文档库 最新最全的文档下载
当前位置:文档库 › 多元函数积分学检测题

多元函数积分学检测题

多元函数积分学检测题
多元函数积分学检测题

《多元函数积分学》检测题

班级_____________________ 学号_______ 姓名________________ 成绩________

一、选择题( 15分

)

1

40000000022222

22212(,),(cos ,sin )().

()(,);()(,);

()(,);()(,).

:,0:,0,0,0,().

(x y f x y d f r r rdr A f x y dy B f x y dy C f x y dx D f x y dx V x y z R z V x y z R x y z π

θθθ=++≤≥++≤≥≥≥??????????1.设为连续函数则2.设空间区域和则1212

1212

2222222222)4;()4;

()4;()

4.3.(0)().

()4;()2;()2(2);()(2).

4.[()]sin ()cos V V V V V V V V x L A xdV xdV B ydV ydV C zdV zdV D xyzdV xyzdV x y ax a x y z a A a B a C a D a f x e ydx f x ydy ππ====+=>++=----?????????????????????????圆柱面位于球面内的面积是设()22223335555()(0)0()(

).

();();()1;()1.

22225..

12

12

()4;()4;();().

55x x

x x

x x

x x

S

f x f f x e e e e e e e e A B C D S x y z R x dydz y dzdx z dxdy A R B R C R D R ππππ----==--++--++=++=--?? 与路径无关,且有一阶连续导数,,则设为球面的内侧,则曲面积分二、填空题( 15分 )

2222

011222222

221.:(,)________________________________.

2.(),()(),()_________________.

3.1,,(234)________________.

434.y

x y z t L dy f x y dx f u F t f x y z dxdydz F t x y L a xy x y ds L --++≤='=++=+=++=?????? 交换积分次序设连续则设为椭圆其周长为则设

为一222222222,,,-________________.25.11,(-)(-)()____________.

[1],{(,)|L S

D

L xdy ydx

x y S x y z x y z x y dydz y z dzdx z x dxdy xy x y d D x y x y x σ=+++=++=++-=++=+≤≥????? 条不过原点的光滑闭曲线且原点位于内部其走向为逆时针方向则曲线积分设为平面位于球面内的上侧则曲面积分

三、(8分)求其中22220,0},[1]1.

y x y x y ≥++++表示不

超过的最大整数

四、( 8分

)222 1. 2.V z x y z V V =+=设是由所围成的立体,求:

的体积;的表面积.

22222(sin ),(0)(,0)(,0).L

x x y dx xy dy L x y a a A a B a -++=>-?五、(8分)计算其中为上半圆周从点到点的弧段

六、( 8分 )220.L xdx aydy L a x y -=+?

已知是平面上任意一条简单闭曲线,问为何值时曲线积分

2,(,),0,(,)(,),:,(,)(,)0.L D f x y t f tx ty t f x y D L yf x y dx xf x y dy -?>=-=? 七、(8分)设在上半平面内有连续偏函数且对都有证明对内任意分段光滑的有向简单闭曲线有

(1,0,0),(0,2,0),(0,0,3)(,,),{,,},,,,?A B C M a b c F yz zx xy a b c F = 八、(10分)设质点从原点出发沿直线运动到以为顶点的三角形内某一点在此过程中受到力的作用问取何值时对质点作功最大

九、( 10分

)22222计算是球面的下半部分的上侧.S S x y z a ++=

22

22()(),()()(,),(0.9),130?

x y h t t z h t h t cm cm +=-十、(10分)设有一高度为为时间的雪堆在融化过程中其侧面满足方程长度单位为时间为小时已知体积减少的速度与侧面面积成正比比例系数问高度为的雪堆全部融化需多少小时

多元函数微积分测试题

第七、八、九章 多元函数微积分 复习测试题 一、单项选择题(每题2分) 1、在空间直角坐标系中,1=y 表示( )。 A 、垂直于x 轴的平面 B 、垂直于y 轴的平面 C 、垂直于z 轴的平面 D 、直线 2、用平面1=z 截曲面22y x z +=,所得截线是( )。 A 、圆 B 、直线 C 、抛物线 D 、双曲线 3、下列关于二元函数的说法正确的是( )。 A 、可偏导一定连续 B 、可微一定可偏导 C 、连续一定可偏导 D 、连续一定可微 4、设3 2 y xy x z +-=,则=???y x z 2( )。A 、y 612+- B 、x - C 、y - D 、1- 5.若函数),(y x z z =的全微分y y x x y z d sin d cos d -=,则二阶偏导数y x z ???2=( ) A .y sin - B .x sin C .x cos D . y cos 6、函数x x y y x f 2),(22+-=在驻点(1,0)处( ) A .取极大值 B .取极小值 C .无极值 D .无法判断是否取极值 7.若函数),(y x f z =的一阶偏导存在,且 y y f xy x z ==??),0(,2,则=),(y x f ( ) A .y x 2 B .2 xy C .y y x +2 D .y xy +2 8、设20,10:x y x D ≤≤≤≤;则下列与 ??D dxdy 的值不相等的是( ) 。 A 、 ?1 2 dx x B 、? 1 dy y C 、?-1 )1(dy y D 、??1 2 x dy dx 9、二次积分dy y x x dx x ? ? -+240 2220 转化为极坐标下的二次积分为( ) A 、dr r d ??20 32 cos θθπ B 、dr r d ?? 2 22 cos θθπ C 、 dr r d ?? 2 30 cos θθπ D 、dr r d ??2 20 cos θθπ 10、x y x D ≤≤≤||,10:,则二重积分=??D dxdy ( ) 。 A 、 ? 10 ydy B 、 ? 10 xdx C 、 ? -11 ydy D 、 ? 10 2xdx 二、填空题(每空3分) 11、0242 2 2 =+++-z z y x x 的图形是球心为 的球面。

大学微积分复习题

0201《微积分(上)》2015年06月期末考试指导 一、考试说明 考试题型包括: 选择题(10道题,每题2分或者3分)。 填空题(5-10道题,每题2分或者3分)。 计算题(一般5-7道题,共40分或者50分)。 证明题(2道题,平均每题10分)。 考试时间:90分钟。 二、课程章节要点 第一章、函数、极限、连续、实数的连续性 (一)函数 1.考试内容 集合的定义,集合的性质以及运算,函数的定义,函数的表示法,分段函数,反函数,复合函数,隐函数,函数的性质(有界性、奇偶性、周期性、单调性),基本初等函数,初等函数。 2.考试要求 (1)理解集合的概念。掌握集合运算的规则。 (2)理解函数的概念。掌握函数的表示法,会求函数的定义域。 (3)了解函数的有界性、奇偶性、周期性、单调性。 (4)了解分段函数、反函数、复合函数、隐函数的概念。 (5)掌握基本初等函数的性质和图像,了解初等函数的概念。 (二)极限 1.考试内容 数列极限的定义与性质,函数极限的定义及性质,函数的左极限与右极限,无穷小与无穷大的概念及其关系,无穷小的性质及无穷小的比较,极限的四则运算,极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限。 2.考试要求 (1)理解数列及函数极限的概念 (2)会求数列极限。会求函数的极限(含左极限、右极限)。了解函数在一点处极限存在的充分必要条件。 (3)了解极限的有关性质(惟一性,有界性)。掌握极限的四则运算法则。 (4)理解无穷小和无穷大的概念。掌握无穷小的性质、无穷小和无穷大的关系。了解高阶、同阶、等价无穷小的概念。 (5)掌握用两个重要极限求极限的方法。 (三)连续 1.考试内容 函数连续的概念,左连续与右连续,函数的间断点,连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理,零点定理)。 2.考试要求 (1)理解函数连续性的概念(含左连续、右连续)。会求函数的间断点。

用MATLAB算多元函数积分

用MATLAB 计算多元函数的积分 三重积分的计算最终是化成累次积分来完成的,因此只要能正确的得出各累次积分的积分限,便可在MA TLAB 中通过多次使用int 命令来求得计算结果。但三重积分的积分域Ω是一个三维空间区域,当其形状较复杂时,要确定各累次积分的积分限会遇到一定困难,此时,可以借助MATLAB 的三维绘图命令,先在屏幕上绘出Ω的三维立体图,然后执行命令 rotate3d on ↙ 便可拖动鼠标使Ω的图形在屏幕上作任意的三维旋转,并且可用下述命令将Ω的图形向三个坐标平面进行投影: view(0,0),向XOZ 平面投影; view(90,0),向YOZ 平面投影; view(0,90),向XOY 平面投影. 综合运用上述方法,一般应能正确得出各累次积分的积分限。 例11.6.1计算zdv Ω ???,其中Ω是由圆锥曲面222z x y =+与平面z=1围成的闭区域 解 首先用MA TLAB 来绘制Ω的三维图形,画圆锥曲面的命令可以是: syms x y z ↙ z=sqrt(x^2+y^2); ↙ ezsurf(z,[-1.5,1.5]) ↙ 画第二个曲面之前,为保持先画的图形不会被清除,需要执行命令 hold on ↙ 然后用下述命令就可以将平面z=1与圆锥面的图形画在一个图形窗口内: [x1,y1]=meshgrid(-1.5:1/4:1.5); ↙ z1=ones(size(x1)); ↙ surf(x1,y1,z1) ↙ 于是得到Ω的三维图形如图:

由该图很容易将原三重积分化成累次积分: 111zdv dy -Ω=???? 于是可用下述命令求解此三重积分: clear all ↙ syms x y z ↙ f=z; ↙ f1=int(f,z.,sqrt(x^2+ y^2),1); ↙ f2=int(f1,x,-sqrt(1- y^2), sqrt(1- y^2)); ↙ int(f2,y,-1,1) ↙ ans= 1/4*pi 计算结果为4 π 对于第一类曲线积分和第一类曲面积分,其计算都归结为求解特定形式的定积分和二重积分,因此可完全类似的使用int 命令进行计算,并可用diff 命令求解中间所需的各偏导数。 例11.6.2用MATLAB 求解教材例11.3.1 解 求解过程如下 syms a b t ↙ x=a*cos(t); ↙ y=a*sin(t); ↙ z=b*t; ↙ f=x^2 +y^2+z^2; ↙ xt=diff(x,t); ↙ yt=diff(y,t); ↙ zt=diff(z,t); ↙ int(f*sqrt(xt^2 +yt^2+zt^2),t,0,2*pi) ↙ ans= 2/3*( a^2 +b^2)^1/2*a^2*pi+8/3*( a^2 +b^2)^1/2*b^2*pi^3 对此结果可用factor 命令进行合并化简: factor (ans ) ans= 2/3*( a^2 +b^2)^1/2*pi*(3* a^2 +4*b^2*pi^2) 例11.6.3用MATLAB 求解教材例11.4.1 解 求解过程如下 syms x y z1 z2↙ f= x^2 +y^2; ↙ z1=sqrt(x^2 +y^2); ↙ z2=1; ↙ z1x=diff(z1,x); ↙ z1y=diff(z1,y); ↙ z2x=diff(z2,x); ↙ z2y=diff(z2,y); ↙

一元函数微分学习题

第二部分 一元函数微分学 [选择题] 容易题 1—39,中等题40—106,难题107—135。 1.设函数)(x f y =在点0x 处可导,)()(00x f h x f y -+=?,则当0→h 时,必有( ) (A) y d 是h 的同价无穷小量. (B) y y d -?是h 的同阶无穷小量。 (C) y d 是比h 高阶的无穷小量. (D) y y d -?是比h 高阶的无穷小量. 答D 2.已知)(x f 是定义在),(+∞-∞上的一个偶函数,且当0'x f x f , 则在),0(+∞内有( ) (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 答C 3.已知)(x f 在],[b a 上可导,则0)(<'x f 是)(x f 在],[b a 上单减的( ) (A )必要条件。 (B) 充分条件。 (C )充要条件。 (D )既非必要,又非充分条件。 答B 4.设n 是曲线x x x y arctan 2 2 2 -=的渐近线的条数,则=n ( ) (A) 1. (B) 2 (C) 3 (D) 4 答D 5.设函数)(x f 在)1,1(-内有定义,且满足)1,1(,)(2-∈?≤x x x f ,则0=x 必是

)(x f 的( ) (A )间断点。 (B )连续而不可导的点。 (C )可导的点,且0)0(='f 。 (D )可导的点,但0)0(≠'f 。 答C 6.设函数f(x)定义在[a ,b]上,判断何者正确?( ) (A )f (x )可导,则f (x )连续 (B )f (x )不可导,则f (x )不连续 (C )f (x )连续,则f (x )可导 (D )f (x )不连续,则f (x )可导 答A 7.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的导数的几何意义是:( ) (A )0x 点的切向量 (B )0x 点的法向量 (C )0x 点的切线的斜率 (D )0x 点的法线的斜率 答C 8.设可微函数f(x)定义在[a ,b]上,],[0b a x ∈点的函数微分的几何意义是:( ) (A )0x 点的自向量的增量 (B )0x 点的函数值的增量 (C )0x 点上割线值与函数值的差的极限 (D )没意义 答C 9.x x f = )(,其定义域是0≥x ,其导数的定义域是( ) (A )0≥x

多元函数微分学练习题

多元函数微分学练习题 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第五章(多元函数微分学) 练习题 一、填空题 1. (,)(0,0)sin()lim x y xy y →= . 2. 22 (,)(0,0)1lim ()sin x y x y x y →+=+ . 3. 1 (,)(0,0)lim [1sin()]xy x y xy →+= . 4. 设21sin(), 0,(,)0, 0x y xy xy f x y xy ?≠?=??=? 则(0,1)x f = . 5. 设+1(0,1)y z x x x =>≠,则d z = . 6. 设22ln(1)z x y =++,则(1,2)d z = . 7. 设u =d u = . 8. 若(,)f a a x ?=? ,则x a →= . 9. 设函数u =0(1,1,1)M -处的方向导数的最大值为 . 10. 设函数23u x y z =++,则它在点0(1,1,1)M 处沿方向(2,2,1)l =-的方向导数为 . 11. 设2z xy =,3l i j =+,则21x y z l ==?=? . 12. 曲线cos ,sin ,tan 2 t x t y t z ===在点(0,1,1)处的切线方程是 . 13. 函数z xy =在闭域{(,)0,0,1}D x y x y x y =≥≥+≤上的最大值是 . 14. 曲面23z z e xy -+=在点(1,2,0)处的切平面方程为 . 15. 曲面2:0x z y e -∑-=上点(1,1,2)处的法线方程是 . 16. 曲面22z x y =+与平面240x y z +-=平行的切平面方程是 .

《多元函数微分学》练习题参考答案

多元微分学 P85-练习1 设)cos(2z y e w x +=,而3x y =,1+=x z ,求 dx dw . 解: dw w w dy w dz dx x y dx z dx ???=+?+???? 2222cos()[sin()(3x x e y z e y z x =++-+? 23232cos((3x e x x x ?? =-+???? P86-练习2 设函数20 sin (,)1xy t F x y dt t = +? ,则22 2 x y F x ==?=? . (2011) 解: 2222222222 sin cos (1)2sin ,1(1)F y xy F y xy x y xy xy y x x y x x y ??+-==??+?+, 故 22 02 4x y F x ==?=? P86-练习3 设)(2 2 y x f z +=,其中f 有二阶导数,求22x z ?? ,22y z ??.(2006) 解:z f x ?'=?; 2223222222).(z x y f f x x y x y ?'''=?+??++ 同理可求 222 222222 () z y x f f y x y x y ?'''=?+??++. P87-练习4 设)(), (x y g y x xy f z +=,其中f 有二阶连续偏导数,g 有二阶导数,求y x z ???2. (2000) 解: 根据复合函数求偏导公式 1221()z y f y f g x y x ?'''=?+?+?-?,

122111122212222211122223323221()111 [()][()]11 z y f y f g y x y y x x x y f y f x f f f z x y x y f xyf f f g g y y x x f g g y y y y x x x ?? ?????'''==????''+?+?- ? ???????? '''''''''''''=''''''' +---++?--++?--?-?-= P87-练习5 设函数(,())z f xy yg x =,其中函数f 具有二阶连续偏导数,函数()g x 可 导且在1x =处取得极值(1)1g =,求 211 x y z x y ==???. (2011) 解:由题意(1)0g '=。因为 12()z yf yg x f x ?'''=+?, 21111222122()()()()z f y xf g x f g x f yg x xf g x f x y ?????''''''''''''=+++++??????, 所以 211 12111 (1,1)(1,1)(1,1)x y z f f f x y ==?'''''=++?? P88-练习6 设),,(xy y x y x f z -+=,其中f 具有二阶连续偏导数,求dz , y x z ???2. (2009) 解: 123123,z z f f yf f f xf x y ??''''''=++=-+?? 123123()()z z dz dx dy f f yf dx f f xf dy x y ??''''''= +=+++-+?? () 1231112132122233313233211132223333(1)(1)(1()())f f yf y z x y f x y f f x y f xyf f f f x f f f x f f f y f f x ?'''=++???'''''''''''''???'''''''''''=+?-+?++?-+'''''' =++-+-+?+++?-+???+

多元函数微分学习题课

多元函数微分学习题课 1.已知)(),(22y x y x y x y x f ++-=-+?,且x x f =)0,(,求出),(y x f 的表达式。 2.(1)讨论极限y x xy y x +→→00lim 时,下列算法是否正确?解法1:0111lim 00=+=→→x y y x 原式;解法2:令kx y =,01lim 0=+=→k k x x 原式;解法3:令θcos r x =,θsin r y =,0sin cos cos sin lim 0=+=→θθθθr r 原式。 (2)证明极限 y x xy y x +→→0 0lim 不存在。 3.证明 ?????=≠+=00 )1ln(),(x y x x xy y x f 在其定义域上处处连续。 4. 试确定 α 的范围,使 0|)||(|lim 22)0,0(),(=++→y x y x y x α 。 5. 设 ?? ???=+≠+++=000)sin(||),(22222222y x y x y x y x xy y x f ,讨论 (1)),(y x f 在)0,0(处是否连续? (2)),(y x f 在)0,0(处是否可微? 6. 设F ( x , y )具有连续偏导数, 已知方程0),(=z y z x F ,求dz 。 7. 设),,(z y x f u =有二阶连续偏导数, 且t x z sin 2=,)ln(y x t +=,求x u ??,y x u ???2。 8. 设)(u f z =,方程?+ =x y t d t p u u )()(?确定u 是y x ,的函数,其中)(),(u u f ?可微,)(),(u t p ?'连续,且 1)(≠'u ?,求 y z x p x z y p ??+??)()(。 9. 设22v u x +=,uv y 2=,v u z ln 2=,求y z x z ????,。 10.设),,(z y x f u =有连续的一阶偏导数 , 又函数)(x y y =及)(x z z =分别由下两式确定: 2=-xy e xy ,dt t t e z x x ?-=0sin ,求dx du 。 11. 若可微函数 ),(y x f z = 满足方程 y z x z y x '=',证明:),(y x f 在极坐标系里只是ρ的函数。

2多元函数积分学.docx

2.多元函数积分学 K考试内容》(数学一) 二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用 K考试要求》(数学一) 1 ?理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。 2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。 3?理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 4.掌握计算两类曲线积分的方法。 5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。会用高斯公式、斯托克斯公式计算曲面、曲线积分。 7.了解散度与旋度的概念,并会计算。 8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。 K考试要求』(数学二) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 K考试要求》(数学三) 1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。 2.了解无界区域上较简单的广义二重积分及其计算。 K考试要求》(数学四) 同数学三

2.多元函数积分学 K知识点概述H 2. 1二重积分 基本概念:定义、基本性质 计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区 域;&型简单区域)一般变换法 几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量 2. 2三重积分 基本概念:定义、基本性质 计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域 投影法(先定积分后二重积分) 截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法 儿何应用:体积物理应用:质量、质心、转动惯量、引力 2. 3曲线积分 第一类曲线积分 基本概念:定义、基本性质 计算方法:参数化法 儿何应用:弧长 物理应用:质量、质心、转动惯量、引力 第二类曲线积分 基本概念:定义、基本性质计算方法:参数化法 曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形); 全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克 斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系

多元函数微积分复习题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( ). C A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( ). C A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

一元函数微分学综合练习题

第二章 综合练习题 一、 填空题 1. 若21lim 11x x x b x →∞??+-+= ?+?? ,则b =________. 2. 若当0x →时,1cos x -与2sin 2x a 是等价无穷小,则a =________. 3. 函数21()1ln f x x = -的连续区间为________. 4. 函数2()ln |1| x f x x -=-的无穷间断点为________. 5. 若21sin ,0,(),0, x x f x x a x x ?>?=??+?…在R 上连续,则a =________. 6. 函数()sin x f x x =在R 上的第一类间断点为________. 7 当x → 时,1 1x e -是无穷小量 8 设21,10(), 012,12x x f x x x x x ?--≤

多元函数微积分复习试题

多元函数微积分复习题 一、单项选择题 1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D ) (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. … 3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ). (A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ). A. 若0 lim x x y y A →→=, 则必有0lim (,)x x f x y A →=且有0 lim (,)y y f x y A →=; B. 若在00(,)x y 处 z x ??和z y ??都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处 z x ??和z y ??存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ??和22z y ??都存在, 则. 22z x ??=22 z y ??. ] 5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ). A. 可微(指全微分存在)?可导(指偏导数存在)?连续; B. 可微?可导?连续; C. 可微?可导, 或可微?连续, 但可导不一定连续; D. 可导?连续, 但可导不一定可微. 6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 2

多元函数微积分练习题

练习题 一 多元函数微分学部分练习题 1 求函数y x y x z -+ += 11的定义域. 2已知xy y x xy y x f 5),(2 2 -+=-,求),(y x f . 3计算下列极限 (1) 22) 0,1(),() ln(lim y x e x y y x ++→ (2) 442 2),(),(lim y x y x y x ++∞∞→ (3) 2 43lim ) 0,0(),(-+→xy xy y x (4) x y x xy 1) 1,0(),()1(lim +→ (5)2222)1,2(),(2lim y x y x xy y x ++→ (6)2222)0,0(),() (2sin lim y x y x y x ++→ 4 证明极限 y x y x y x +-→)0,0(),(lim 不存在. 5 指出函数2 2),(y x y x y x f -+= 的间断点. 6计算下列函数的偏导数 (1))ln(2y x z = (2)x xy z )1(-= (3)),(2 y x f x z = (4))(xy x z ?= (5)y xy y x z 234 4+-+= (6))ln(22y x z += (7))3cos(22y x e z y x += (8)y xy z )1(+= (9)2 221 z y x u ++= (10)? = 220 sin y x dt t z 7 计算下列函数的二阶偏导数 (1)2 43y xy x z -+= (2))ln(xy y z = (3)y e z xy sin = (4)),(2 y x f x z = (5)2 (,)z f xy x =

第八讲 多元函数积分学知识点

第八讲 多元函数积分学知识点 一、二重积分的概念、性质 1、 ∑??=→?=n i i i i d D f dxdy y x f 1 0),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。 2、性质: (1)=??D dxdy y x kf ),(??D dxdy y x f k ),( (2)[]??+D dxdy y x g y x f ),(),(= ??D dxdy y x f ),(+??D dxdy y x g ),( (3)、D d x d y D =?? (4)21D D D +=,??D dxdy y x f ),(=??1),(D dxdy y x f +??2 ),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤??D dxdy y x f ),(??D dxdy y x g ),( (6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤??),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=??D dxdy y x f ),(D f ),(ηξ 二、计算 (1) D:)()(,21x y x b x a ??≤≤≤≤ ????=) ()(21),(),(x x b a D dy y x f dx dxdy y x f ?? (2) D :)()(,21y x y d y c ??≤≤≤≤, ????=) ()(21),(),(x x d c D dy y x f dy dxdy y x f ?? 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和 垂直线的方法确定另一个变量的范围 (3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos ????=) (0)sin ,cos ( ),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分 1、第一型曲线积分的计算 (1)若积分路径为L :b x a x y ≤≤=),(φ,则

一元函数微分学练习题(答案)

一元函数微分学练习题答案 一、计算下列极限: 1.93 25 235lim 222-=-+=-+→x x x 2.01)3(3)3(13lim 2 2223=+-=+-→x x x 3.x x x 11lim --→) 11(lim )11()11)(11(lim 00+--=+-+---=→→x x x x x x x x x 21 1 011 1 11lim -=+--= +--=→x x 4.0111 111lim )1)(1()1(lim 112lim 1212 21=--+-=-+=-++=-++-→-→-→x x x x x x x x x x x 5.21 )23()124(lim 2324lim 202230=++-=++-→→x x x x x x x x x x x x 6.x t x t x t x x t x t x t x t t t 2)2(lim ) )((lim )(lim 00220-=--=--+-=--→→→ 7.0001001311 1lim 13lim 4 2322 42=+-+=+-+ =+-+∞ →∞→x x x x x x x x x x 8.943)3(2) 13()31()12(lim )13()31()12(lim 10 82108 210 108822=-?=---=---=∞→∞→x x x x x x x x x x x 原式 9.2)211(lim 22 11)211(1lim )21...41211(lim =-=-- =++++∞→∞→∞→n n n n n n 10.21 2lim 02tan lim 3sin lim )2tan 3sin (lim 0000=+=+=+ →→→→x x x x x x x x x x x x x x 11.01 sin lim 20=→x x x (无穷小的性质)

多元函数微分学习题

第五部分 多元函数微分学(1) [选择题] 容易题1—36,中等题37—87,难题88—99。 1.设有直线? ??=+--=+++031020 123:z y x z y x L 及平面0224:=-+-z y x π,则直线L ( ) (A) 平行于π。 (B) 在上π。(C) 垂直于π。 (D) 与π斜交。 答:C 2.二元函数??? ??=≠+=)0,0(),(, 0)0,0(),(,),(22y x y x y x xy y x f 在点)0,0(处 ( ) (A) 连续,偏导数存在 (B) 连续,偏导数不存在 (C) 不连续,偏导数存在 (D) 不连续,偏导数不存在 答:C 3.设函数),(),,(y x v v y x u u ==由方程组? ??+=+=2 2v u y v u x 确定,则当v u ≠时,=??x u ( ) (A) v u x - (B) v u v -- (C) v u u -- (D) v u y - 答:B 4.设),(y x f 是一二元函数,),(00y x 是其定义域内的一点,则下列命题中一定正确的是( ) (A) 若),(y x f 在点),(00y x 连续,则),(y x f 在点),(00y x 可导。 (B) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 连续。 (C) 若),(y x f 在点),(00y x 的两个偏导数都存在,则),(y x f 在点),(00y x 可微。 (D) 若),(y x f 在点),(00y x 可微,则),(y x f 在点),(00y x 连续。 答:D 5.函数2223),,(z y x z y x f +++=在点)2,1,1(-处的梯度是( ) (A) )32,31, 31(- (B) )32,31,31(2- (C) )92,91,91(- (D) )9 2 ,91,91(2- 答:A

多元函数积分学

多元函数积分学总结 多元函数积分学是一元函数积分学的拓展与延伸,包括二重积分、三重积分、曲线积分、曲面积分。 几何意义:曲顶柱体的体积 性质:线性性质、可加性、单调性、估值性质、中值定理 计算方式:x 型、y 型、极坐标(2 2 y x +) 常见计算类型: ① 选择积分顺序:能积分、少分块 ② 交换积分顺序:确定积分区域→交换积分顺序→开始积分 ③ 利用对称性简化计算:要兼备被积函数和积分区域两个方面,不可误用。 ④ 极坐标系下的二重积分的定限:极点在积分区域内(特殊:与x 轴相切、与y 轴相切)、极点不在积分区域内 ⑤ 其他:利用几何意义、含绝对值时先去绝对值、分段函数、概率积分 了解“积不出来函数”:dx x ?)cos(2、dx e x ? -2 、dx x ? ln 1、dx x x ?sin 概率积分例题展示 证明 2 2 π = ? ∞ +-dx e x 证:令=)(x f 2 x e - ① 易证)()(x f x f -=?)(x f 为偶函数? 2 12 = ? +∞ -dx e x dx e x 2 ? +∞ ∞ -- (奇偶对称性、轮换对称性、周期性→简化计算) ② 已知dx e x ? -2 为“积不出来函数”,所以改变我们所求目标函数dx e x 2 ?+∞ ∞ --的形式 令= w dx e x 2 ? +∞ - 4 1 2 =w ? dx e x 2 ? +∞ ∞ -- 4 1= dxdx e x x ? ?+∞ ∞ -+-+∞ ∞ -) (22 (了解“积不出来函数”,增强目标意识,适当转化目标函数形式)

③ 令其中一个x 变成y ,构造2 2 y x + 2 w 4 1 = dxdy e y x ? ?+∞ ∞ -+-+∞∞ -) (22 ④ 将θcos r x =,θsin r y =带入上一步的2 w 易得),0(+∞∈r ,)2,0(π∈θ 2 w =θdrd e r r ? ?-+∞ ?π 20 2 41 = ?? +∞ -?π20 2 θd dr e r r 20 2 12 1 2dr e r ?=? +∞ -π 2021212 lim dr e b r b ?=?-+∞ →π )1(2121 2lim --=-+∞ →b b e π π4 1==?w 2π 即220π=?∞+-dx e x 成立 (极坐标系?直角坐标系,选择合适的积分次序将二重积分?二次积分,了解广义定积分) (此类积分为概率积分 b dt e b dx e t bx π 2110 2 2 ? ? ∞ +-∞ +-= = )

一元函数微积分基本练习题及答案

一、极限题 1、求.)(cos lim 2 1 x x x → 2、6 sin )1(lim 2 2 x dt e x t x ?-→求极限。 3、、)(arctan sin arctan lim 20x x x x x -→ 4、2 1 0sin lim x x x x ?? ? ??→ 5、? ?+∞ →x t x t x dt e dt e 0 20 2 2 2)(lim 6、 ) 1ln(1 lim -→+x e x x 7、x x x e x cos 11 20 ) 1(lim -→+ 8、 x x x x x x ln 1lim 1+--→ 9、) 1ln()2(sin ) 1)((tan lim 2 30 2 x x e x x x +-→ 10、1 0lim( )3 x x x x x a b c →++ , (,,0,1)a b c >≠ 11、)1)(12(lim 1--+∞ →x x e x 12、 )cot 1(lim 2 20x x x -→ 13、[] )1(3sin 1 lim 11x e x x ---→ 14、() ?? ???=≠+=0 021)(3 x A x x x f x 在0=x 点连续,则A =___________ 二、导数题 1、.sin 2 y x x y ''=,求设 2、.),(0y x y y e e xy y x '==+-求确定了隐函数已知方程 3、.)5()(2 3 的单调区间与极值求函数-=x x x f 4、要造一圆柱形油罐,体积为V ,问底半径r 和高h 等于多少时,才能使表面积最小,

(完整版)高等数学(同济版)多元函数微分学练习题册

第八章 多元函数微分法及其应用 第 一 节 作 业 一、填空题: . sin lim .4. )](),([,sin )(,cos )(,),(.3arccos ),,(.21)1ln(.102 2 2 2 322= ===-=+=+++-+-=→→x xy x x f x x x x y x y x f y x z z y x f y x x y x z a y x ψ?ψ?则设的定义域为 函数的定义域为函数 二、选择题(单选): 1. 函数 y x sin sin 1 的所有间断点是: (A) x=y=2n π(n=1,2,3,…); (B) x=y=n π(n=1,2,3,…); (C) x=y=m π(m=0,±1,±2,…); (D) x=n π,y=m π(n=0,±1,±2,…,m=0,±1,±2,…)。 答:( ) 2. 函数?? ???=+≠+++=0,20,(2sin ),(22222 22 2y x y x y x y x y x f 在点(0,0)处: (A )无定义; (B )无极限; (C )有极限但不连续; (D )连续。 答:( ) 三、求.4 2lim 0xy xy a y x +-→→ 四、证明极限2222 20 0)(lim y x y x y x y x -+→→不存在。

第 二 节 作 业 一、填空题: . )1,(,arcsin )1(),(.2. )1,0(,0,0 ),sin(1),(.122 =-+== ?????=≠=x f y x y x y x f f xy x xy y x xy y x f x x 则设则设 二、选择题(单选): . 4 2)(;)(2)(;4ln 2)()(;4ln 2 )(:,22 2 2 2 2 2y x y x y x y y x y D e y x y C y y x B y A z z ++++?+?+??=等于则设 答:( ) 三、试解下列各题: .,arctan .2. ,,tan ln .12y x z x y z y z x z y x z ???=????=求设求设 四、验证.2 2222222 2 2 r z r y r x r z y x r =??+??+??++=满足 第 三 节 作 业 一、填空题: . ,.2. 2.0,1.0,1,2.1= == =?-=?=?===dz e z dz z y x y x x y z x y 则设全微分值 时的全增量当函数 二、选择题(单选): 1. 函数z=f(x,y)在点P 0(x 0,y 0)两偏导数存在是函数在该点全微分存在的: (A )充分条件; (B )充要条件; (C )必要条件; (D )无关条件。 答:( )

《多元函数微积分》习题解答第二章-15页word资料

习题2-1 1、解:在任意一个面积微元 SKIPIF 1 < 0 上的压力微元 SKIPIF 1 < 0 ,所以,该平面薄片一侧所受的水压力 SKIPIF 1 < 0 2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量??=D d y x Q σμ),( 3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得 ( ) ()????≤≤≤≤≤≤≤≤++≤ ++1 01 01 010221ln 1ln y x y x d y x d y x σσ 4、解:积分区域D 如图2-1-1所示,所以该物体的质量 3 4 )384438()()(1 0321 22 2 2 2 =-+-=+=+=??? ??-dy y y y dx y x dy d y x M y y D σ 5、解:(1)积分区域如图2-1-2所示,所以????=1 10010),(),(x y dy y x f dx dx y x f dy (2)积分区域如图2-1-3所示,所以? ???=x x y y dy y x f dx dx y x f dy 2 /4 22 ),(),(2 ( 3 ) 积分 区 域 如图2-1-4所示,所以 ? ???+----=1 1210 2221 22 ),(),(y y x x x dx y x f dy dy y x f dx (4)积分区域如图2-1-5所示,所以????=e e x e y dx y x f dy dy y x f dx ),(),(1 0ln 00 6、解:(1)积分区域如图2-1-6所示,所以 () ? ????=??? ??-=-==1 01 054/1134/310 55 6 5111432322x x dx x x x dy y x dx d y x x x D σ ( 2) 积 分区 域如图2-1-7所示,所以 15 64)4(2122 2240 22 2 2 2 =-==? ? ???--dy y y dx xy dy d xy y D σ

相关文档
相关文档 最新文档