变压器所使用的磁芯和骨架,查出以下参数: ① 磁芯有效横截面积Sj (cm 2),即有效磁通面积。 ② 磁芯的有效磁路长度l (cm ) ③ 磁芯在不留间隙时与匝数相关的等效电感AL(μH/匝2) ④ 骨架宽带b (mm ) 步骤14 为初级层数d 和次级绕组匝数Ns 赋值 ① 开始时取d =2(在整个迭代中使1≤d ≤2) ② 取Ns=1(100V/115V 交流输入),或Ns=0.6(220V 或宽范围交流输入) ③ Ns=0.6×(V O +V F1) ④ 在使用公式计算时可能需要迭代 步骤15 计算初级绕组匝数Np 和反馈绕组匝数N F ① 设定输出整流管正向压降V F1 ② 设定反馈电路整流管正向压降V F2 ③ 计算N P

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究

开关电源EMI滤波器原理与设计研究 魏应冬,吴燮华 (浙江大学电气工程学院,浙江杭州 310027) 摘要:在开关电源中,EMI滤波器对共模和差模传导噪声的抑制起着显著的作用。在研究滤波器原理的基础上,探讨了一种对共模、差模信号进行独立分析,分别建模的方法,最后基于此提出了一种EMI滤波器的设计程序。 关键词:开关电源;EMI滤波器;共模;差模 0 引言 高频开关电源由于其在体积、重量、功率密度、效率等方面的诸多优点,已经被广泛地应用于工业、国防、家电产品等各个领域。在开关电源应用于交流电网的场合,整流电路往往导致输入电流的断续,这除了大大降低输入功率因数外,还增加了大量高次谐波。同时,开关电源中功率开关管的高速开关动作(从几十kHz到数MHz),形成了EMI(electromagnetic interference)骚扰源。从已发表的开关电源论文可知,在开关电源中主要存在的干扰形式是传导干扰和近场辐射干扰,传导干扰还会注入电网,干扰接入电网的其他设备。 减少传导干扰的方法有很多,诸如合理铺设地线,采取星型铺地,避免环形地线,尽可能减少公共阻抗;设计合理的缓冲电路;减少电路杂散电容等。除此之外,可以利用EMI滤波器衰减电网与开关电源对彼此的噪声干扰。 EMI骚扰通常难以精确描述,滤波器的设计通常是通过反复迭代,计算制作以求逐步逼近设计要求。本文从EMI滤波原理入手,分别通过对其共模和差模噪声模型的分析,给出实际工作中设计滤波器的方法,并分步骤给出设计实例。 1 EMI滤波器设计原理 在开关电源中,主要的EMI骚扰源是功率半导体器件开关动作产生的d v/d t和d i/d t,因而电磁发射EME(Electromagnetic Emission)通常是宽带的噪声信号,其频率范围从开关工作频率到几MHz。所以,传导型电磁环境(EME)的测量,正如很多国际和国家标准所规定,频率范围在0.15~30MHz。设计EMI滤波器,就是要对开关频率及其高次谐波的噪声给予足够的衰减。基于上述标准,通常情况下只要考虑将频率高于150kHz的EME衰减至合理范围内即可。 在数字信号处理领域普遍认同的低通滤波器概念同样适用于电力电子装置中。简言之,EMI滤波器设计可以理解为要满足以下要求: 1)规定要求的阻带频率和阻带衰减;(满足某一特定频率f stop有需要H stop的衰减); 2)对电网频率低衰减(满足规定的通带频率和通带低衰减); 3)低成本。

开关电源设计的一般注意事项

开关电源设计的一般注意事项 1、布局: 【1】脉冲电压连线尽可能短; 【2】其中输入开关管到变压器连线,输出变压器到整流管连接线.脉冲电流环路尽可能小;【3】如输入滤波电容正到变压器到开关管返回电容负.输出部分变压器出端到整流管到输出电感到输出电容返回变压器; 【4】电路中X电容要尽量接近开关电源输入端; 【6】输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端;【7】共摸电感应与变压器保持一定距离,以避免磁偶合,如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大; 【8】输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标; 【9】两只小容量电容并联效果应优于用一只大容量电容. 发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口;【10】控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路; 【11】开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关; 【12】关于反激电源的占空比,原则上反激电源的最大占空比应该小于0.5,否则环路不容易补偿。 3、线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理的布线密度及有一个较经济的成本。

各种开关电源介绍-开关电源设计知识大全

开关电源介绍 一、基础知识: 新型变压器:磁性元件,新型磁材料和新型变压器的开发。如集成磁路,平面型磁心,超薄型变压器;以及新型变压器如压电式,无磁芯印制电路变压器等,使开关电源的尺寸重量都可减少许多。 硬开关的条件下MOSFET和IGBT开关损耗分析: 1).开通损耗方面:由于MOSFET的输出电容大,器件处于断态时,输入电压加在输出电容上,输出电容储存较大能量。在相继开通时这些能量全部消耗在器件内,开通损耗大。器件的开通损耗和输出电容成正比,和频率成正比和输入电压的平方成正比[12]。而IGBT的输出电容比MOSFET小得多,断态时电容上储存的能量较小,故开通损耗较小。 2).关断损耗方面:MOSFET属单极型器件,可以通过在施加栅极反偏电压的方法,迅速抽走输入电容上的电荷,加速关断,使MOSFET关断时电流会迅速下降至零,不存在拖尾电流,故关断损耗小[10];而IGBT由于拖尾电流不可避免,且持续时间长(可达数微秒),故关断损耗大。 综合以上分析,硬开关条件下MOSFET的开关损耗主要是由开通损耗引起,而IGBT则主要是由关断损耗引起。因此使用MOSFET作为主开关器件的电路,应该工作于ZVS条件下,这样在器件开通前,漏极和源极之间的电压先降为零,输出电容上储存能量很小,可以大大降低MOSFET的开通损耗;而使用IGBT作为主开关器件的电路,应该工作于ZCS条件下,这样在器件关断前,流过器件的电流先降为零,可以大大降低因拖尾电流造成的关断损耗。 软开关:当电流过零时,使器件关断;当电压过零时,使器件开通-实现开关损耗为零。 变流器:把输入的电源,进行电压、电流变换,达到规定的要求后输出给用电设备。 DC-DC:直流变压器。斩波器。 为什么反激开关电源只能适合小功率?200W以下。正激开关电源适合大功率开关电源? 高效率小体积(高功率密度)一直是DC-DC变换器用户的追求,也是设计的要点。提高功率密度最有效的方式就是提高开关频率,线圈和变压器对高速变化的磁力线感应灵敏度高、特别高效率,衰减特别小,传递效率特别高,而对低频变化的磁力线灵敏度低、衰减大,传递效率差,因此高频下的磁芯体积会大幅度减小,但频率的提高会使开关管的开关损耗加大,对变换器的效率造成影响。如何在高频下减小开关管的开关损耗,是DC-DC变换器是否能实现高效率高功率密度的关键,在这种背景下,高频软开关技术逐渐成为研究的热点,LLC谐振变换器是在串联谐振变换器的基础上增加了一个与负载并联的电感,是目前效率最高的开关电源。

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算

开关电源设计技巧连载十六:推挽式变压器开关电源储能滤波电感、电容参数的计算 1-8-1-3.推挽式变压器开关电源储能滤波电感、电容参数的计算 图1-33中,储能滤波电感和储能滤波电容参数的计算,与图1-2的串联式开关电源中储能滤波电感和储能滤波电容参数的计算方法很相似。 根据图1-33和图1-34,我们把整流输出电压uo和LC滤波电路的电压uc、电流iL画出如图1-35,以便用来计算推挽式变压器开关电源储能滤波电感、电容的参数。 图1-35-a)是整流输出电压uo的波形图。实线表示控制开关K1接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形;虚线表示控制开关K2接通时,推挽式变压器开关电源开关变压器次级线圈N3绕组输出电压经整流后的波形。Up表示整流输出峰值电压(正激输出电压),Up-表示整流输出最低电压(反激输出电压),Ua表示整流输出电压的平均值。 图1-35-b)是滤波电容器两端电压的波形图,或滤波电路输出电压的波形图。Uo表示输出电压,或滤波电容器两端电压的平均值;ΔUc表示电容充电电压增量,2ΔUc等于输出电压纹波。

1-8-1-3-1.推挽式变压器开关电源储能滤波电感参数的计算 在图1-33中,当控制开关K1接通时,输入电压Ui通过控制开关K1加到开关变压器线圈N1绕组的两端,在控制开关K1接通Ton期间,开关变压器线圈N3绕组输出一个幅度为Up(半波平均值)的正激电压uo,然后加到储能滤波电感L 和储能滤波电容C组成的滤波电路上,在此期间储能滤波电感L两端的电压eL 为: 式中:Ui为输入电压,Uo为直流输出电压,即:Uo为滤波电容两端电压uc的平均值。 在此顺便说明:由于电容两端的电压变化增量ΔU相对于输出电压Uo来说非常小,为了简单,我们这里把Uo当成常量来处理。 对(1-136)式进行积分得:

关于开关电源设计时的基本问题解答

关于开关电源设计时的基本问题解答 如何为开关电源电路选择合适的元器件和参数?很多未使用过开关电源设计的工程师会对它产生一定的畏惧心理,比如担心开关电源的干扰问题,PCB layout问题,元器件的参数和类型选择问题等。其实只要了解了,使用开关电源设计还是非常方便的。一个开关电源一般包含有开关电源控制器和输出两部分,有些控制器会将MOSFET集成到芯片中去,这样使用就更简单了,也简化了PCB设计,但是设计的灵活性就减少了一些。 开关控制器基本上就是一个闭环的反馈控制系统,所以一般都会有一个反馈输出电压的采样电路以及反馈环的控制电路。因此这部分的设计在于保证精确的采样电路,还有来控制反馈深度,因为如果反馈环响应过慢的话,对瞬态响应能力是会有很大影响。 输出部分设计包含了输出电容,输出电感以及MOSFET等等,这些器件的选择基本上就是要满足性能和成本的平衡,比如高的开关频率就可以使用小的电感值(意味着小的封装和便宜的成本),但是高的开关频率会增加干扰和对MOSFET的开关损耗,从而效率降低。低的开关频率带来的结果则是相反的。 对于输出电容的ESR和MOSFET的Rds_on参数选择也是非常关键的,小的ESR可以减小输出纹波,但是电容成本会增加,好的电容会贵嘛。开关电源控制器驱动能力也要注意,过多的MOSFET是不能被良好驱动的。 一般来说,开关电源控制器的供应商会提供具体的计算公式和使用方案供工程师借鉴的。如何调试开关电源电路?有一些经验可以共享给大家:(1)电源电路的输出通过低阻值大功率电阻接到板内,这样在不焊电阻的情况下可以先做到电源电路的先调试,避开后面电路的影响。(2)一般来说开关控制器是闭环系统,如果输出恶化的情况超过了闭环可以控制的范围,开关电源就会工作不正常,所以这种情况就需要认真检查反馈和采样电路。特别是如果采用了大ESR值的输出电容,会产生很多的电源纹波,这也会影响开关电源的工作的。

开关电源设计教程—理论基础篇

前工程师讲解:开关电源设计教程—理论基础篇 2015-02-06 09:24 来源:电源网作者:铃铛 很多工程师都能回想起自己初学电源时的情景,从最基础的理论基础开始,大量的查阅资料。经历了迷茫和困惑,用时间一点点的积累。小编将为大家整理一系列有关开关电源设计的教程,几乎包含了开关电源的所有拓扑。这些教程由前工程师编写,根据自身的自学经验为大家量身打造,希望能够帮助大家走出迷茫,尽快迈上正轨。 对于初学者来说,最难的不是学习资料,而是找到并且区别哪些资料是有价值的,并且哪些是有必要的。为了新手能够快速找到学习的路子,快速入门,真的迈进开关电源这个世界,现在将常用的拓扑一个一个写出来,用最简单,通俗的语言,用工程实践检验过的最可靠的理论。 先说说做开关电源需要具备的理论基础,做电源的工程师,分两类,一类是搞研究的,一类是搞工程的。 所谓搞研究的,就是研究各种新的技术、新材料、新工艺、新的拓扑结构等等。这些人需要很高的理论底子,当然必须是高学历,数学、电磁学、电子学、自动控制等等。 还有一种就是我们最常见的电源工程师,就是在公司开发部做项目的电子工程师。本文面对的是第二类的,也就是面对应用阶层的电源设计工程师。 必须加一句,像陶显芳老师赵修科老师这一类的大神级别的大师写的书,新手完全没必要使劲啃的,很费时费力。大可囫囵吞枣看一下,能懂多少是多少。然后在慢慢成长的过程中,回头再看,就会有很大的收获。 我们是做工程的,他们搞理论基础的。大师写的书,一下子完全看懂,不大可能。那些书很多方面写得很详细,有完整的理论推导,包括的也非常全面。但是我还是奉劝新手不要在数学公式里面纠结。 那些书完全可以作为技术手册来使用。做技术都有一个成长的过程,到了一定的程度,那些书就很有用处了。 应用类的工程师需要必须具备的理论基础有:模拟电子技术基础。先说模拟电子技术的学习深度问题。刚毕业,一般都不可能把模电学好,谁要是真的觉得自己刚毕业就很棒,那就有两种可能,要么自己自高自大,不知天高地厚。要么就是跟导师真正实际做过项目,并且勤奋学习理论的人。对于我们做电源的工程师来说,模电必须懂的东西列举一下: 电阻:电阻是各种电子电路里面最基础的原件,电阻在开关电源里面的应用主要有各种控制返回电路的分压网络,然后就是吸收回路里面的功率耗散。我们设计中必须关注的有电阻的封装,功耗,耐压,精度。 三极管:三极管在开关电源中有两类用途:第一,做开关管。开关电源的开关管现在主要有Mos管,三极管,IGBT。第二,信号处理。三极管在开关电源的控制电路里面,用的最多的也就是做个保护电路里面简单的小信号开关,然后就是做线性稳压电源(主电路里面的辅助电源)。 需要懂什么呢,刚开始,知道三极管怎么打开,怎么关闭就好。然后知道什么是线性工作状态,什么是开关状态。书上那些乱七八糟的计算,先放下来,平时基本用不上,用到了,再去查,很快就看懂了。千万不要一头钻进理论里面去,浪费时间,浪费精力,用到的时候,第一参考元器件规格书,第二请教别人,然后再回头看书。 二极管:正向导通,反向截止。知道什么是二极管结电容,二极管的关断时间,反向耐压,正向导通电压,正向持续电流,脉冲电流这些概念就OK了,基本够用了。工作中遇到问题,然后再回头看书。

一个基于DSP的DC_DC开关电源设计方法(精)

随着低成本、高性能D S P 的出现,尤其是A /D 和P W M 性能的大幅提高。D S P 控制的开关电源将越来越多地在电源工业中应用。基于DSP 的数字控制能实现更丰富的功能控制策略。可以在一个标准化的硬件平台上,通过更新软件满足不同的需求。数字控制器也更少的受到环境变化和噪声的影响。TI 公司推出的32位DSP TMS320F28系列,系统时钟达到100MHz,外设集成了高分辨率的PWM 模块,转换速率高达160ns 的12位A/D。相比TI 早期推出的24系列DSP,各方面都有了很大的提高。这些都新功能的出现降低了DSP 实用化的难度,然而对于多数电源工程师,他们大多数是模拟方面的专家,对于数字化设计则面临许多技术上的挑战。 1电路模型仿真 B U C K 变换器的电路模型如图所示。 其中各项电路参数如下: V in =3 ̄4V ,V o u t =1.2V ,最大输出电流I out =20A,等效负载电阻R L =V out /I out =0.06Ω 最大输出电压V omax =1.3V; PWM 开关工作频率f p w m =250k H z ,电压环采样频率fs=250khz L=1μH,C=1800μF,等效串联阻抗R c =0.004Ohm 电压环带宽取f cv =20kHz,相位域度为45。 电路的环路模型如图2所示。

其中Gp(s根据Buck电路的小信号模型如下: 在Matlab中分析G p (s的环路特性如下; V in =3.3;R c =0.004;C =1800e -006;L=1e-006;R l =0.061;V omax =1.3; G p =t f (V in *[Rc*C l 1],[L*C*(1+R c /R l R c *C+L/R l 1]; sisotool(Gp; 利用Matlab中的Sisotool工具设计一个校正函数Gc(s如下: 校正后的环路特性如Figure4: 利用Matlab中的c2d函数将Gc(s转为离 散形式: G cz =c 2d(Gc(s,Ts,'t'ustin得到 分解得到:U (n =1.598U (n -1-0.5985U(n-2+12.49E(n-22.81E(n-1+10.41E(n-2 结论:当这个仿真结果用于实际的产品测试中,在从0到15A 的动态变化时,只需要30μs 的响应时间,这个结果是比较满意的。 2软件实现代码 根据U(n给出在DSP TMS320LF2801中

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

:开关电源中常用EMI滤波器

摘要:开关电源中常用EMI滤波器抑制共模干扰和差模干扰。三端电容器在抑制开关电源高频干扰方面有良好性能。文中在开关电源一般性能EMI滤波器电路结构基础上,给出了使用三端电容器抑制高频噪声的滤波器结构。并使用PSpice软件对插入损耗进行仿真,给出了仿真结果。 1 开关电源特点及噪声产生原因 随着电子技术的高速发展,电子设备种类日益增多,而任何电子设备都离不开稳定可靠的电源,因此对电源的要求也越来越高。开关电源以其高效率、低发热量、稳定性好、体积小、重量轻、利于环境保护等优点,近年来取得快速发展,应用领域不断扩大。开关电源工作在高频开关状态,本身就会对供电设备产生干扰,危害其正常工作;而外部干扰同样会影响其正常工作。 开关电源干扰主要来源于工频电流的整流波形和开关操作波形。这些波形的电流泄漏到输入部位就成为传导噪声和辐射噪声,泄漏到输出部位就形成了波纹问题。考虑到电磁兼容性的有关要求,应采用EMI电源滤波器来抑制开关电源上的干扰。文中主要研究的是开关电源输入端的EMI滤波器。 2 EMI滤波器的结构 开关电源输入端采用的EMI滤波器是一种双向滤波器,是由电容和电感构成的低通滤波器,既能抑制从交流电源线上引入的外部电磁干扰,还可以避免本身设备向外部发出噪声干扰。开关电源的干扰分为差模干扰和共模干扰,在线路中的传导干扰信号,均可用差模和共模信号来表示。差模干扰是火线与零线之间产生的干扰,共模干扰是火线或零线与地线之间产生的干扰。抑制差模干扰信号和共模干扰信号普遍有效的方法就是在开关电源输入电路中加装电磁干扰滤波器。EMI滤波器的电路结构包括共模扼流圈(共模电感)L,差模电容Cx和共模电容Cy。共模扼流圈是在一个磁环(闭磁路)的上下两个半环上,分别绕制相同匝数但绕向相反的线圈。两个线圈的磁通方向一致,共模干扰出现时,总电感迅速增大产生很大的感抗,从而可以抑制共模干扰,而对差模干扰不起作用。为了更好地抑制共模噪声; 共模扼流圈应选用磁导率高,高频性能好的磁芯。共模扼流圈的电感值与额定电流有关。差模电容Cx通常选用金属膜电容,取值范围一般在0.1~1μF。Cy用于抑制较高频率的共模干扰信号,取值范围一般为2200~6800 pF。常选

关于开关电源设计

一种基于TOP227Y 的脉冲开关电源设计 摘要:在研究脉冲开关电源技术的基础上 ,提出一种基于 TOP227Y的脉冲开关电源设计。首先给出脉冲开关电源的 总体结构 ,分析其工作原理 ,对系统中高频变压器、主电路、控制电路进行设计。接着介绍 TOP227Y芯片的工作原理及各个 功能块的主要作用 ,最后设计系统总电路图。 关键词:PWM;TOP227Y;开关电源;高频变压器 Design of Pulse Switch Power Supply Based on TOP227Y Abstract:A pulse switch power supply based on TOP227Yis introduced in the paper ,after analsing its working principle , the whole structure of switch power supply is also designed ,the main design content consists of the high frequency trans former ,the main circuit and the control circuit ,then the working principle and the main action of each function module of TOP227Yare introduced in the paper ,finally the whole circuit of system is designed. Keywords:PWM;TOP227Y;switch power supply;high frequency transformer 脉冲电源是各种电源设备中比较特殊的一种,它的电压或电流波形为脉冲状。其实质上是一种通断的直流电源,其基本工作原理是首先经过慢储能 ,使初级能源具有足够的能量,然后向中间储能和脉冲成形系统电或流入能量 ,能量经化 等复杂过程之后 ,形成脉冲电源。随着开关电源的发展 ,电源的小型化、模块化、智能化越来越受到人们的关注。各种电源控制芯片如雨后春笋纷纷涌现 ,美国电源集成 PI 公司相继推出 TOP系列芯片 ,这些芯片集脉冲信号控制电路和功率开关器件 MOSEFT 于一体 ,具有高集成度、最简外围电路、最佳性能指标等特点,能组成高效率无工频变压器的隔离式开关电源。所以,本文设计基于 TOP227Y芯片控制的开关电源。 一、绪论 1.设计的目的及意义 开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型

相关文档
相关文档 最新文档