文档库 最新最全的文档下载
当前位置:文档库 › 状态反馈控制的主要特性及发展

状态反馈控制的主要特性及发展

状态反馈控制的主要特性及发展
状态反馈控制的主要特性及发展

武汉理工大学研究生课程论文

课程名称:现代控制工程

学生姓名:宋雄

课程教师:谭耀刚

学号:104972101293

日期:2010年1月

状态反馈控制的主要特性及发展

姓名:宋雄班级:机电1004班学号:104972101293 摘要:状态反馈是指系统的状态变量通过比例环节传送到输入端去的反馈方式。状态反馈是体现现代控制理论特色的一种控制方式。状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。本文首先介绍了状态反馈控制系统的主要特性——可控性和可观性,并且对这两种性能进行了举例说明;还介绍了引入状态反馈对系统的可控性和可观性的影响;另外也说明了如何利用状态反馈来任意配置极点。其次,本文主要介绍的是状态反馈控制的发展,有容错控制,带全维状态观测器的状态反馈系统,这两种都是对可控性和可观性的深入的发掘和拓展。

关键词:状态反馈可控性和可观性极点配置全维状态观测器容错控制

引言

随着科技的不断发展,在硬件方面的发展逐步走向饱和,或者很难得到进步和延伸。但是软件方面的发展却逐步地得到社会的重视。一套好的设备,唯有配备合适的软件才能将它的功效尽可能大的释放出来。对于机械方面而言,软件就是指其控制系统。系统的状态变量通过比例环节传送到输入端去的反馈方式。状态反馈是体现现代控制理论特色的一种控制方式。状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。状态反馈也不影响系统的能控性,但可能改变系统的能观测性。只要原系统是能控的,则一定可以通过适当选取反馈增益矩阵K用状态反馈来任意移置闭环系统的极点(见极点配置)。对于传统的输出反馈,如果不引入附加的补偿装置,这一点不是总能作到的。

随着状态观测器理论和状态估计方法的发展(特别是由于卡尔曼-布什滤波方法的出现),在很多情况下已不难获得状态变量的良好实时估计值,状态反馈方法已进入了实用阶段。

一、状态反馈

1、状态反馈的概念

状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入

相加,其和作为受控系统的输入。设SISO系统的状态空间表达式为:

x=Ax+bu,y=cx

状态反馈矩阵为K ,则状态反馈系统动态方程为:

?

x =Ax+b(v-Kx)=(A-bK)x+bv

y=cx

式中:

K 为1×n 矩阵,即K=[k 0 k 1 … k n-1],称为状态反馈增益矩阵。(A-bK )称为闭环系统矩阵。闭环特征多项式为|λI-(A-bK )|可见,阴郁状态反馈后,只改变了系统矩阵及其特征值,b 、c 阵均无变化。

2、状态反馈系统的可控性和可观性

2.1 状态反馈系统的可控性

定理:多变量线性系统(定常的或时变的)

∑0}C B,A,{,在任何形如u(t)=r(t)+K(t)x(t)的状态反馈下,状态反馈闭环系统∑+K }C B,BK,A {完全可控的充要条件是被控对象

∑0

}C B,A,{完全可控。 证明:充分性证明,即若∑0可控,则∑K 就可控。

令x0和x1是状态空间中的任意两个状态,据∑0可控的假定,必存在能将x0在有限时间内转移到x1的输入u 。现在对于∑K ,若选r=u+Kx ,则输入r 也能将x0转移到x1,因此断定∑K 也可控。充分性得证。

必要性证明,即若∑0不可控,则∑K 也不可控。

由结构图一可见,输入r 不直接控制x ,而必须通过产生控制信号u 来控制x ,因此,如u 不可控制x ,则r 也不能控制x ,换言之,若∑0不可控,则∑K 也不可控。必要性得证。

注意到上述证明过程没有哟感到单变量和定常的条件,所以,上述定理对于多变量时变系统也是合适的。

2.2状态反馈系统的可观性

虽然状态反馈保持了动态方程的可控性,但总可以选择某一状态反馈阵K ,破坏动态方程的可观性。用一个特例就可以证明。

例2.1 设对象的动态方程为

因为

所以,该系统是完全可控的,但不是完全客观的。若取状态反馈的控制规律为

则状态反馈系统的动态方程为

容易验证,闭环系统仍然是可控的,而且是可观的。

上面的例子说明,状态反馈不改变系统的可可能更行,但可能改变系统的可观性。一般地说,当用状态反库配置的系统极点与原系统相同时,即出现零、极点对消时,状态反馈就改变了系统的可观性。

定理:输出反馈闭环系统可控的充要条件是被控系统可控;输出反馈闭环系统可观的充要条件是被控系统可观。

3、极点配置问题

极点配置定理 线性(连续或离散)多变量系统{A,B,C}能任意配置极点的充分必要条件是,该系统状态完全可控。

证明 下面仅给出连续系统情况下的证明,离散系统的证明类似。

必要性证明:采用反证法,即设系统部完全可控,于是可以通过状态方程的线性变换进行可控性规范分解,即

对于任一状态反馈增益阵K ~=[K ~1 K ~

2],状态反馈系统的特征方程为

因此,只有当系统完全可控时,才有可能任意配置状态反馈系统的闭环极点。必要性得证。

充分性证明:下面只证明单输入单输出的情况。由前面的论述,若{A,b}是可控的,则存在非奇异线性变换x=Tx,将{A,b}化为第一可控标准型:

容易求得状态反馈闭环系统的特征多项式为

设闭环系统的期望极点为λ1,λ2,…,λn,则系统的期望特征多项式为

要使闭环系统的极点取期望值,只须令

比较上式两边系数得:

因此

从而得到对于状态x下的状态反馈增益阵为

上式表明,总存在状态反馈增益矩阵,使系统具有给定的期望特征多项式。充分性得证。

注意,用输出反馈不能保证能够任意配置系统的极点。

若系统{A,B,C}不是状态完全可控,则状态反馈系统的一部分闭环极点就是对象不可控部分的极点,这部分极点是不能被配置的。显然,如果不可控的极点全部是稳定极点,则可以采用状态反馈使可控部分的极点配置到期望值,从而使整个闭环系统稳定,因此,称这样的系统为可镇定的或可稳定的系统。

定理:线性乱序或离散系统{A,B,C}能镇定的充分必要条件是系统的不可控极点都是稳定极点。

二、带有全维状态观测器的状态反馈系统

1、状态观测器

状态观测器又称状态估计器、状态重构器。这里只讨论系统在无噪声干扰的条件下的状态观测器。当利用状态反馈配置系统极点时,需要用传感器测量状态变量以便实现反馈。但在许多情况下,通常只有被控对象的输入量和输出量可以用传感器测量,而多数状态变量不易测得或不可能测得,于是提出了利用输入量和输出量建立状态观测器而重构状态的问题。

实现状态重构的一种现实可行的方法是,设计一个观测器系统,这个系统的输入是原系统的输入和输出,它的输出就是原系统的一个状态渐进估计。如图二所示

图二状态重构示意图

全维状态观测器:重构状态向量的位数等于受控系统状态向量的维数。

原受控系统动态方程为:?

x=Ax+Bu, y=Cx

全维状态观测器的动态方程为:?

x?=A x?+Bu-H(Y?-Y)= A x?+Bu-HC(x?-x)

观测器存在的充分条件为线性定常系统是完全可观测的。观测器存在的充要条件为线性定常系统的不可观测部分是渐近稳定的。

2、状态观测器的设计

1)利用对偶原理

2)观测器的特征多项式等于期望的特征多项式

3)利用f (A )

定理 若受控系统

∑0}C B,A,{可观测,则其状态可用形如 ?x

?=A x ?+Bu-H(Y ?-Y)= A x ?+Bu-HC( x ?-x) 的全维状态观测器给出估值。矩阵H 按任意配置极点的需要来选择。要求观测器的响应素的稍快于受控系统的响应速度。

3、带有全维状态观测器的状态反馈系统

状态观测器的建立为那些状态变量不能直接量测的系统实现状态反馈创造了条件。然而这种依靠状态观测器所构成的状态反馈系统和直接惊醒状态反馈的系统毕竟是不同的。这里主要讨论在带有状态观测器的状态反馈系统中,其状态反馈增益矩阵和观测器的反馈矩阵怎么样设计。

定理: 若受控系统∑}C B,A,{可控可观测,用状态观测器估值形成状态反馈时,其系统的极点配置和观测器设计可分别独立进行,即状态反馈增益矩阵和观测器反馈矩阵H 的设计可分别独立进行,互不干扰。

三、状态反馈控制系统的容错控制

随着对控制系统可靠性和安全性要求的提高,容错控制系统的研究得到了广泛的重视这类控制系统可适应其环境的显著变化,在部件正常工作时,系统具有指定的性能7若实际反馈控制系统的一个或多个关键部件(如传感器或执行机构)失效,系统仍维持稳定,或进一步也

能实现故障系统的性能最优。实现控制系统具有容错能力的方法是引人控制能力的冗余。通常有两种方法:一种为主动容错控制方法,其特点是没有检测故障,控制系统自身具有容错能力。利用硬件冗余使控制器能容许一个或多个关键部件的失效,其代价是成本的提高。对多变量系统,则利用各子系统间的藕合关系,从而实现在某一传感器或执行机构失效情况下使整个系统仍维持稳定,即所谓的“整体性”研究。更进一步的研究是对大系统分散控制中的序贯分散鲁棒跟踪系统问题的求解。另一种方法是被动容错控制方法。它是基于故障检测、故障屏蔽和故障系统重组态技术而实现容错控制的。近年来,有关这方面的文章很多,特别是在故障检测和屏蔽的理论研究和应用方面有许多报道,采用“软件冗余”技术完成原由“硬件冗余”执行的故障检测任务的思想是容错控制中一个概念上的突破,但在故障系统重组态方面,目前主要采用的方法还是硬件多重冗余。

状态反馈控制系统包括全状态反馈和部分状态反馈,在工业过程控制中应用很广。在工业过程中,出于经济性考虑或由于工艺限制,系统不可能提供足够的硬件“冗余”,即不可能为测量一个工艺参数配置一个以上的传感器因此,在系统运行过程中,若某个传感器失效,若按传统方法设计的控制系统其性能将严重恶化。本文的目的就是针对状态反馈控制系统,提出一种能容忍传感器失效的控制策略对某传感器失效的故障,采用被动容错控制思想,在检测和屏蔽该失效传感器后,根据故障源,由其余完好状态反馈回路平均分担已失效状态反馈回路的控制作用由此设计的状态反馈容错控制系统对传感器失效故障具有容错性。

四、结束语

综上所述,状态反馈控制是一种很好的控制方法,能够满足绝大部分的控制需求,而且控制效果可以达到要求,并且随着知识的不断发展,状态反馈控制也会变得更加完善,满足更多科学工作者们的要求。

五.参考文献

[1] 施国标, 于蕾艳, 林逸. 线性转向系统的全状态反馈控制策略. 农业机械学报2008年2月.

[2] 李建华,马毅,潘东升. 状态反馈控制器对闭环极点的敏感性分析. 沈阳大学学报2002年12月.

[3] 马毅,王素霞. 状态反馈控制器鲁棒镇定界的估计. 辽宁大学学报2003年第3期.

[4] 葛建华, 孙优贤,周春晖. 状态反馈控制系统的容错控制策略. 自动化学报2001年3月.

[5] 王欢,高秀华,张小江,黄大巍,陈淑清. 状态反馈控制及观测器在多轿车辆转向中的应用. 重庆大学学报2010年10月.

[6] 刘玉兰,祁桂兰. 基于状态反馈极点配置随动系统的设计与实现. 制造业自动化2009年11月.

[7] 高遵海,陈锦云, 周康. 状态反馈极点配置问题的一种新算法. 自动化技术与应用2006年8月.

TAC5-4-1重构状态反馈控制系统

在第四章中了解到一个完全能控的系统可以用状态反馈控制规律将闭环极点配置在期望的任何位置上。如果反馈时得不到全部状态,第五章中指出可用观测器对它进行估计并将观测到的估计值用到控制规律中去。这就是所谓重构状态反馈控制系统。本节将讨论带有重构状态的反馈控制系统的设计问题以及它的一些特征。图1表示这种重构状态反馈控制系统。 图1x ?y x w +u )?(??x C y M u B x A x ??+= C K - u B x A x +=

设能控又能观的系统为: ?xx =AAxx +BBBB yy =CCxx (11)当状态不能直接测量时,可以用状态观测器将状态xx 观测出来,即: ?xx =AA +MMCC ?xx +BBBB ?MMCCxx (22) 为便于分析,将对象(11)式和观测器(22)式看成是一个2222维的合成系统:?xx ?xx =AA 00?MMCC AA +MMCC xx ?xx +BB BB BB yy =CC 00xx ?xx (3) 此时,反馈控制律为:BB =ww ?KK ?xx (44)

将(44)式代入(33)式,得:?xx ?xx =AA ?BBKK ?MMCC AA +MMCC ?BBKK xx ?xx +BB BB ww yy =CC 00xx ?xx (55)用误差?xx =xx ??xx 来表示这个系统的状态更为方便, 通过变换容易做到这一点。令xx ?xx =II 220022II 22?II 22xx ?xx ,又II 00II ?II ?11=II 00II ?II 它可以将(55)式变成?xx ?xx =AA ?BBKK BBKK 00AA +MMCC xx ?xx +BB 00ww yy =CC 00xx ?xx (66)

自动控制原理试题与答案解析

课程名称: 自动控制理论 (A/B 卷 闭卷) 一、填空题(每空 1 分,共15分) 1、反馈控制又称偏差控制,其控制作用是通过 给定值 与反馈量的差值进行的。 2、复合控制有两种基本形式:即按 输入 的前馈复合控制和按 扰动 的前馈复合控制。 3、两个传递函数分别为G 1(s)与G 2(s)的环节,以并联方式连接,其等效传递函数为()G s ,则G(s)为 G 1(s)+G 2(s)(用G 1(s)与G 2(s) 表示)。 4、典型二阶系统极点分布如图1所示, 则无阻尼自然频率=n ω , 阻尼比=ξ , 该系统的特征方程为 , 该系统的单位阶跃响应曲线为 。 5、若某系统的单位脉冲响应为0.20.5()105t t g t e e --=+, 则该系统的传递函数G(s)为 。 6、根轨迹起始于 极点 ,终止于 零点或无穷远 。 7、设某最小相位系统的相频特性为101()()90()tg tg T ?ωτωω--=--,则该系统的开环传递函数为 。 8、PI 控制器的输入-输出关系的时域表达式是 , 其相应的传递函数为 ,由于积分环节的引入,可以改善系统的 性能。 二、选择题(每题 2 分,共20分) 1、采用负反馈形式连接后,则 ( ) A 、一定能使闭环系统稳定; B 、系统动态性能一定会提高; C 、一定能使干扰引起的误差逐渐减小,最后完全消除; D 、需要调整系统的结构参数,才能改善系统性能。 2、下列哪种措施对提高系统的稳定性没有效果 ( )。 A 、增加开环极点; B 、在积分环节外加单位负反馈; C 、增加开环零点; D 、引入串联超前校正装置。 3、系统特征方程为 0632)(23=+++=s s s s D ,则系统 ( ) A 、稳定; B 、单位阶跃响应曲线为单调指数上升; C 、临界稳定; D 、右半平面闭环极点数2=Z 。

反馈控制

反馈控制 摘要:反馈控制是控制论中的灵魂,在我们的现实生活中,反馈控制的应用也是无处不在的。小到日常生活用品,大到人的思想、行为、我们赖以生存的环境都处在反馈控制体系中。关键词:反馈控制日常生活物极必反、盛极必衰自身与反馈 一、基本概念 反馈泛指发出的事物返回发出的起始点并产生影响,指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。反馈可分为负反馈和正反馈。前者使输出起到与输入相反的作用,使系统输出与系统目标的误差减小,系统趋于稳定;后者使输出起到与输入相似的作用,使系统偏差不断增大,使系统振荡,可以放大控制作用。对负反馈的研究是控制论的核心问题。 任何控制系统都是由施控和受控两个子系统所构成。由于干扰信息的作用,受控系统的输出状态往往会偏离目标,由此形成的偏差信息恰是反馈控制的依据。反馈控制原理描述为:施控系统把依据偏差信息调整后的输入信息转换为控制信息,控制信息作用于受控系统后产生的结果通过反馈通道被返送到原输入端,并对信息的再输入产生影响,从而减少或消除系统偏差,使受控系统的运行状态维持在一个给定(或容许)的偏差范围内,以此提高受控系统运行过程中的稳定性,实现受控系统的行为、活动、功能和结果的理想化。其中,施控系统施加控制作用,接收反馈信息;而受控系统接受控制作用,提供反馈信息。从施控系统到受控系统是传递信息的正向通道,反过来为反向通道,它们一起构成了闭环反馈控制系统。 在控制系统中我们的首要任务是保证系统的稳定性,这恰恰是反馈系统在起作用;在现实生活中,我们更是要求我们的社会能达到一种稳定和谐的局面,因此,“反馈”在我们的生活中起到的作用是我们不能忽视的。 二、反馈在日常生活中的应用 冰箱是现在家家户户都能使用到的电器之一,而我们所学到的反馈原理在这普通的生活用品中就能体现出来。我们使用冰箱制冷,由于外界温度较高,冰箱向外界释放热量,冰箱内温度会朝着我们制定的度数降低,而外壳温度会越来越高,一段时间后,当冰箱内的温 度达到所设置的度数后,冰箱会进行自动调节,让温度不再进一步地降低。这便是反馈调节。还有洗衣机,这也是我们现代人不可或缺的生活用品,我们在家里使用洗衣机时会设置一个注水量,启动机器后,水开始注入机桶,在未达到注水量前,机器会产生动力驱动水位上升,然而水位上升至设置量后,反馈调节便开始了,洗衣机停止注水工作。只要用一双发现在眼睛去看生活,我们所学习到的书本知识在现实生活中的应用无处不在。 三、自身与反馈 在反馈控制中,我们遇到的调节活动输出的反馈信息与原输入信息的关系常常分为两种:一种是反馈信息与原输出信息相同,另一种则是在二者之间存在一种相反的作用,而后者实际上是一种负反馈现象。在我们的生活中,常常会出现一些实际结果与我们预期的结果大相径庭的事,比如我们现在找工作。有的同学很优秀,成绩很好,还是学生干部,在学校的时候年年都能评优秀,在找工作的时候这些学生理所当然的很占优势,可是有的时候结果

状态反馈控制.

本科毕业论文(设计)题目状态反馈控制 学院计算机与信息科学学院专业自动化(控制方向)年级2009级 学号222009321042049 姓名王昌洪 指导老师何强 成绩

2013 年4 月18 日 状态反馈控制 王昌洪 西南大学计算机与信息科学学院,重庆400715 摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在 现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。 关键词:状态反馈;极点配置;Matlab仿真;时域指标 State Feedback Control Wang changhong Southwest university school of computer and information science, chongqing, 400715 Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design. Key words:State feedback;Pole assignment;Matlab simulation;Time domain index

反馈控制系统的传递函数解读

2-8 反馈控制系统的传递函数 一个反馈控制系统在工作过程中,一般会受到两类信号的作用,统称外作用。一类是有用信号或称输入信号、给定值、指令等,用)(t r 表示。通常)(t r 是加在控制系统的输入端,也就 是系统的输入端;另一类则是扰动,或称干扰)(t n ,而干扰)(t n ,可以出现在系统的任何位置, 但通常,最主要的干扰信号是作用在被控对象上的扰动, 例如电动机的负载扰动等。 一个闭环控制系统的典型结构图,如图2-48所示, 应用叠加原理可分别求出下面几种传递函数。 一、输入信号)(t r 作用下的闭环传递函数 令0)(=t n ,这时图2-48可简化成图2-49)(a 。输出)(s C 对输入)(s R 之间的传递函数,称输入作用下的闭环传递函数,简称闭环传递函数,用)(s Φ表示。 ) ()()(1)()()()()(2121s H s G s G s G s G s R s C s +== Φ 而输出的拉氏变换式为 )()()()(1)()()(2121s R s H s G s G s G s G s C += (2-61) 为了分析系统信号的变化规律,寻求偏差信号与输入之间的关系,将结构图简化为如图2-49)(b 。列写出输入)(s R 与输出)(s ε之间的传递函数,称为控制作用下偏差传递函数。用)() ()(s R s s εΦε=表示。 )()()(11)()()(21s H s G s G s R s s +== εΦε (2-62) 二、干扰)(t n 作用下的闭环传递函数 同样,令0)(=t r ,结构图2-48可简化为图2-50)(a 。 以)(s N 作为输入,)(s C 为在扰动作用下的输出,它们之间的传递函数,用)(s n Φ表示,称为扰动作用下的闭环传递函数,简称干扰传递函数。

状态反馈控制的特性及发展

状态反馈控制的主要特性及发展 摘要: 控制理论是关于控制系统建模、分析、综合设计的一般理论,是一门技术科学。控制理论的产生及发展与控制技术的发展密切相关,是人类在认识世界和改造世界的过程中逐步形成的,并随着社会的发展和科学的进步而不断发展,状态反馈控制是现代控制理论中一个十分重要的部分,其在实际工程领域中占有举足轻重的地位。 本论文分为三个部分,第一部分主要是介绍了现代控制理论的发展与组成要素以及特点,第二部分介绍了状态反馈控制的主要特性,如:可控性、可观性等。第三部分主要是介绍了状态反馈控制的发展历程,随着科学技术的发展,状态反馈控制理论将在人们认识事物运动的客观规律和改造世界中将得到进一步的发展和完善。 1.前言 1.1现代控制理论概述 对系统或对象施加作用或限制,使其达到或保持某种规定或要求的运动状态。施加作用或限制的本质就是对系统的调节,其依据是给定任务目标和系统变化。因此,控制就是为了实现任务目标给系统或对象的调节作用。这种调节作用是由系统或对象自身完成时,就是自动控制。控制的基本要素如下: (1)控制对象或系统。要了解对象的性质,需建立或辨识系统模型 (2)控制方法。确定适当的调节作用 (3)反馈。检验和协调控制作用 按照控制系统分析设计方法和要求的不同,控制理论存在经典控制理论和现代控制理论之分。一般来说,1960年代以前形成的控制理论属于经典控制理论,其后形成的是现代控制理论。现代控制理论主要包括线性系统理论、系统辨识与建模、最优滤波理论、最优控制、自适应控制五个分支。其中,线性系统理论主要包括系统的状态空间描述、能控性、能观测性和稳定性分析,状态反馈、状态观测器及补偿理论和设计方法等内容。线性系统理论是现代控制理论中理论最完善、技术上较成熟、应用也最广泛的部分,是现代控制理论的基础。 从20世纪50年代末开始,随着科学技术的发展和生产实际的进一步需要,出现了多输入/多输出控制系统、非线性控制系统和时变控制系统的分析与设计问题。与此同时,近代数学的形成和数字计算机的出现为现代控制理论的建立和发展准备了两个重要的条件。近代

反馈控制电路

反馈控制电路 一、自动增益控制(AGC) 1、AGC电路的作用与组成 (1) 作用 当输入信号变化时,保证输出信号幅度基本恒定。包括: ①能够产生一个随输入信号大小而变化的控制电压,即AGC电压(±UAGC); ②利用AGC电压去控制某些级的增益,实现AGC。 (2) 组成——具有AGC电路的接收机框图 2、AGC电压的产生 (1) 平均值式AGC电路 中频信号电压经检波后,除得到所需音频信号之外,还得到一个平

均直流分量。音频信号由RL2两端取出。平均直流分量(反映了输入信号的幅度)从C3两端取出,经低通后,作为AGC电压,加到中放管上去控制中放的增益。

(2) 延迟式AGC电路 V1、R7和C4组成AGC检波电路,运放A为直流放大器,UREF为延迟电平。当输入信号较小时,AGC不起作用。当输入信号较大时,AGC将起作用。可见,该AGC电路具有延迟功能

3、实现AGC的方法 (1) 改变发射极电流IE 正向AGC 反向AGC (2) 改变放大器负载 由于放大器的增益与负载密切相关,因此通过改变负载就可以控制放大器的增益 。 (3) 改变放大器的负反馈深度 通过控制负反馈的深度来控制放大器的增益。

6.2 自动频率控制(AFC) 1、AFC的工作原理 2、组成 3、工作原理 4、AFC的应用:调幅接收机中的AFC系统 具有AFC电路的调频发射机一、AFC——电路组成

作用:自动控制振荡器频率稳定 组成:鉴相器、低通滤波器和压控振荡器 标准频率fr;输出频率fo;误差电压uD(t) ;直流控制电压 uC(t)。 二、AFC——工作原理 压控振荡器的输出频率fo与标准频率fr在鉴频器中进行比较,当fo=fr时,鉴频器无输出,压控振荡器不受影响;当fo≠fr时,鉴频器即有误差电压输出,其大小正比于(fo-fr),经低通滤波器滤除交流成分后,输出的直流控制电压uc(t),加到压控振荡器上,迫使压控振荡器的振荡频率fo与fr接近,而后在新的振荡频率基础上,再经历上述同样的过程,使误差频率进一步减小,如此循环下去,最后fo和fr的误差减小到某一最小值△f时,自动微调过程停止,环路

自动控制原理复习资料(相当全)

总复习 第一章的概念 1、典型的反馈控制系统基本组成框图: 2、自动控制系统基本控制方式:(1)、反馈控制方式;(2)、开环控制方式;(3)、复合控制方式。 3、基本要求的提法:可以归结为稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性)。 第二章要求: 1、掌握运用拉氏变换解微分方程的方法; 2、牢固掌握传递函数的概念、定义和性质; 3、明确传递函数与微分方程之间的关系; 4、能熟练地进行结构图等效变换; 5、明确结构图与信号流图之间的关系; 6、熟练运用梅逊公式求系统的传递函数; 例1 某一个控制系统动态结构图如下,试分别求系统的传递函数: )()(,)()(1211s R s C s R s C ,) () (,)()(2122S R S C s R s C 。 串连补偿元件 放大元件执行元件被控对象 反馈补偿元件 测量元件 输出量 主反馈 局部反馈 输入量- -

4 32132112 43211111)() (,1)()()(G G G G G G G s R s C G G G G s G s R s C --= -= 例2 某一个控制系统动态结构图如下,试分别求系统的传递函数: ) () (,)()(,)()(,)()(s N S E s R s E s N s C s R s C 。 例3: 1()i t 2()i t 1() u t () c t () r t 1 R 2 R 1 C 2 C + _ + _ + _Ka 11C s 21C s 21 R 1R () R s () C s 1() U s 1() U s 1() U s 1() I s 1() I s 2() I s 2() I s 2() I s () C s (b) (t) i R (t) u r(t)11 1=-?-=(t)]dt i (t)[i C 1 (t)u 211 1(t) i R c(t) (t)u 22 1=-?=(t)dt i C 1c(t)22 (s)H(s)(s)G G 1(s) (s)G G R(s)C(s)2121+= (s)H(s) (s)G G 1(s)G -N(s)C(s) 212+=

反馈控制系统的特性

《现代控制系统》 [美] R . C . 多尔夫,R . H . 毕晓普著 第四章:反馈控制系统的特性 4.1 开环和闭环控制系统 既然我们已经能够设计出控制系统组成部分的数学模型,所以这节我们将研究控制系统的特性。在1.1节,控制系统被定义为组成系统的各部分的互联关系,该系统是能够实现预定响应的。因为理想系统响应是已知的,所以就会产生和偏差成比例的信号,这个偏差是理想响应和实际响应之间的差值。在闭环过程中,利用这个偏差信号来控制信号输出的系统就叫做反馈系统。这个闭环系统的操作过程如图4.1所示。为了改善控制系统,引入反馈是非常必要的。有趣的是,在自然环境中也存在这种反馈系统,例如生物和生理系统,在这些系统中反馈是与生俱来的。例如,心脏控制系统就是一个反馈控制系统。 为了解释引入反馈以后系统的特性和好处,我们将举一个单一回路的反馈例子。虽然很多控制系统都不是单一反馈的,但是单个回路反馈比较容易解释。研究单个回路反馈能够最好地说明反馈回路的所有优点,然后我们再把它延伸到多个回路反馈系统。 没有反馈的系统通常被称为直接系统或开环系统,如图4.2所示。 与之相反的是闭环系统,如图4.3所示的负反馈控制系统。 没有反馈的开环{直接}系统就是对应与输入直接产生一个输出。 闭环控制系统就是对输出信号进行测量,然后与理想值进行比较,产生一 个偏差信号,最后再把偏差信号送入调节器。

两种形式的控制系统都由相同的的方框图和信号流线图组成,但是,信号流线图对信号输出的结果起了主要作用。 一般情况下,H (s )等于1或者不是1的其他常数。这个常数包括单位转换,例如,弧度转化为电压。首先,我们先讨论H (s )=1时的单位反馈。那么这时Ea(s)=E(s),并且 Y(s)=G(s)E(s)=G(s)[R(s)-Y(s)] 解出Y(s),得到 ()()()1() G s Y s R s G s =+ (4.1) 偏差信号是 1()()1() E s R s G s =+ 因此,为了减小偏差,在S 的取值范围内,必须使[1+G (s )]的值远大于1。 现在讨论H (s )≠1的情况,这时闭环回路的输出是: Y(s)=G(s)Ea(s)=G(s)[R(s)-H(s)Y(s)] 因此: ()()()1() G s Y s R s GH s =+ (4.2) 实际的偏差信号是: 1()()1() Ea s R s GH s =+ (4.3) 显而易见,为了减少偏差,在S 的取值范围内,必须使[1+GH (s )]的值远大于1。通过信号Ea(s)可以测量信号E(s)的大小。在S 的取值范围内,随着H(s)的值不断减小,甚至H(s)≌1,这个测量越精确。

反馈控制理论

反馈控制理论B 项目作业 (第2周) 完成人: 完成时间:

1.安装Multisim软件,建立工作目录。借阅参考书或下载资料,列出资料目录;综述 Multisim是什么,能做什么。 解: 资料目录:NI_Circuit_Design_Suite_14_0_1_汉化破解版;NI_Circuit_Design_Suite_14_0_1.exe; Chinese-simplified;NI License Activator 1.2。 (1)Multisim是以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 (2)使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 2.设计电路仿真方案,利用5个电阻元件验证KVL。 解: 根据KVL关系得,串联的元件我们视它为一条支路在一条支路中电流处处相等,结点电电流之和为0,一个回路中各处电压之和为0.电路设计及其结果如图2所示 图2 五电阻构成电路 由图中结果可得:结点1处电流之和I1+I2+I3=0,得出结论:结点处电流之和为0。同样,在回路1中,

各支路电压U4+U5+U6=0,得出结论:回路中各处电压之和为0。KVL定律成立。 3.在Multisim中用三极管元件构建一个如图所示的分压偏置共射极放大电路, [1] 计算其直流工作点Q相关各参数和交流增益; 解: 通过对静态工作点得计算得出下图3-11的结果 图3-11 静态工作点的计算过程 计算结果及计算过程如图3-11所示。 该电路的最小信号模型及其交流电压增益计算如图3-12所示 图3-12 交流信号最小模型 [2] 设置电压信号源10mV,频率1kHz,用虚拟示波器测试其输入输出关系,描述示波 器所示曲线的特征【注:包括从虚拟示波器上读出的频率、幅值、形状特征等】解: 通过对相关数值的设定以及相关器件值的设定,得出图3-2所示的测量结果

自动控制原理作业答案

红色为重点(2016年考题) 第一章 1-2?仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理,并画出系统方框图。 解??当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机反转带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。系统方框图如下图所示。 1-4 题1-4图为水温控制系统示意图。冷水在热交换器中由通入的蒸汽加热,从而得到一定温度的热水。冷水流量变化用流量计测量。试绘制系统方块图,并说明为了保持热水温度为期望值,系统是如何工作的系统的被控对象和控制装置各是什么? 解?工作原理:温度传感器不断测量交换器出口处的实际水温,并在温度控制器中与给定温度相比较,若低于给定温度,其偏差值使蒸汽阀门开大,进入热交换器的蒸汽量加大,热水温度升高,直至偏差为零。如果由于某种原因,冷水流量加大,则流量值由流量计测得,通过温度控制器,开大阀门,使蒸汽量增加,提前进行控制,实现按冷水流量进行顺馈补偿,保证热交换器出口的水温不发生大的波动。? 其中,热交换器是被控对象,实际热水温度为被控量,给定量(希望温度)在控制器中设定;冷水流量是干扰量。????系统方块图如下图所示。这是一个按干扰补偿的复合控制系统。 1-5图为工业炉温自动控制系统的工作原理图。分析系统的工作原理,指出被控对象、被控量及各部件的作用,画出系统方框图。 解? 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压Uc的平方成正比,Uc增高,炉温就上升,Uc 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。炉子的实际温度用热电偶测量,输出电压Uf。Uf作为系统的反馈电压与给定电压Ur进行比较,得出偏差电压Ue,经电压放大器、功率放大器放大成au后,作为控制电动机的电枢电压。? 在正常情况下,炉温等于某个期望值T°C,热电偶的输出电压Uf正好等于给定电压Ur。此时,Ue=Ur-Uf=0,故U1=Ua=0,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使Uc保持一定的数值。这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。? 当炉膛温度T°C由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程,控制的结果是使炉膛温度回升,直至T°C的实际值等于期望值为止。

状态反馈控制系统的设计与实现

控制工程学院课程实验报告: 现代控制理论课程实验报告 实验题目:状态反馈控制系统的设计与实现 班级自动化(工控)姓名曾晓波学号2009021178 日期2013-1-6 一、实验目的及内容 实验目的: (1 )掌握极点配置定理及状态反馈控制系统的设计方法; (2 )比较输出反馈与状态反馈的优缺点; (3 )训练程序设计能力。 实验内容: (1 )针对一个二阶系统,分别设计输出反馈和状态反馈控制器;(2 )分别测出两种情况下系统的阶跃响应; (3 )对实验结果进行对比分析。 二、实验设备 装有的机一台 三、实验原理 一个控制系统的性能是否满足要求,要通过解的特征来评价,也就是说当传递函数是有理函数时,它的全部信息几乎都集中表现为它的极点、零点及传递函数。因此若被控系统完全能控,则可以通过状态反馈任意配置极点,使被控系统达到期望的时域性能指标。

闭环系统性能与闭环极点(特征值)密切相关,在状态空间的分析和综合中,除了利用输出反馈以外,主要利用状态反馈来配置极点,它能提供更多的校正信息。 (一) 利用状态反馈任意配置闭环极点的充要条件是:受控系统可控。 设( )受控系统的动态方程为 状态向量x 通过状态反馈矩阵k ,负反馈至系统参考输入v ,于是有 这样便构成了状态反馈系统,其结构图如图1-1所示 图1-1 状态反馈系统结构图 状态反馈系统动态方程为 闭环系统特征多项式为 ()()f I A bk λλ=-+ (1-2) 设闭环系统的期望极点为1λ,2λ,…,n λ,则系统的期望特征多项式 x b v u 1 s C A k - y x &

为 )())(()(21*n f λλλλλλλ---=Λ (1-3) 欲使闭环系统的极点取期望值,只需令式(1-2)和式(1-3)相等,即 )()(* λλf f = (1-4) 利用式(1-4)左右两边对应λ的同次项系数相等,可以求出状态反馈矩阵 []n k k k Λ 2 1 =k (二) 对线性定常连续系统∑(),若取系统的输出变量来构成反馈,则所得到的闭环控制系统称为输出反馈控制系统。输出反馈控制系统的结构图如图所示。 开环系统状态空间模型和输出反馈律分别为 H 为r *m 维的实矩阵,称为输出反馈矩阵。 则可得如下输出反馈闭环控制系统的状态空间模型: 输出反馈闭环系统可简记为H(),其传递函数阵为: (s)()-1B B ? A C H y - x u v + + + x ' 开环系统 A B C H '=+?? =?=-+x x u y x u y v ()A BHC B C '=-+??=? x x v y x

高频电子线路最新版课后习题解答第八章--反馈控制电路答案

第八章 思考题与习题 8.1 反馈控制电路中的比较器根据输入比较信号参量的不同,可分为 自动电平控制电路 、 自动频率控制电路 和 自动相位控制电路 三种。 8.2 自动增益控制电路又称AGC ,比较器比较的参量是 电压 。自动增益控制电路的核心电 路是 可变增益放大器 。 8.3自动相位控制电路又称 锁相环,比较器比较的参量是 相位 。基本的锁相环路由 鉴相 器 、 环路低通滤波器和 压控振荡器 三部分组成。锁相环再锁定时,只有剩余相位 误差,而没有剩余 频率误差。 8.4 锁相环实际上是一个 相位反馈控制系统,当环路达到锁定状态时,输出信号与输入参考 信号两者的频率相等。 8.5 AGC 的作用是什么?主要的性能指标包括哪些? 答: AGC 电路可用于控制接收通道的增益,它以特性增益为代价,换取输入信号动态范围的扩大使输出几乎不随输入信号的强弱变化而变化。 其性能指标有两个:动态范围和响应时间。 8.6 AFC 的组成包括哪几部分,其工作原理是什么? 答:AFC 由以下几部分组成:频率比较器、可控频率电路、中频放大器、鉴频器、滤波器。 工作原理:在正常情况下,接收信号的载波为s f ,本振频率L f ,频输出的中频为I f 。若由于某种不稳定因素使本振发生了一个偏移+L f ?。混频后的中频也发生同样的偏移,成为I f +L f ?,中频输出加到鉴频器的中心频率I f ,鉴频器就产生了一个误差电压,低通滤波器去控制压控振荡器,使压控振荡器的频率降低从而使中频频率减小,达到稳定中频的目的 8.7 比较AFC 和AGC 系统,指出它们之间的异同。 解:二者都属于反馈控制系统,但AFC 是采用鉴频器,将输入的两个信号的频率进行比较,它所输出的误差电压与两个比较的频率源之间的频率差成正比,所以达到最后稳定状态时,两个频率之间存在稳态频率误差。而AGC 是将输出电压经过处理后反送到某一前端放大器控制该放大器的增益,以达到使输出电压基本不变的目的。 8.8 锁相与自动频率微调有何区别?为什么说锁相环路相当于一个窄带跟踪滤波器? 解:二者都是利用误差信号的反馈作用来控制被稳定的振荡器的振荡频率。但二者之间有着根本的区别,在锁相环路中,采用的是鉴相器,它所输出的误差电压与两个相互比较的频率源之间的相位差成正比,所以达到最后稳定(锁定)状态时,被稳定(锁定)的频率等于标准频率,但有稳态相位误差(剩余相差);在自动频率微调系统中,采用的是鉴频器,它所输出的误差电压与两个比较的频率源之间的频率差成正比,所以达到最后稳定状态时,两个频率之间存在稳态频率误差,即两个频率源的频率不能完全相等。从这一点来看,利用锁相环可以实现较为理想的频率控制。 之所以说“锁相环路相当于一个窄带跟踪滤波器”,是因为锁相环路的传递函数具有窄带低通特性,且锁相环具有理想的频率跟踪特性。 8.9 PLL 的主要性能指标有哪些?其物理意义是什么? 答:我们可以用“稳”、“准”、“快”、“可控”、“抗扰”五大指标衡量PLL 的优劣。(a )“稳”是指环的稳定性。PLL 的稳定是它工作的前提条件,若环路由负反馈变成了正反馈,就不稳定了。理论分析表明,一、二阶环路是无条件千金之子环。(b )“准”是指环路的锁定

PID液位控制系统(单回路反馈)

过程控制实验报告 学院: 学号: 姓名: 实验指导老师: 日期:

一、实验要求与简介 (3) 二、控制原理 (4) 三、实验设备详细介绍 (6) 四.实验过程调试 (15) 五.单回路控制系统 (16) 六.课程总结 (16)

一.实验要求与简介 要求:设计液位控制系统,利用实验室过程控制设备构建单回路PID液位控制系统。了解设备的结构框架,学习对象模型建立的方法和技术、PID参数整定技术、自动化仪表选择相关技能。根据实验条件和系统配置确定实验过程性能指标。综合考虑抗干扰问题、系统稳定性问题、动态性能、稳态偏差等,对实验结果进行分析。实验目标如下: A.了解实验设备,能够根据实物画出系统框图; B.了解和掌握P909自动化仪表的应用场合和使用方法; C.熟悉PID参数整定技术,在实验中正确运用,分析参数整定的作用和效果; D.熟悉液位控制系统中各种自动化测量点、调节阀的相关技术参数; E.实现单回路液位控制,有基本的系统调节能力。 液位的自动控制在工业生产领域应用的非常普遍,就控制系统本身而言,其含有压力传感器、计算机与采集板组成的控制器、执行器(水泵)、控制对象(水箱)等。本次实验的主要任务是了解一个完整的液位系统的组成、构成液位控制系统的各个部件的工作原理及连接方式、工业上离散控制系统的通信标准、熟悉p909仪表的操作并实现单回路液位控制,有基本的液位调节能力。 液位系统结构图: 整个系统主要有水泵、电磁阀、传感器、水箱组成。 由水泵供水,电动阀调节流速(实验系统中还含有手动调节阀)通过两个入水口进入水

箱,在通过一个出水口进入排水箱,之所以用两个入水口是考虑到进水会带来液位的波动从而给控制器的控制带来困难所以通过两个入口从底部进水,但虽然减少了液位波动但也造成了一些负面影响:入水管中的压强会随着液位的上升而变大,在实际成产中可能会导致事故。 安置在系统中的传感器将系统的状态(温度,水箱液位,入水管压强)通过电流形式上传给上位机,通过控制器的计算再输出电流控制执行器,如:电动阀的开度,加热器等从而达到系统的反馈控制。 传感变送系统 传感器:压力传感器:测量液位高度用的压力传感器为集成压力传感器,通过内部电路将压力信号转化为4~20mA标准信号传送给控制器P909。传感器安装在容器的底部,传感器信号传送至P909。 二.控制原理 控制系统框图: 本系统使用的是PID控制,但PID控制器的参数与系统所处的稳态工况有关。一旦工况改变了,控制器参数的“最佳”值也就随着改变,这就意味着需要适时地整定控制器的参数。但PID 参数复杂繁琐的整定过程一直困扰着工程技术人员。因此研究PID参数整定技术具有十分重大的工程实践意义。 在实时控制中,一般要求被控过程是稳定的,对给定量的变化能够迅速跟踪,超调量要小且有一定的抗干扰能力。一般要同时满足上述要求是很困难的,但必须满足主要指标,兼顾其它方面。参数的选择可以通过实验确定,也可以通过试凑法或者经验数据法得到。

(完整版)状态反馈控制器的设计

上海电力学院实验报告自动控制原理实验课程题目:状态反馈控制器的设计 班级: 姓名: 学号: 时间: 一、问题描述已知一个单位反馈系统的开环传递函数为,试搭建simulink 模型。仿真原系统的阶跃响应。再设计状态反馈控制器,配置系统的闭环极点在,并用simulink 模型进行仿真验证。 二、理论方法分析 MATLAB提供了单变量系统极点配置函数acker (),该函数 的调用格式为K=place ( A,b,p) 其中,P为期望闭环极点的列向量,K为状态反馈矩阵。Acker ()函数时Ackerman 公式编写,若单输入系统可控的,则采用状态反馈控制后,控制量u=r+Kx 。 对于多变量系统的状态反馈极点配置,MATLAB也给出了函数place (),其调用格式为 K=place ( A,B,P) 状态反馈是将系统的状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入叠加形成控制量,作为受控系统的输入,实现闭环系统极点的任意配置,而且也是实现解耦和构成线性最优调节器的主要手段。

只要给定的系统是完全能控且能观的,则闭环系统的极点可以通过状态反馈矩阵的确定来任意配置。这个定理是用极点配置方法设计反馈矩阵的前提和依据。在单输入,单输出系统中,反馈矩阵有唯一解,且状态反馈不改变系统的零点。 三、实验设计与实现 1、搭建原系统的sumlink模型并观察其单位阶跃响应 原系统sumlink模型

原系统单位阶跃响应 由原系统单位阶跃响应可知系统不稳定 2、用极点配置法设计状态反馈控制器 ①利用matlab计算系统的状态空间模型的标准型>> a=[10];b=[1 5 6 0];[A B C D]=tf2ss(a,b) A = -5 -6 0 1 0 0 0 1 0 B = 1 C = 0 0 10 ③系统能控性矩阵

PWM反馈控制电路设计

PWM反馈控制电路设计 PWM开关稳压或稳流电源的基本工作原理就是在输入电压,内部参数及外接负载变化的情况下,控制电路通过被控制信号与基准信号的差值进行闭环反馈,调节主电路开关器件的导通脉冲宽度,使得开关电源德输出电压或电流等被控信号稳定。PWM的开关频率一般为恒定值,控制取样信号有输出电压,输入电压,输出电流,输出电感电流和开关器件峰值电流。由于这些信号可以构成单环,双环或多环反馈系统,实现稳压,稳流及恒定功率。同时,可以实现一些附带的过流保护,抗偏磁及均流等功能。PWM反馈控制模式主要有五种: (1)电压模式控制PWM(例如SG3524),其优点主要是PWM三角波幅值较大,脉冲宽度调节时具有较好的抗噪声裕量;占空比调节不受限制;对于多路输出电源,他们之间的交互调节效应较好。而缺点主要是,对输入电压的变化动态响应较慢;补偿网络设计本身就较为复杂,闭环增益随输入电压而变化,使其更为复杂;输出LC滤波器给控制环增加了双极点,在补偿设计误差放大器时,需要将主极点低频衰减,或者增加一个零点进行补偿;在传感及控制磁芯饱和故障状态方面较为复杂。 (2)峰值电流控制模式控制PWM(例如UC3842),其优点主要是,暂态闭环响应较快,对输入电压的变化和输出负载的变化的瞬态响应也较快;控制环易于设计;输入电压的调整技术可与电压模式控制的输入电压前馈技术相媲美;具有简单,自动的磁通平衡功能;具有瞬时峰值电流限流功能,即内在固有的逐个脉冲限流功能;具有自动均流并联功能。而其无缺点,具有占空比大于50%的开环不稳定性,存在难以校正的峰值电流与平均电流的误差;闭环响应不如平均电流模式控制理想;易于发生次谐波振荡,即使占空比小于50%,也有发生高频次谐波振荡的可能性,因而需要斜坡补偿;对噪声敏感,抗噪声性差,因为电感处于连续储能电流状态,与控制电压编程决定的电流电平相比较,开关器件的电流信号的上斜率通常较小,电流信号的较小的噪声就很容易使得开关器件改变关断时刻,使系统进入次谐波振荡;电流拓扑受限制;对于多路输出电流的交互调节性能不好。 (3)平均电流模式控制PWM,其主要优点是,平均电感电流能够高度精确地跟踪电流编程信号;不需要斜坡补偿;调试好的电路抗噪声性能优越;适合于任何电路拓扑对输入或输出电流控制;易于实现均流。而其缺点,电流放大器在开关

状态反馈控制的主要特性及发展

武汉理工大学研究生课程论文 课程名称:现代控制工程 学生姓名:宋雄 课程教师:谭耀刚 学号:104972101293 日期:2010年1月

状态反馈控制的主要特性及发展 姓名:宋雄班级:机电1004班学号:104972101293 摘要:状态反馈是指系统的状态变量通过比例环节传送到输入端去的反馈方式。状态反馈是体现现代控制理论特色的一种控制方式。状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。本文首先介绍了状态反馈控制系统的主要特性——可控性和可观性,并且对这两种性能进行了举例说明;还介绍了引入状态反馈对系统的可控性和可观性的影响;另外也说明了如何利用状态反馈来任意配置极点。其次,本文主要介绍的是状态反馈控制的发展,有容错控制,带全维状态观测器的状态反馈系统,这两种都是对可控性和可观性的深入的发掘和拓展。 关键词:状态反馈可控性和可观性极点配置全维状态观测器容错控制 引言 随着科技的不断发展,在硬件方面的发展逐步走向饱和,或者很难得到进步和延伸。但是软件方面的发展却逐步地得到社会的重视。一套好的设备,唯有配备合适的软件才能将它的功效尽可能大的释放出来。对于机械方面而言,软件就是指其控制系统。系统的状态变量通过比例环节传送到输入端去的反馈方式。状态反馈是体现现代控制理论特色的一种控制方式。状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。状态反馈也不影响系统的能控性,但可能改变系统的能观测性。只要原系统是能控的,则一定可以通过适当选取反馈增益矩阵K用状态反馈来任意移置闭环系统的极点(见极点配置)。对于传统的输出反馈,如果不引入附加的补偿装置,这一点不是总能作到的。 随着状态观测器理论和状态估计方法的发展(特别是由于卡尔曼-布什滤波方法的出现),在很多情况下已不难获得状态变量的良好实时估计值,状态反馈方法已进入了实用阶段。 一、状态反馈 1、状态反馈的概念 状态反馈就是将系统的每一个状态变量乘以相应的反馈系数反馈到输入端与参考输入 相加,其和作为受控系统的输入。设SISO系统的状态空间表达式为: x=Ax+bu,y=cx

反馈控制系统

反馈控制系统: 同开环控制系统相比,闭环控制具有一系列优点。但反馈回路的引入增加了系统的复杂性,而且增益选择不当时会引起系统的不稳定。为提高控制精度,在扰动变量可以测量时,也常同时采用按扰动的控制(即前馈控制)作为反馈控制的补充而构成复合控制系统。 反馈控制系统(即闭环控制系统)是基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。在工程上常把在运行中使输出量和期望值保持一致的反馈控制系统称为自动调节系统,而把用来精确地跟随或复现某种过程的反馈控制系统称为伺服系统或随动系统。 反馈控制系统由控制器、受控对象和反馈通路组成(见图)。图中带叉号的圆圈为比较环节,用来将输入与输出相减,给出偏差信号。这一环节在具体系统中可能与控制器一起统称为调节器。以炉温控制为例,受控对象为炉子;输出变量为实际的炉子温度;输入变量为给定常值温度,一般用电压表示。炉温用热电偶测量,代表炉温的热电动势与给定电压相比较,两者的差值电压经过功率放大后用来驱动相应的执行机构进行控制。 反馈控制系统包括: (一)负反馈(negative feedback):凡反馈信息的作用与控制信息的作用方向相反,对控制部分的活动起制约或纠正作用的,称为负反馈。即使系统的输出值与目标值的偏差越来越小。

1. 意义:维持稳态 2. 缺点:滞后、波动 (二)正反馈(positive feedback ):凡反馈信息的作用与控制信息的作用方向相同,对控制部分的活动起增强作用的,称为正反馈意义:加速生理过程,使机体活动发挥最大效应。即使系统的输出值与目标值的偏差越来越大,正反馈并不是都是好的,有的时候系统需要正反馈的作用。如原子弹引爆装置中要用到的裂变链式反应。又如在植物保护中,为了消灭有害的昆虫,大量繁殖这种害虫的天敌。反馈控制系统由控制器、受控对象和反馈通路组成。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性 反馈控制图解 反馈控制: 管理人员分析以前的工作的执行结果,将它与控制标准相比较,发现偏差所在并找出原因,拟定纠正措施以防止偏差发展或继续存在,就是反馈控制 反馈控制效果 反馈控制是指将系统的输出信息返送到输入端,与输入信息进行比较,并利用二者的偏差进行控制的过程。反馈控制其实是用过去的情况来指导现在和将来。在控制系统中,如果返回的信息的作用是抵消输入信息,称为负反馈,负反馈可以使系统趋于稳定;若其作用是增强输入信息,则称为正反馈,正反馈可以使信号得到加强。

相关文档
相关文档 最新文档