文档库 最新最全的文档下载
当前位置:文档库 › 聚四氢呋喃废水中回收磷的试验研究

聚四氢呋喃废水中回收磷的试验研究

聚四氢呋喃废水中回收磷的试验研究
聚四氢呋喃废水中回收磷的试验研究

ISSN1009-8984℃丽西了亚刀可

长春T程学院学报(自然科学版)2010年第11卷第3期

J.Changchunlnst.Tech.(Nat.Sci.Edi.)。2010?V01.11,No.3

23/4l

97—99聚四氢呋喃废水中回收磷的试验研究

边德军,艾胜书,任庆凯,田曦,曲红,万立国

(长春工程学院水利与环境工程学院,长春130012)

边德军,1991年毕业于吉林建筑工程学院给水排水工程

专业,获学士学位;2007年毕业于东北师范大学环境科学专

业,获硕士学位。现为长春工程学院水利与环境工程学院副院

长、教授、水利与环境科学研究所所长、校级学术带头人。2008

年入选教育部新世纪优秀人才支持计划,吉林省环境科学学会

理事,大连理工大学兼职博士生导师。多年来致力于水处理技

术和污水生物处理节能方向的研究工作,先后主持国家自然科

学基金、吉林省科技计划项目、吉林省高校科技计划项目等各

类科研项目8项,其中“微压内循环废水处理设备研制”项目获

吉林省科学技术进步三等奖。公开发表学术论文20余篇。

摘要:在聚四氢呋喃废水回收磷的试验中,采用结晶法回收磷,分别考察了反应物体积比、陈化时间、搅拌强度等因素对析出晶体量及晶体结构表征的影响,结果表明,相比(乙醇:废水)为1.5:1,搅拌强度200r/min,静沉时间2h时,磷酸盐去除率达85%以上,获得的晶体晶形与搅拌强度有关,经X一衍射光谱分析纯度较高。

关键词:聚四氢呋喃;废水;回收磷

中图分类号:X506文献标志码:A文章编号:1009—8984(2010)03—0097-03

聚四氢呋喃又称聚四亚己二醇(PTMEG),是由四氢呋喃(THF)开环聚合得到的端伯羧基直链均聚醚,因其分子排列紧密、密度高、具有醚键、不含不饱和键等结构特征,因此具有良好的柔顺性、耐水性、耐老化性,在纺织、管材、化工、合成革、医疗器械、汽车、造船、建筑及军工等领域具有独特而广阔的应用前景,目前聚四氢呋喃主要用于纺织材料氨纶和高档聚氨酯弹性体的生产,随着氨纶行业的发展及聚四氢呋喃在非纤维领域的应用。必然会促进聚四氢呋喃行业的发展[1_4]。聚四氢呋喃在生产过

收稿日期:2010—07—09

基金项目:吉林省科技发展计划项目(20080412)

教育部新世纪优秀人才支持计划(NCET--08--0689)程中产生的废水含有高质量浓度有机物,主要成分是糠醛、呋喃、四氢呋喃、聚四氢呋喃及一些中间产物等,不同生产工艺的废水中还含有不同的盐类。国外针对聚四氢呋哺废水处理的报道较少。

国内某聚四氢呋喃生产装置生产废水,除含有高质量浓度有机物外,还含有高质量浓度磷酸盐,原设计采用燃烧法,试生产阶段实际废水量远大于设计废水量。若采用原处理方案,处理成本企业难于接受。从聚四氢呋喃废水中回收资源的角度出发,本文进行了磷酸盐的结晶试验,试验结果表明,获得的结晶体磷酸盐纯度较高,可以达到资源回收的目的,同时为废水的进一步处理降低了难度。

1试验材料与方法

试验废水来自国内某聚四氢呋喃装置生产废水,原废水的COD为6500~7500mg/L、BOD5为12001500mg/L、TP为15000~18000mg/L、SS为550mg/L、pH值为6.1~7.0,原废水经滤纸过滤后为试验样品水样,经分析废水中的磷主要以磷酸氢二钠形式存在。试验使用的甲醇、乙醇、丙醇等试剂为分析纯,所用器皿为1000mL烧杯,所用真空抽滤机为SHB一ⅢA型循环水式多用真空泵,磁力转子搅拌器为¥25~2型恒温磁力搅拌器。试

验方法为将一定比例含磷废水与有机溶剂在万方数据

万方数据

边德军,等:聚四氖呋喃废水巾同收磷的试验研究

99

图5不同搅拌强度下的晶体形貌

从图4可以看到,废水磷的去除率随着搅拌强

度的增强逐渐增大,当搅拌强度达到500r/min后,

去除率有所下降,因此,搅拌强度对结晶效果的影响

是有限的。从图5中可以发现,搅拌强度对晶体的

形貌影响很大,过强的搅拌强度对结晶好的“初晶”

有一定的粉碎作用,导致晶核太多,颗粒长不大。试

验结果显示。在不搅拌的情况下,晶体形貌呈片状,

随着搅拌强度的增加,晶体形貌成颗粒状,并且粒径越来越小。由于过强的搅拌强度,不能很好地形成较大颗粒的结晶,而废水中含有大量的杂质,结晶时晶核包藏杂质,从而使析出的晶体纯度降低。2.5析出晶体纯度分析

试验对析出的晶体进行了X一衍射光谱分析,

如图6所示。

L一

一山u上山I

6l舢.^一..

10

20

30

40

50

60

70

80

2一TIleta/。

图6X一衍射光谱

图6中给出。下部谱线为Na。HPO。的标准谱

图,而上部谱线为利用结晶法回收废水中的磷酸盐

谱图,从图中可以看出,2个谱图的特征衍射峰基本完全重合,表明利用该结晶法回收的磷酸氢二钠的纯度非常高。

2.6

乙醇回收

晶体析出后的废水,经常压蒸馏。根据乙醇的物化性质,通过对各馏段馏分收集分析,收集温度

77.4~77.6℃馏分可得到组成为91%左右的乙

醇~水混合液,乙醇的一次回收率达90%以上。‘

结语

(1)以乙醇作为萃取剂的结晶方法回收聚四氢

呋哺废水中的磷资源是可行的,且经回收磷后的聚四氢呋喃废水更易于进一步处理。

(2)试验研究了反应物体积比、静沉时间、搅拌

强度等因素对结晶效率的影响,从技术经济指标考虑,确定反应物体积比为1.5:l,静沉时间在2

h,

搅拌强度为200r/min时,废水中磷的去除率可达

85%以上,回收聚四氢呋喃废水中磷的效果最佳。

(3)作为废水中磷资源回收的一种方法。其回收

的磷酸盐纯度高,且回收的晶体形貌和纯度与搅拌

强度有关。

参考文献

[1]王伟林.聚四氢呋喃的生产及应用前景[J].当代化工,

2003,32(3):169—171.

Fz]钱伯章.四氢呋喃和聚四氢呋喃产能与需求市场FJ].化

工中间体.2004.3(1):30一34.

[3]崔小明.聚网氖呋喃的生产技术及国内外市场分析[J].

上海化工。2006,31(11):43—45.

[4]汪家铭.聚四氢呋喃生产现状及市场分析EJ].合成技术

及应用。2007,22(2):35—41.

[5]国家环保局水和废水监测分析方法编委会.水和废水监

测分析方法[M].第4版.北京:中国环境科学出版社,

2002:243—246.

[63程能林.溶剂手册[M].北京:化学工业出版社。1986:

】50一156.

Experimentresearch

on

phosphorus

recoveryin

PTMEG

wastewater

BIANDe—jun,etc.

(FacultyofWaterConservation

&EnvironmentEngineering.ChangchunInstituteofTechnology,

Changchun130012,China)

Abstract:Theexperiment

on

pHospHorusrecovery

inPTMEGwastewaterbycrystallizationwasstud—ied.The

influences

of

molar

ratio,precipitation

time,stirringspeed

on

theamountofcrystalsand

structure

characterizationhave

been

studied.The

resultsindicatedthatundermolarratio1.5:1.

stirring

speed

about

200r/minand

precipitation

time2h,POd3一removalratioabove85%,themor—pHologyofobtainedcrystalswasrelatedto

the

stirring

speed

and

the

X—ray

diffractionpattern

showedthatthecrystalshad

highpurity.

Key

words:polytetramethyleneether

glycol;

wastewater;phosphorusrecovery

0OOOOO0O

∞∞∞∞∞∞∞∞∞万方数据

四氢呋喃的生产工艺与技术路线的选择

四氢呋喃的生产工艺与技术路线的选择 2.1四氢呋喃主要生产工艺 国内外四氢呋喃合成工艺主要有多种线路,其中:糠醛法、1,4-丁二醇(BDO)脱水法,顺酐法是最主要的3条路线。 2.1.1 糠醛法 糠醛法是将农业废料如玉米芯、燕麦壳、甘蔗渣等用稀硫酸煮沸,使其中多缩戊糖水解成戊糖,然后脱水转化成糠醛。糠醛用ZnO、Cr2O3、MnO2等作催化剂,在水蒸汽中于400℃脱羰基生成呋喃,呋喃用镍作催化剂于80℃加氢制得四氢呋喃。反应式如下: 此法原料受农产品制约,在粮价上涨时,发展速度将受到限制。用农副产品做原料生产四氢呋喃,副产品多,不易得到高纯度的产品。 1、工艺特点… 2、工艺流程图… 图2.1 糠醛法合成四氢呋喃工艺流程图 … 四氢呋喃生产的物料和能量消耗定额:

2.1.2 顺酐催化加氢法 顺酐催化加氢法又称正丁烷/顺酐法,最早由美国(DuPont)杜邦公司开发,反应用NiMoOx、CoMoOx、NixCrOy 等作催化剂,在78MPa以上的压力下进行液相加氢。由于反应压力高,催化剂用量大,生产成本高,DuPont公司没有进行工业化生产。60年代初期,日本三菱油化中心研究所从日本国情出发,改进了由MAH 液相加氢制四氢呋喃的方法,采用铜系催化剂,在250℃、不高于3.9MPa压力下进行气相加氢反应制得了四氢呋喃。该法具有原料来源充足,价格便宜,单段床反应,过程简单,操作方便,投资费用低,转化率及收率高,催化剂寿命长、生产成本低,产品质量高等特点。我国大连化工研究所、北京化工研究院、复旦大学、中国石化科学研究院等单位对此进行了研究。 顺酐催化加氢法又分液相法和气相法。 1、液相法 1956年美国(DuPont)杜邦公司开始实验顺酐液相加氢工艺,日本的三菱化成公司和油化公司对顺酐液相加氢进行了大量的研究,并投入了工业化生产。 杜邦技术分两步进行。第一步是正丁烷在传输床反应器中以高抗磨性VP/SiO2为催化剂合成顺酐,其反应条件为压力0.2MPa、进口温度346℃,此时正丁烷转化率为47.7%,顺酐选择性为75.2%;第二步,以顺酐水吸收液为原料,采用钯/镍或铑改性的钯为催化剂,在200℃、17MPa条件下加氢制得THF,最后采用抽提蒸馏法从THF/水的共沸物中回收纯THF。1996年末,杜邦西班牙Asturias 公司采用该技术建成4.5万吨/年工业装置。 顺酐和氢从底部进入内装镍催化剂的反应器,(反应在200℃,6~10Mpa压力下进行)产物中四氢呋喃与γ-丁内酯比例可通过调整操作参数加以控制。反应产物与原料氢冷却至50℃左右进入洗涤塔底部,使未反应的氢及气态与液态产物分离,未反应的氢及气态产物经洗涤后物质循环到反应器液态产物经蒸馏而得四氢呋喃产品。只有催化剂性能好、流程简单、投资少等特点。 顺酐法合成四氢呋喃原料及公用工程消耗定额:

四氢呋喃

四氢呋喃 四氢呋喃是一类杂环有机化合物。它是最强的极性醚类之一,无色易挥发液体,有类似乙醚的气味。溶于水、乙醇、乙醚、丙酮、苯等多数有机溶剂。简称THF ,分子式为C4H8O ,沸点为66℃,比重D 20 40.886~0.888,折光率n20 D1.4060~1.4080。由于其具有溶解速度快、扩散性能好、流动性好、低毒、低沸点等特点,对有机物和无机物均有良好的溶解性能,素有“万能溶剂”之称,可用在树脂、聚醚橡胶和聚氨酯合成中作溶剂。 中文名: 四氢呋喃 外文名: tetrahydrofuran 分子式: C4H8O 相对分子质量: 72.11 化学品类别: 有机物 管制类型: 不管制 储存: 密封保存 CAS 编号: 109-99-9 其他名称: 1,4-环氧丁烷;氧杂环戊烷;氧戊环 物理性质 四氢呋喃结构式 外观与性状:无色易挥发液体,有类似乙醚的气味。 熔点(℃):-108.5 ; 相对密度(水=1):0.89 ; 沸点(℃):65.4 ; 相对蒸气密度(空气=1):2.5 ; 分子式:C4H8O ; 分子量:72.11 ; 饱和蒸气压(kPa):15.20(15℃) ; 临界温度(℃):268 ; 临界压力(MPa):5.19 闪点(℃):-20 ;爆炸上限%(V/V):12.4 ;引燃温度(℃):230 ; 爆炸下限%(V/V):1.5 ; 溶解性:溶于水、乙醇、乙醚、丙酮、苯等多数有机溶剂。[2] 化学性质 在加压下与氯化氢作用生成1,4-二氯丁烷。易燃,与氢氧化钠、氢氢化钾反应强烈。与酸接触能发生反应,不加稳定剂暴露在空气中能形成有爆炸性的过氧化物。蒸气能与空气形成爆炸性混合物,爆炸极限2.3%-11.85%(vol)。由于四氢呋喃中氧原子配位能力很强,并且沸点较高,故可以用于合成格氏试剂(氯苯,氯乙烯和镁只有在四氢呋喃中才能生成格氏试剂),有机锂试剂(但能被游离的叔丁基锂分解,故游离的叔丁基锂只有在环己烷,石油醚中才稳定存在)。同时由于一些无机盐(如氯化锂,氯化铬,氯化钴,氯化镍,溴化钾,硝酸铵,高氯酸钠,高氯酸锂等)和常见的季铵盐(四甲基氯化铵,四丁基溴化铵,四乙基氯化铵等)也溶于四氢呋喃,故也可以用于有机配合物的合成和有机电化学当中(作为低温电解质和有机电化学合成的溶剂。)[4] 作用与用途 四氢呋喃是一种重要的有机合成原料且是性能优良的溶剂,特别适用于溶解PVC ;聚偏氯乙烯和丁苯胺,广泛用作表面涂料、防腐涂料、印刷油墨、磁带和薄膜涂料的溶剂,并用作反应溶剂,用于电镀铝液时可任意控制铝层厚度且光亮。THF 自身可缩聚(经阳离子引发开环再聚合)成聚四亚甲基醚二醇(PTMEG ),也称四氢呋喃均聚醚。PTMEG 与甲苯

四氢呋喃安全技术说明

四氢呋喃安全技术说明书 第一部分化学品及企业标识 化学品中文名称:四氢呋喃;氧杂环戊烷 化学品俗名或商品名: 化学品英文名称:tetrahydrofuran;Tetramethylene oxide; 第二部分成分/组成信息 纯品■混合物□ 化学品名称:四氢呋喃 有害物成分:浓度CASNo.: 四氢呋喃109-99-9 第三部分危险性概述 危险性类别:第3.1类低闪点液体 侵入途径:吸入、食入、经皮吸收 健康危害:本品具有刺激和麻醉作用。吸入后引起上呼吸道刺激、恶心、头晕、头痛和中枢神经系统抑制。能引起肝、肾损害。液体或高浓度蒸气对眼有刺激性。皮肤长期反复接触,可因脱脂作用而发生皮炎。 环境危害:对水生生物有毒作用 燃爆危险:极易燃,其蒸气与空气混合,能形成爆炸性混合物。 第四部分急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医。 眼睛接触:提起眼睑,用流动清水或生理盐水冲洗。如有不适感,就医。 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸、心跳停止,立即进行心肺复苏术。就医。 食入:饮水,禁止催吐。如有不适感,就医。 第五部分消防措施 危险特性:其蒸气与空气可形成爆炸性混合物。遇高热、明火及强氧化剂易引起燃烧。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。与酸类接触能发生反应。与氢氧化钾、氢氧化钠反应剧烈。蒸气比空气重,沿地面扩散并易积存于低洼处,遇火源会着火回燃。 有害燃烧产物:一氧化碳。 灭火方法及灭火剂:用抗溶性泡沫、二氧化碳、干粉、砂土灭火。 灭火注意事项:消防人员必须佩戴空气呼吸器、穿全身防火防毒服,在上风向灭火。喷水冷却容器,可能的话将容器从火场移至空旷处。处在火场中的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。 第六部分泄漏应急处理 应急处理:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧风、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。小量泄漏:用砂土或其它不燃材料吸收。使用洁净的无火花工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用抗溶性泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在受限制空间内的易燃性。用防爆泵转移至槽车或专用收集器内。喷雾状水驱散蒸气、稀释液体泄漏物。消除方法: 第七部分操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

城市污水处理厂化学除磷效果及运行成本研究

万方数据

万方数据

万方数据

万方数据

城市污水处理厂化学除磷效果及运行成本研究 作者:念东, 王佳伟, 刘立超, 周军, 甘一萍, 王洪臣, Nian Dong, Wang Jiawei, Liu Lichao, Zhou Jun, Gan Yiping, Wang Hongchen 作者单位:北京城市排水集团有限责任公司,北京,100022 刊名: 给水排水 英文刊名:WATER & WASTEWATER ENGINEERING 年,卷(期):2008,34(5) 被引用次数:11次 参考文献(3条) 1.邱维;张智城市污水化学除磷的探讨[期刊论文]-重庆环境科学 2002(02) 2.赵恩海;朱文亭我国污水处理的发展趋势[期刊论文]-城市环境与城市生态 2000(04) 3.Henze M;Harremoes P;国家城市给水排水工程技术研究中心污水生物处理与化学处理技术 1999 本文读者也读过(10条) 1.孔令勇.马小蕾废水化学除磷的基本原理与设计[会议论文]-2009 2.徐丰果.罗建中.凌定勋废水化学除磷的现状与进展[期刊论文]-工业水处理2003,23(5) 3.李炜炜.吴国防.丁云松.龙腾锐.LI Wei-wei.WU Guo-fang.DING Yun-song.LONG Teng-rui城市污水厂化学除磷投药点后移的生产性试验[期刊论文]-中国给水排水2010,26(10) 4.侯艳玲.刘艳臣.邱勇.何苗.施汉昌.Hou Yanling.Liu Yanchen.Qiu Yong.He Miao.Shi Hanchang化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[期刊论文]-给水排水2010,36(6) 5.唐建国.林洁梅化学除磷的设计计算[期刊论文]-给水排水2000,26(9) 6.张健.ZHANG Jian杭州七格污水处理厂化学除磷工艺探讨[期刊论文]-中国给水排水2010,26(21) 7.帖春英.TIE Chun-ying改良A2/O与化学除磷工艺用于城市污水处理[期刊论文]-中国给水排水2010,26(20) 8.吕亚云污水化学除磷处理技术[期刊论文]-河南化工2010,27(8) 9.潘理黎.王玲.郑海军.吕伯昇.徐伟勇.Pan Lili.Wang Ling.Zheng Haijun.Lu Bosheng.Xu Weiyong城镇污水处理厂尾水深度化学除磷试验研究[期刊论文]-水处理技术2011,37(6) 10.张亚勤污水处理厂达到一级A排放标准中的化学除磷[期刊论文]-中国市政工程2009(5) 引证文献(11条) 1.孙士权.杨静.毕立俊.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-工业水处理 2010(1) 2.贾会艳.杨云龙城市污水化学辅助除磷[期刊论文]-山西建筑 2009(14) 3.孙士权.刀钟颖.郭文文.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-环境工程学报2009(7) 4.解立国太原市北郊污水净化厂深度除磷研究[期刊论文]-科技情报开发与经济 2009(20) 5.戴斌低碳源情况下氧化沟工艺除磷的方式[期刊论文]-上海建设科技 2009(5) 6.陈晓安.严福平.李旭.桂丽娟连续流砂过滤器处理城市二级出水中试研究[期刊论文]-工业用水与废水 2011(1) 7.乔莹.栗建华污水处理厂节能降耗区域性评价管理研究[期刊论文]-长治学院学报 2010(5) 8.郑育毅低碳源城市污水化学除磷的研究[期刊论文]-工业水处理 2011(9) 9.刘传伟.孙书群城市污水污水处理厂氮磷去除的研究[期刊论文]-广州化工 2011(23) 10.杨凌波.葛勇涛.谢继荣.应启锋.曾思育.何苗基于节能降耗的污水处理厂绩效评估体系研究[期刊论文]-给水排水 2009(z1)

新版2-甲基四氢呋喃安全技术说明书

化学品安全技术说明书 第1部分化学品及企业标识 化学品中文名:2-甲基四氢呋喃 化学品英文名:2-methyltetrahydrofuran 企业名称:永农生物科学(Yongnong Biosciences Co., Ltd) 企业地址:省市上虞区湾经济技术开发区纬七东路三号 邮编:312369 传真:07 联系:08;09 企业应急:08;国家化学事故应急咨询专线(已委托协议):00 推荐及限制用途:化工原料,用作溶剂。 第2部分危险性概述 紧急情况概述: 无色液体,易燃。其蒸气能与空气形成爆炸性混合物。遇明火、高热易燃烧爆炸。吸入后引起上呼吸道刺激、恶心、头晕、头痛和中枢神经系统抑制。能引起肝、肾损害。液体或高浓度蒸气对眼有刺激性。 GHS危险性类别: 易燃液体类别3 皮肤腐蚀/刺激类别3 急性毒性类别4 严重眼睛损伤/眼睛刺激性类别2A 致癌性类别2 生殖细胞突变性未分类 特异性靶器官系统毒性-一次接触类别3 特异性靶器官系统毒性-反复接触未分类 吸入危害类别4 对水环境危害-急性类别2 对水环境危害-慢性类别2 标签要素: 形象图: 警示词:危险 危险性说明:中闪点易燃液体和蒸气。

●防说明: ——在得到专门指导后操作。在未了解所有安全措施之前,不得操作。 ——远离热源、火花、明火、热表面。使用不产生火花的工具作业。 ——采取防止静电措施,容器和接收设备接地、连接。 ——使用防爆型电气、通风、照明及其他设备。 ——保持容器密闭。 ——仅在室外或通风良好处操作。 ——作业场所不得吸烟。 ——戴防护手套和防护眼镜 ●事故响应 ——误服者给充分漱口、饮水,尽快洗胃。就医 ——如吸入,立即将患者转移至空气新鲜处,保持呼吸道畅通。呼吸困难时给输氧。呼吸机心跳停止者立即进行人工呼吸和心脏按压术。就医。 ——眼接触后立即提起眼睑,用大量流动清水彻底冲洗。 ——皮肤接触,脱去污染的衣着,用流动清水冲洗。 ——收集泄漏物。 ——发生火灾时,使用干粉、砂土、泡沫或二氧化碳灭火。用水灭火无效 ●安全储存: ——在阴凉、通风良好处储存。 ——密闭储存 ●废弃处置 ——按危险废物无害化处置后废弃 物理和化学危险:易燃液体和蒸气。其蒸气与空气混合,能形成爆炸性混合物。遇明火、高热极易引起燃烧爆炸。与氧化剂能发生强烈反应。接触空气或在光照条件下可生成具有潜在爆炸危险性的过氧化物。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引起回燃。若遇高热,容器压增大,有开裂和爆炸的危险。 健康危害: 本品具有麻醉作用。吸入后引起上呼吸道刺激、恶心、头晕、头痛和中枢神经系统抑制。能引起肝、肾损害。液体或高浓度蒸气对眼有刺激性。长期反复皮肤接触,可因脱脂作用而发生皮炎。 环境危害:对水生生物有毒并且有长期持续影响。

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

四氢呋喃现有四氢呋喃-乙醇-水地混合物溶剂需要分离回收

《分离工程Ⅱ》研究性课题 现有四氢呋喃现有四氢呋喃-乙醇-水的混合物溶剂需要分离回收,其含量为(质量分数):四氢呋喃0.936,乙醇0.0635,水0.0005,流率为300kg/h。 要求把混合物分离为四氢呋喃与乙醇两股产品,其中: (1)四氢呋喃中的乙醇含量低于0.0005,水低于0.0007; (2)四氢呋喃与乙醇的质量回收率大于0.93。 公用工程自己合理选择。 1. 分离方法的选择 四氢呋喃和乙醇都是有用的有机化工原料,大量应用于工业生产中。 四氢呋喃是一类杂环有机化合物。它是强的极性醚类之一,在化学反应和萃取时用做一种中等极性的溶剂。无色易挥发液体,有类似乙醚的气味。溶于水、乙醇、乙醚等,常压下沸点为65℃。乙醇是一种常见有机物,能与水任意比混溶,常压下沸点为78.8℃。 在Aspen plus中使用tools-Conceptual Design-Azeotrope Search工具对四氢呋喃、水、乙醇形成的三元物系进行分析,得出该三元物系两两组合都可形成共沸物,如下图1-1所示。因为进料当中水的质量分数很小,只有0.0005,所以主要考虑四氢呋喃与乙醇形成的共沸物的分离。由分离工程的知识可知,对于共沸物体系,通常不能采用普通精馏分离,而需要采用特殊精馏进行有效分离。 通过查阅文献,我了解到目前对于四氢呋喃和乙醇的分离方法主要包括萃取精馏[1,2,3]和高低压双塔精馏[4,5,6]。萃取精馏通过向体系添加萃取剂而选择性分离出一种物质,但是缺点是需要分离出萃取剂,同时需要补充萃取剂而可能在产品里引入新的杂质。高低压双塔精馏和萃取精馏一样也需要两座塔,但是不需要引入另一种物质,而只需通过改变塔压来改变共沸物的组成实现有效分离,原理简单,操作易行,不会在产品中引入新的杂质。因而高低压双塔精馏比萃取精馏更具可行性。 在方法比较的基础上,我选择高低压双塔精馏来实现该体系的分离,并借助Aspen Plus流程模拟软件实现工艺计算。

含磷废水的处理方法

含磷废水的处理方法 目前,国内外污水除磷技术主要有生物法、化学法两大类。生物法如A/O、A2/O、UCT工艺,主要适合处理低浓度及有机态含磷废水。化学法主要有混凝沉淀法、结晶法、离子交换吸附法、电渗析、反渗透等工艺,主要适合处理无机态含磷废水,其中混凝沉淀与结晶综合处理技术可以处理高浓度含磷废水,除磷率较高,是一种可靠的高含磷废水处理方法。 1. 生物法 20世纪70年代美国的Spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的Fe和Al的氧化物反应或与粘土中的OH-或SiO22-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。对于二级活性污泥法工艺,不需增加大量设备,只需改变运转流程即可达到生物除磷的效果。但要求管理较严格,为了形成VFA,要保证厌氧阶段的厌氧条件。 张林生等采用石灰沉淀结晶法处理高浓度含磷废水取得成功,该法结合了沉淀法与结晶法的优点,克服了两者的缺点,具有很好的发展前1/ 4

景。实验结果与工程实践表明,该法处理含磷废水除磷效率高,出水水质稳定,且可回用。 2. 化学沉淀法 通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁,石灰与氯化铁的混合物等。影响此类反应的主要因素是pH、浓度比、反应时间等。 为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。王光辉发现,原水含磷 10mg/L时,投加300mg/L的Al2(SO4)3或90mg/L的FeCl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的PO43-污染问题。混凝沉淀法是一种传统的除磷方法,具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水pH 值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。另外,研究表明:除磷效率对应沉淀剂剂量的曲线是指数型的,当化学沉淀剂超出一定量,曲线即达到停滞期。所以,试图用沉淀法将废水中磷的质量浓度降到0.1mg/L以下,是不太经济的。 丛广治等主持的大连开发区污水厂A/O改造实践表明,系统在下列参数下可取得较好的净化效果:BOD5负荷为0.2~0.3kg/(kgMLSS·d),TP 负荷为(2.8~3.0)×10-3kg/(kgMLSS·d)。厌氧段容积∶好氧段容积 2/ 4

四氢呋喃的变压恒沸精馏工艺优化研究

四氢呋喃的变压恒沸精馏工艺优化研究 发表时间:2019-02-18T17:23:22.143Z 来源:《科技新时代》2018年12期作者:杨博飞 [导读] 四氢呋喃的化学名称为1,4-环氧丁烷,在化学领域的应用十分广泛。 中国石化长城能源化工(宁夏)有限公司750411 摘要:生产获得的四氢呋喃纯度较低,需要通过精馏工艺进行提纯。本文从四氢呋喃的变压恒沸精馏工艺流程入手,指出了变压恒沸精馏工艺存在的不足及相应的优化措施,技术人员需要从产品和操作两方面入手,提升变压恒沸精馏工艺的效果,提升四氢呋喃的产量与质量,实现清洁生产的目标。 关键词:四氢呋喃;变压恒沸;精馏工艺 前言:四氢呋喃的化学名称为1,4-环氧丁烷,在化学领域的应用十分广泛。在工厂生产中,获得的四氢呋喃粗产品含有较多的水和杂质,需要经过提纯加工处理才能将四氢呋喃应用于化学领域。而四氢呋喃的提纯加工工艺存在一定的不足,需要技术人员进行提纯工艺的优化,保障四氢呋喃的质量。 一、四氢呋喃的变压恒沸精馏工艺分析 就目前的生产水平而言,任何一种生产工艺生产的四氢呋喃都含有一定的水分、杂质及不饱和物,要求生产企业通过精馏工艺进行四氢呋喃的提纯加工,提高生产产品的纯度。常用的四氢呋喃提纯工艺为变压恒沸精馏工艺。在四氢呋喃的提纯加工中,首先要进行加压精馏处理,这时获得的产品含有80%的四氢呋喃及20%的水、高沸物以及甲醇;然后再进行变压共沸精馏、加氢反应以及高沸塔提纯等加工处理工艺,这时可以获得99.95%四氢呋喃的产品[1]。 二、四氢呋喃的变压恒沸精馏工艺优化分析 (一)产品的优化分析 1.共沸杂质的去除 在四氢呋喃的变压恒沸精馏过程中,常压共沸精馏塔的5号塔盘与13号塔盘存在较大的温度变化,使得塔底物料的TOC出现急剧升高问题,对四氢呋喃的精馏效果产生不利影响。经过实践研究表明,上述问题出现的原因在于5号塔盘和13号塔盘中存在共沸有机物,这种物质难以分离,会导致塔底水中的TOC含量逐渐增多,严重时将会引发环保事故。因此,技术人员需要采用合理措施去除共沸杂质,保障精馏工艺的正常运行。 针对上述问题,技术人员可以在9号塔盘或者11号塔盘中添加一股侧采,将采出的含有共沸有机物的物料放置于单独的储罐中,在采出物料静置一段时间后,共沸有机物和水将会出现分层,技术人员可以将共沸有机物单独采出并存储于另一个储罐,存储一定容量后通过泵进行输出,对其采取焚烧处理措施,实现共沸杂质的有效处理。与此同时,技术人员可以应用U型溢流管将储罐中的水导出,利用泵将滗析的水相物料传输到12号塔盘中,有助于四氢呋喃产量的提升。 2.轻沸杂质的去除 在四氢呋喃的变压恒沸精馏过程中,塔底的四氢呋喃产品很容易出现杂质含量增多的问题,对四氢呋喃的质量产生不利影响。实践取样分析表明,四氢呋喃产品中存在的杂质主要为甲醇等轻沸物质,出现的原因在于加压塔顶部采出物料的回收,导致塔底中的轻沸物质不断累积,在积累到一定数量后,将会降低加压塔的温度分布梯度。 针对上述问题,技术人员可以在加压塔顶部的采出物流中,添加一股连续排放置换物流,利用置换物流将塔底存在轻沸物质排出,避免其出现过多积累问题。与此同时,因为排出物料中含有较多的四氢呋喃,所以技术人员需要对物流进行二次加压共沸精馏,主要通过驰放精馏塔的设置来实现。为了保障四氢呋喃的高效提取,驰放精馏塔需要应用全回流操作方式,回收的四氢呋喃、水与共沸物质等物料通过泵传输到常压精馏塔中;塔顶侧采的甲醇等轻沸杂质通过差压输送方式进行排出,并对其采取焚烧处理措施。这种优化方式可以有效控制塔底四氢呋喃中的杂质含量,有助于四氢呋喃提纯效果的提升。 (二)操作的优化分析 1.常压共沸精馏塔的优化 在四氢呋喃的变压恒沸精馏工艺中,常压共沸精馏塔的优化关键在于温度分布的稳定性及TOC含量的有效控制。技术人员可以通过合理设定灵敏板温度来实现,一般来说,变压恒沸精馏工艺中的6号塔盘是灵敏板,技术人员需要保障灵敏板温度控制值的精准性,提高精馏操作的便捷性。在实际优化过程中,技术人员需要将灵敏板的温度点作为基准点,其设计值为106℃,逐渐减少灵敏板中温度点的控制值,并保障其他控制参数的稳定,采集温度降低情况下相应的TOC含量。 以某技术人员的实践为例,根据该技术人员采集的数据可知,在温度点的控制值降低到96℃时,塔底的TOC含量急剧增加,从100ppm 增加到400ppm;在温度点的控制值超过96℃时,塔底的TOC含量相对稳定,变化幅度维持在70-100ppm之间。因此,该技术人员将灵敏板的温度点作为控制点,将其温度的控制值设定为98-100℃的范围内,不仅可以控制塔底TOC的含量,还可以避免蒸汽消耗的出现,提高了四氢呋喃变压恒沸精馏工艺的环保性。 2.加压共沸精馏塔的优化 在四氢呋喃的变压恒沸精馏工艺中,加压共沸精馏塔的生产关键在于提高四氢呋喃的精度,技术人员可以通过精馏塔温度的控制及塔底废液的排放量控制,提高四氢呋喃的生产纯度与质量。精馏塔温度的控制与灵敏板温度控制的原理相同,不同之处在于精馏塔温度控制值设定的检测内容不是TOC的含量,而是检测塔底的水含量。 在塔底废液的排放量控制中,技术人员需要重点控制驰放塔及高沸塔塔底的废液。以某技术人员的实践为例,在驰放塔废液控制中,技术人员从2kg/h开始,将驰放塔废液的排放量增加到200kg/h,测量塔底四氢呋喃产品中含有的杂质含量,测量结果表明废液排放量在 20kg/h时,塔底的杂质含量趋于稳定。因此,在保障塔底四氢呋喃指标小于100ppm的基础上,技术人员将驰放塔的废液排放量设定为 40kg/h,在很大程度上避免了四氢呋喃产品浪费现象的出现[2]。高沸塔塔底的废液排放量设定方法与驰放塔相同,但是技术人员需要将其排放方式改为连续排放,以此降低四氢呋喃生产的损失。 结论:综上所述,四氢呋喃的提纯工艺流程较为复杂,存在消耗大、提纯质量低等问题。通过本文的分析可知,技术人员需要对变压

四氢呋喃

四氢呋喃 THF 四氢呋喃是一类杂环有机化合物.它是最强的极性醚类之一,在化学反应和萃取时用做一种中等极性的溶剂。 THF是一种澄清、低粘度的液体,具有类似乙醚的气味。室温时THF与水完全混溶。THF在储存时很容易 变成过氧化物。因此,商用的THF经常是用BHT,即2,6一二叔丁基对甲酚来防止氧化。 另外,THF也可以通过氢氧化钠置于密封瓶中存放在暗处。THF是芳香族化合物呋喃的完全氢化的类似物。 [英] Tetrahydrofuran。hydrofuran、oxolane、oxacyclopentane [别] 氧杂环戊烷 [缩] Sqtn [化学结构] OCH2CH2CH2CH2[化学物征] 无色液体,有类似已醚的气味,能溶于水及多数有机溶剂,有毒,空气中最高容许浓度为200PPM,小鼠一次吸入米数致死,浓度65毫克/立方米。相对密度0.888(20℃)、凝固点-108.5℃、沸点65.4℃、闪点-20℃、自燃点321℃、爆炸点极限2.3%---11.8%、最小引燃能量0.54毫焦。 [极限参数] (当3.67浓度时)蒸气压15.2千帕。 [火灾危险] 蒸气能与空气形成爆炸物,与酸接触能发生反应,遇明火强氧化剂有引起燃烧危险,与氢氧化钾、氢氧化钠有反应,未加过稳剂的四氢呋喃暴露在空气中能形成爆炸性的过氧化物。 [处置方法] 泡沫、干粉、砂土。 [用途] 四氢呋喃具有低毒、低沸点、流动性好等特点,是一种重要的有机合成原料和优良的溶剂,具有广泛的用途,四氢呋喃对许多有机物有良好的溶解性,它能溶解除聚乙烯,聚丙烯及氟树脂以外的所有有机化合物,特别是对聚氯乙烯,聚偏氯乙烯,和叮苯胺有良好的溶解作用,被广泛用作反应性溶剂,有“万能溶剂”之称。作为常用溶剂,四氢呋喃已普遍用于表面涂料,保护性涂料,油墨,萃取剂和人造革的表面处理,四氢呋喃是生产聚四亚甲基醚二醇(PTMEG)重要原料,也是制药行业的主要溶剂。 产品用途:四氢呋喃是一种重要的有机化工及精细化工原料,广泛应用于树脂溶剂(磁带涂层、PVC表面涂层、清洗PVC反应器、脱除PVC薄膜、玻璃纸涂层、塑料印刷油墨、热塑性聚氨酯涂层);反应溶剂(格式试剂、烷基碱金属化合物和芳基碱金属化合物、氢化铝和氢化硼、甾族化合物和大分子有机聚合物);化学中间产物(聚合生成PTMEG、天然气加味剂);色谱溶剂(凝胶渗透色谱法)。

四氢呋喃安全技术说明书(1)

四氢呋喃 (1)化学品及企业标识 化学品中文名:四氢呋喃;氧杂环戊烷 化学品英文名:tetrahydrofururan;tetramethylene oxide 分子式:C 4H 8 O 相对分子量:72.12 (2)成分/组成信息 成分:纯品 CAS No:109-99-9 (3)危险性概述 危险性类别:第3.1类低闪点液体 侵入途径:吸入、食入、经皮吸收 健康危害:本品具有刺激和麻醉作用。吸入后引起上呼吸道刺激、恶心、头晕、头痛和中枢神经系统抑制。能引起肝、肾损害。液体或高浓度蒸气对眼有刺激性。皮肤长期反复接触,可因脱脂作用而发生皮炎 环境危害:对水生生物有毒性 燃爆危险:极易燃,其蒸气与空气混合,能形成爆炸性混合物 (4)急救措施 皮肤接触:脱去污染的衣着,用肥皂水和清水彻底冲洗皮肤。如有不适感,就医眼睛接触:提起眼睑,用流动清水或生理盐水彻底冲洗10-15min。如有不适感,就医 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给属氧。呼吸、心跳停止,立即进行心肺复苏术。就医 食入:漱口。如有不适感。就医 (5)消防措施 危险特性:其蒸气与空气可形成爆炸性混合物,遇明火、高热及强氧化剂易引起燃烧。接触空气活在光照条件下可生成具有潜在爆炸危险性的过氧化物。与酸类接触能发生反应。与氢氧化钾、氢氧化钠反应剧烈。蒸气比空气重,沿地面扩散并易积存于低洼处,遇火源会着火回燃

有害燃烧产物:一氧化碳 灭火方法:用抗溶性泡沫、二氧化碳、干粉、砂土灭火 灭火注意事项及措施:消防人员必须佩戴空气呼吸器、穿全身防火防毒服,在上风向灭火。喷水冷却容器,可能的话将容器从火场移至空旷处。容器突然发出异常声音或出现异常现象,应立即撤离 (6)泄漏应急处理 应急行动:消除所有点火源。根据液体流动和蒸气扩散的影响区域划定警戒区,无关人员从侧、上风向撤离至安全区。建议应急处理人员戴正压自给式呼吸器,穿防静电服。作业时使用的所有设备应接地。禁止接触或跨越泄漏物。尽可能切断泄漏源。防止泄漏物进入水体、下水道、地下室或限制性空间。小量泄漏:用砂土或其他不燃材料吸收。使用洁净的无火化工具收集吸收材料。大量泄漏:构筑围堤或挖坑收容。用抗溶性泡沫覆盖,减少蒸发。喷水雾能减少蒸发,但不能降低泄漏物在限制性空间内的易燃性。用防爆泵转移至槽车或专用收集器内。喷雾状水驱散蒸气、稀释液体泄漏物 (7)操作处置与储存 操作注意事项:密闭操作,全面通风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面罩),戴安全防护眼镜,穿防静电工作服。远离火种、热源。工作场所严禁吸烟。使用防爆型的通风系统和设备。防止蒸气泄漏至工作场所空气中,避免与氧化剂、酸类、碱类接触。灌装时应控制流速,且有接地装置,防止静电积聚。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过29℃。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类等分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料 (8)接触控制/个体防护 监测方法:溶剂解吸-气相色谱法;热解吸-气相色谱法 工程控制:生产过程密闭,全面通风,提供安全淋浴和洗眼设备

污水处理中的化学除磷的工艺和方法

污水处理中的化学除磷的工艺和方法 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl 式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是 Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓ 式4 Fe3++3OH-→Fe(OH)3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH 值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4的溶

相关文档