文档库 最新最全的文档下载
当前位置:文档库 › 钢筋混凝土构件不同有限元模型对比分析

钢筋混凝土构件不同有限元模型对比分析

钢筋混凝土构件不同有限元模型对比分析
钢筋混凝土构件不同有限元模型对比分析

文章编号:100926825(2007)0120062202

钢筋混凝土构件不同有限元模型对比分析

收稿日期:2006206221

作者简介:安东亚(19812),男,同济大学土木工程防灾国家重点试验室硕士研究生,上海 200092

安东亚

摘 要:通过采用三种模型对钢筋混凝土梁进行对比分析,发现在完全弹性阶段不同模型的计算结果并无显著差别,进

入塑性阶段后简化模型会带来较大误差,如果整体结构分析中梁柱采用一维线单元模型,应对计算结果进行折减。关键词:有限元模型,承载力曲线,钢筋混凝土结构中图分类号:TU375文献标识码:A

有限元方法是当今结构计算分析中最常用的方法,

为了提高

计算精度,往往需要建立较为精细的计算模型,但由于计算机能力的限制,很多时候必须采用简化模型。钢筋混凝土结构中,由于混凝土材料本身的特殊性能以及和钢筋两种材料的组合使用,给结构的简化和分析的精度带来了麻烦。在钢筋混凝土结构的整体分析中,不可能采用精细模型,那么所采用的简化模型精度究竟如何,文中通过构件层次上三种模型的对比分析,给出一些可供参考的结论。

1 模型计算

目前钢筋混凝土结构的有限元模型一般主要有三种方式:整体式、组合式和分离式[1]。文中利用大型通用有限元程序ANSYS

对一根钢筋混凝土梁[2]

采用三种模型(分离式、整体式和beam189复合截面式)进行分析对比。

实例参数:矩形截面钢筋混凝土简支梁,配有受拉主筋、受压钢筋、箍筋。荷载以及截面配筋情况见图1,图2。材料性能:混凝土在开裂前采用多线性随动强化本构关系,裂缝张开传递系数0.4,裂缝闭合传递系数1。钢筋采用双线性随动硬化材料模型。

1.1 模型一

精细模型,混凝土采用solid65单元[3],考虑拉开和压碎,分离式配筋。利用对称性,建立一半模型,见图3a ),其中节点总数:1935;单元总数:2076。计算结果见图4。

结果曲线上a ,b ,c 三个关键点分别代表梁底部混凝土受拉开

裂,底部受拉主筋开始屈服,以及梁顶部混凝土被压碎。这和实际

The discussions about some notions in the energy method of structure analysis

SUN Yu an XU X u an

Abstract :Concludes and analyses the physical notion and mathematical method of the principle of resident potential energy ,furthermore de 2ducing the derivative principles :principle of invariable potential energy ,principle of least potential energy and Timoshenko energy method ,the applicable conditions of which are narrated ,making the physical and mathematical notions consistent.

K ey w ords :principle of resident potential energy ,principle of invariable potential energy ,the least protential energy

?

26?第33卷第1期2007年1月 山西建筑SHANXI ARCHITECTURE

Vol.33No.1Jan. 2007

情况是比较吻合的,同时说明了该梁为适筋梁。该模型能够比较准确地模拟钢筋混凝土梁受弯破坏的全过程。

1.2 模型二

solid65整体弥散式配筋,三个方向的配筋率分别为:1.35%,

0.9%,0.45%,其中节点总数:1935;单元总数:1472,见图3b )。计算结果见图5。曲线上仍然有三个关键点,其中a 点和离散式配筋模型一样,表示梁底部混凝土受拉开裂,b 点为梁顶部混凝土开始被压碎,开裂点早于离散式配筋模型,c 点以后为裂缝大量出现阶段,收敛变的不再稳定,此点以后的计算数据不具有强有力的参考价值。

1.3 模型三

beam189模型+复合材料截面,考虑钢筋的具体分布

(忽略箍筋的影响)单元总数:18;节点总数:19,见图3c )。计算结果见

图6。

在ANSYS 程序中beam189单元无法采用特殊的混凝土材料,只能定义一般的弹塑性材料本构关系,此处采用与solid65中开裂前相同的多线硬化材料本构模型,不考虑开裂压碎。由于只考虑一般的弹塑性本构关系,忽略了混凝土的开裂和压碎,使得梁的承载力曲线一直上升,这和实际情况是不相符的。

2 对比分析

同样是solid65

单元,采用不同的配筋形式,会造成不同的分析结果,起初的完全弹性阶段,二者几乎没有差别,但随着梁底部混凝土的受拉开裂,两个模型的刚度退化速度显示出一定的差异,尽管退化到一定程度(挠度大于5mm 后)二者的刚度趋于等同,但不同的退化过程造成二者承载力的较大差异,在挠度20mm 的时刻,模型1的计算承载力超过模型2计算承载力的1.5倍。

三个模型的计算结果曲线放在一起进行比较,可以看出,beam189(复合材料截面)的承载能力远远大于其他两个模型的结果,这和实际情况是不相符合的,原因在于beam189模型忽略了混凝土材料的特殊性能,不能模拟开裂和压碎。但是在开裂前的完全弹性阶段,beam189模型可以相对准确地模拟钢筋混凝土梁构件。

同样采用solid65模型,分离式配筋只是一个模型在计算中同时考虑混凝土的开裂和压碎,另外一个模型只考虑拉裂,不考虑压碎(计算较易收敛)。这样带来的结果是:在受压区压碎之前两

条曲线几乎重合,而实际受压压碎出现后,二者显示出分叉,考虑压碎的模型出现了下降段(见图7)。通过这两个模型的对比,可以认为:一般对钢筋混凝土结构正常使用阶段的计算,可以关闭混凝土的压碎开关(抗压强度设为-1),这样可以节省不少计算工作量,而且几乎不会影响计算的精度,只有需要特别考虑压碎的情况才设置混凝土的压碎参数。3 应用讨论

精细模型只有在构件层次上或局部结构的分析中是可行的,在对钢筋混凝土整体结构的计算分析中很难采用。更多的是采用整体配筋模式,甚至有时候三维实体单元(solid65)的使用也会不现实,在这种情况下只能使用线单元(beam )来模拟梁柱。如果是完全弹性阶段的分析,采用这些简化模型不会带来显著误差,但如果要计算进入到塑性阶段,混凝土产生开裂,简化模型就会带来较大的误差。例如在钢筋混凝土结构的静力弹塑性分析(pushover 分析)中,必须将结构推到进入塑性,这时如果采用一维线单元模拟梁柱,会发现结构的延性很大,推覆的位移也相对很大,根据这样的结果评判结构的抗震性能,会过高估计结构的抗震能力,给工程实际带来隐患。因此在使用一维线单元简化模型的分析中必须对计算结果进行折减。具体折减系数有待更进一步的大量工程实例的数值计算研究。

4 结语

1)钢筋混凝土结构的有限元计算中采用三种不同模型,弹性

阶段差别不大,进入塑性后,简化模型会造成较大误差。

2)相对离散式配筋精细模型,载力较低,结果偏于保守。

3)钢筋混凝土整体结构计算中采用线单元模型,应对计算结果进行折减。参考文献:

[1]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M ].上海:同济大学出版社,1994.72275.

[2]郝文化,叶裕明,刘春山,等.ANSYS 土木工程应用实例[M ].北京:中国水利水电出版社,2005.922100.

[3]陆新征,江见鲸.利用ANSYS S olid 65单元分析复杂应力条件下的混凝土结构[J ].建筑结构,2003,33(6):22224.

Comparative analysis of various f inite element models of RC member

AN Dong 2ya

Abstract :Comparison analysis of reinforced concrete beam is carried out based u pon three finite element models.There are no significant differ 2ences of calculation results of various models in ideal elastic stage ,when entering into plastic stage simplified model bring large error.If one 2di 2mensional line 2element model adopted calculation results should be reduced.K ey w ords :finite element model ,cracking ,bearing capacity curve

?

36? 第33卷第1期2007年1月

安东亚:钢筋混凝土构件不同有限元模型对比分析

浅淡钢筋混凝土结构的非线性有限元

价值工程 0引言 钢筋混凝土结构是目前使用最为广泛的一种结构形式。钢筋混凝土是由两种性质不同的材料组合而成的,材料性能非常复杂,特别是在其非线性阶段,混凝土和钢筋本身的各种非线性特性,都不 同程度地在这种组合材料中反映出来。 传统的分析和设计方法往往采用线弹性理论来分析其内力。随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 1钢筋混凝土有限元分析原理钢筋混凝土有限元分析,主要是研究钢筋混凝土结构的基本性能、设计方法和构造措施。结合钢筋混凝土的力学特性,采用有限元分析的一般原理,是有限元分析和钢筋混凝土力学特性两者的结合。 Ngo 和Scordelis 在早期进行的研究中, 把有限元方法用于钢筋混凝土结构分析,它包含了钢筋混凝土有限元分析的基本原理。可以具体阐述为如下几点: 1.1确定各单元的单元刚度矩阵, 它与一般的有限元方法基本相同,并组合成结构的整体刚度矩阵。随着荷载和作用的不断增加,可以得到钢筋混凝土结构自开始受荷到破坏的整个过程的位移、应变、应力、裂缝的形成和发展、钢筋和混凝土结合面的粘结滑移、钢筋的屈服和强化以及混凝土压碎破坏等大量有用的数据,为研究结构的性能和合理的设计方法提供可靠的依据。根据结构所受的荷载和约束,解出节点的未知位移,进而求出单元的应力。 1.2确定适用于各类单元的本构关系, 这种关系可以是线性的,也可以是非线性的。即应力应变关系,或结点力位移关系。 1.3通过设置联结单元, 模拟裂缝两侧的混凝土之间的咬合作用,以及钢筋和混凝土之间的粘结滑移关系。 1.4把钢筋混凝土结构分割成有限个小的结构单元。这些单元可以是钢筋和混凝土的组合单元或分离式单元。 2钢筋混凝土的非线性有限元分析 2.1混凝土的破坏准则混凝土的破坏准则就是描述混凝土破坏时其应力状态或应变状态满足的条件。 根据混凝土破坏准则的函数f (ξ,r ,θ,k 1,k 2,k 3,……,k n )=0中包含参数的个数,破坏准则可以分为单参数破坏准则、两参数破坏准则等等。单参数破坏准则有最大拉应力准则、最大剪应力准则及八面体剪应力准则。两参数破坏准则有Mohr -Coulomb 准则和 Drucker-prager 准则。 单参数和双参数都是早期提出的破坏准则。单参数或双参数的破坏准则不能全面反映混凝土的破坏特性。多参数破坏准则是适用性更广泛的破坏准则。它克服了单参数和双参数的一些不足,一些多参数破坏准则已能较好地描述混凝土的破坏特性。其中比较有代表性的二维的破坏准则有Kupfer-Gerstle 准则、 Hsieh-Ting-Chen 准则、李~过准则等。三维破坏准则有:Ottosen 准 则、Willam-Warnke 准则、 过-王、江-周准则等。2.2混凝土的本构模型混凝土的本构关系就是指混凝土的应力状态和应变状态的关系。目前,混凝土的本构模型主要类型有:以弹性模型为基础的线弹性和非线弹性的本构关系;以经典塑性理论 为基础的理想弹塑性和弹塑性硬化本构模型;采用断裂理论和塑性 理论组合的塑性断裂理论,并考虑用应变空间建立的本构模型;以粘性材料本构关系发展起来的内时程理论描述的混凝土本构模型;用损伤理论和弹塑性损伤断裂混合建立的本构模型等。 线弹性模型是工程上一般材料所采用的关系模型,线弹性类本构模型也是最简单、最基本的材料本构模型。材料变形在加载和卸载时都沿同一直线变化,完全卸载后无残余变形。因而,应力和应变有确定的一一对应的关系。直线的斜率为材料的弹性模量。如果混 凝土在单向受拉、 单向受压或多轴应力作用下,其应力-应变之间关系为曲线而非直线时,从原则线弹性模性已不适用。但在一些特定的情况下仍可使用线弹性模型,这样作的好处就是给分析带来方便、 快捷。非线性本构模型是能够比较正确模拟混凝土材料性质的本构模型,主要有非线性弹性本构模型和弹塑性本构模型。如Kupfer-Gerstle 的各项同性的全量模型、Darwin 正交异性增量模型和Ottosen 模型等。非线性弹性本构的优点是能反映混凝土受力变形的主要特点;计算公式和参数值都来自试验数据的回归分析,在单调比例加载的情况下有很高的计算精度;模型的表达式简明、直 观,易于理解和应用。因而, 这种模型在工程中应用最广。但它也有的缺点:不能反映卸载和加载的区别,卸载后没有残余变形等,故不能应用于加、卸载循环和非比例加载等情况。 2.3钢筋与混凝土之间的关系模型钢筋混凝土中钢筋和混凝土之间存在粘结力、骨料咬合力和销栓作用等,如何正确模拟钢筋和混凝土之间的相互作用,关系到有限元分析结果能否正确反映结构真实受力状态的关键。 钢筋与混凝土界面的有限元分析模型,根据是否考虑钢筋与混凝土之间的粘结滑移及销栓作用,以及用什么方式模拟这种作用,有两种基本不同的联结模型,一种是钢筋和混凝土之间位移完全协调的联结模式,另一种是两者之间位移不协调的连接模型,即采用粘结单元的联结模型。位移完全协调的联结模式,又分为分离式、埋置式和组合式三种模型。这些模式都认为钢筋和混凝土之间即无相对滑移,也无相对错动,不需要粘结滑移及销栓作用的模拟。粘结单元的联结模采用在钢筋单元和混凝土单元之间,设置粘结单元模拟两者之间的粘结力及销栓作用。在混凝土与钢筋之间的粘结模拟方面,人们提出了各种不相同的粘结单元的模型,比如无厚度四节点或六节点粘结单元、双弹簧粘结单元、、斜弹簧单元粘和结斜杆单元等。而关于粘结~滑移关系方面,在分析初期采用的是线性关系,随后发展为非线性关系,提出多种τ~S 曲线的表达式。因为存在的影响因素比较多,而且问题相对复杂,所以目前尚且还没有相对完善的计算模式。 2.4裂缝的模拟混凝土受拉开裂后形成裂缝,在钢筋混凝土的有限单元法中,裂缝的模型很多,一般比较常用的是单元边界的的单独裂缝和单元内部的弥散裂缝以及断裂力学模型这三种模型。第一种方法把裂缝处理为单元边界,一旦出现新的裂缝就增加新的节点,重新划分单元,使裂缝总是处于单元和单元之间的边界。这种方法的缺点是计算工作繁琐,费机时。第二种方法使得在计算过程中裂缝自动形成和发展,即不必增加结点也不用重新划分单元,所以由计算机自动进行处理比较容易,因而得到了较为广泛的应用。 —————————————————————— —作者简介:范治华(1980-),男,河南永城人,助理工程师,研究方向为城建。 浅淡钢筋混凝土结构的非线性有限元分析 Nonlinear Finite Element Analysis of Reinforced Concrete Structure 范治华Fan Zhihua ;史玉侠Shi Yuxia (神火集团有限公司,永城476600) (Shenhuo Group Company ,Yongcheng 476600,China )摘要:随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法必定会在理论实践和工程实施中得到更大程度的发展,发 挥更加强大的作用。 Abstract:With the progress of finite element theory and computer technology,nonlinear finite element analysis of reinforced concrete must be implemented in the theory and engineering practice and get the greater degree of development,and play a more powerful role. 关键词:钢筋混凝土结构;有限元;分析Key words:reinforced concrete structures ;finite element ;analysis 中图分类号:TU37 文献标识码:A 文章编号:1006-4311(2012)05-0086-02 ·86·

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

GARTEUR 有限元模型修正与确认研究

收稿日期:2003207207;修订日期:2004203225 基金项目:教育部博士学科点专项基金(20010227012)资助项目 文章编号:100026893(2004)0420372204 GARTEUR 有限元模型修正与确认研究 费庆国,张令弥,郭勤涛 (南京航空航天大学振动工程研究所,江苏南京 210016) Case Study of FE Model Updating and Validation via an Air craft Model Structur e FEI Qing 2guo,Z HANG Ling 2mi,G UO Qin 2tao (Institu te o f Vi brati on Engi neering,Nanjing University of Aeronau tics and Astro nautics,Nanjing 210016,China)摘 要:待修正参数的选择以及修正后模型的质量评估是有限元模型修正的两个重要问题。以欧洲学术界广泛采用的GA RTEUR 飞机模型为例,利用基于灵敏度分析的模型修正方法,通过仿真算例研究参数选择对模型修正质量的影响,并以试验数据为目标值对有限元模型进行修正与确认。为全面评估模型的修正质量,引入三级标准对修正后有限元模型进行确认。 关键词:固体力学;模型确认;有限元法;模型修正;参数选择中图分类号:O 248121 文献标识码:A Abstr act:Parameter selection and quali ty validation are of g reat i mpo rtance in fini te element model updating.This paper presents so me results which demonstrate the relationship betw een parameter selection and updated model .s quality throu gh si mulation cases.Three q uali ty levels w ith corresponding validation criteria are emplo yed with an emphasis o n updated mod 2el .s predictio n ability.Results of updating based on exper i mental modal test data are sho w n as an application example.A n aircraft test structure,GA RTEUR,which is g enerally utilized in Europe,is employed in bo th the si mulation case and the exper i mental case.Sensi tivity 2based model updating appro ach is applied. Key wor ds:solid mechanics;model validation;finite element method;model updating;parameter selection 在航空工程中,准确的有限元模型对于动态响应预测以及动态设计至关重要。建模过程中的不确定因素,如离散化误差、材料物理参数的不确定性、边界条件的近似等,导致有限元模型必然存在误差。设计规范规定,有限元模型必须通过振动模态试验或者地面共振试验来检验[1]。 近30年来,有限元模型修正技术得到了长足的发展[2~6]。根据修正对象的不同可将修正方法分为矩阵型方法和设计参数型方法。后者物理意义明确,更具工程应用价值。本文采用基于灵敏度分析的设计参数型修正方法。 基于灵敏度分析的设计参数型修正方法主要包括待修正设计参数选择,灵敏度分析,参数修正以及模型确认等环节。 待修正设计参数的选择是模型修正的起始环节。通常,候选参数是有限元模型存在不确定性因素的参数。近20年虽然发展了很多种参数选择或者误差定位的策略与算法,工程应用中仍然难以准确无遗漏地确定误差参数。因此,有必要讨论参数选择对模型修正质量的影响。 模型确认是模型修正的检验环节。在当前的研究及工程应用中,通常只要求修正后模型的计算结果能够复现修正过程中利用的试验数据。事实上,为全面评估模型的质量,模型的复现能力与预测能力应予以同等重视[7]。本研究引入了三级质量标准对修正后的有限元模型进行确认。 本文采用G ARTE UR 飞机模型为研究对象,通过仿真算例来研究参数选择对模型修正质量的影响,并给出了利用振动模态测试结果对G AR 2TEUR 飞机模型的有限元模型进行修正与确认的结果。 1 模型修正方法与模型确认准则 (1)模型修正方法 模型修正可归结为以下的优化问题[8] Min p +R(p )+2 2,R(p )=f E -f A (p )s.t V L [p [V U (1) 其中:p 代表设计参数;f E ,f A 是结构动态特性试验与分析结果;R 代表残差;V L ,V U 是设计参数的下、上限。 令设计参数的初始值为p 0,动态特性f 是设计参数的隐函数,其泰勒展开式为 第25卷 第4期航 空 学 报 Vol 125N o 14 2004年 7月ACT A AERO NA U TICA E T AS TRO NA U TICA SINICA July 2004

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

汽车车架简化模型有限元分析

汽车典型零部件简化模型有限元分析 任务1:连杆简化模型的有限元分析 1. 分析任务: 对图一所示的连杆的二维简化模型进行有限元分析,确定该设计是否满足结构的强度要求;若强度不够,修改设计直至最大应力减小至材料允许的范围内。在修改结构时,注意不可改变连杆小头衬套的内径和连杆大头的内径,也不可改变连杆各处的厚度和材料。 2. 分析所需数据: a.连杆采用两种材料,连杆本体用的是40Cr结构钢,左侧小头中的衬套用的是铜。 b.连杆杆身和大头的厚度为1.5mm,小头的厚度为3.0mm。注意在杆身和小头的过渡处有R2.0的过渡圆角; c.连杆结构的其它尺寸如图二所示; d.施加在大、小头内壁上的边界条件用于模拟连杆与曲轴及活塞销的连接。假定载荷分布在小头夹角为90o的内壁上,且为锥状分布;约束施加在连杆大头夹角为90o的内壁上; e.40Cr材料的弹性模量:210GPa;泊松比:0.3;屈服极限为:850MPa,设计安全系数为6;铜的弹性模量:120GPa,泊松比:0.33;屈服极限为:250MPa; 设计安全系数为4。 3. 完成该分析应掌握的ANSYS技术: a.单元类型的选择;单元的尺寸控制; b.不同厚度和材料的二维实体建模; c.工作平面的灵活应用;

d.按载荷和约束的要求分割线和面; e.模型参数(材料,实常数,单元类型号等) f.粘结、合并等布尔运算操作 g.局部坐标系,旋转节点坐标系; h.线性分布载荷的施加; i.单元网格误差估计; j.Ansys 命令日志文件及其在修改设计中的应用; k.多窗口显示的功能 4. 分析报告内容的基本要求: a.对分析任务的描述;列出分析所需数据: b.利用多窗口显示的功能绘出连杆的实体模型和网格模型,在模型上能反映出 连杆各部位材料、厚度的不同; c.绘图反映连杆的边界条件; d.绘出对连杆原设计进行有限元分析后得到的变形图和应力等值线图; e.图示SEPC和SERR并说明有限元分析的建模误差; f.详细说明对不符合设计要求的结构所作的设计修改;及最终符合设计要求的 计算结果; g.在分析中遇到的关键问题(在实体建模、网格剖分、边界条件施加等各个步 骤中出现的)及解决的办法; h.整理命令日志文件,并在每个语句后添加说明(说明该语句的功能,说明前 要加!号)。注意:添加的说明(可以用中文说明)应该反映在建模中的操作步骤而不是简单的ANSYS命令定义。

ABAQUS钢筋混凝土损饬塑性模型有限元分析

ABAQUS钢筋混凝土损饬塑性模型有限元分析 发表时间:2009-10-12 刘劲松刘红军来源:万方数据 钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。 ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。 1 混凝土损伤塑性模型 ABAQUS在钢筋混凝土分析上有很强的能力。它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explicit中的混凝土开裂模型。其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。这一特性使得损伤塑性模型具有更好的收敛性。 2 模型材料的定义 2.1 混凝土的单轴拉压应力-应变曲线 本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。 2.2 钢筋的本构关系 钢筋采用本构关系为强化的二折线模型,无刚度退化。折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。 2.3 损伤的定义 损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。材料的损伤状态,可以用损伤因子来描述。根据前面确定的混凝土非弹性阶段的应力一应变关系。可求得损伤因子的数值。 2.4混凝土塑性数值的计算 混凝土在单向拉伸,压缩试验中得到的数据,通常是以名义应变和名义应力表示的,为了准确地描述大变形过程中截面积的改变,需要使用真实应变和真实应力,可通过它们之间的换算公式计算。真实应变是由塑性应变和弹性应变两部分构成的。在ABAQUS中定义塑性材料参数时,需要使用塑性应变。 3 钢筋混凝土悬臂梁实例分析 3.1 模型设计 该悬臂梁的具体情况如图1所示,梁截面尺寸为200mm×300mm,梁长1500mm;纵筋为HRB335钢筋,箍筋为HPB235钢筋,混凝土强度等级为C30。混凝土和钢筋的各力学参数均取自《混凝土结构设计规范》的标准值。

有限元模型如何查错

有限元模型如何查错 作者:PAUL KUROWSKI 在建立有限元模型的过程中很容易出错,如果你知道如何查错,修正这些错误将会变得很简单 有限元分析的第一步就是建立被分析对象的数学模型,这要求我们思索建模的理论基础如弹性理论,板的Reissner理论,塑性变形理论等,和考虑问题的其它信息如几何描述、材料特性,约束和荷载等等。 分析的目的就是由这些条件,计算得到精确解u_EX并同时得到位移u_EX的应力函数 F(u_EX)如Von Mises应力等。应力函数F (u_EX) 仅仅依赖于数学模型的定义,而与求解该数学问题的数值近似计算方法无关;同时应力函数F(u_EX)也不依赖于网格划分、网格类型和单元尺寸。函数F(u_EX)与模型实体物理性质之间的差异,被称为“模型错误”。 下一步就是使用有限元方法去找到精确解u_EX的近似值u_FE。这个过程包括选择网格划分和构件类型,如对二维板用八节点(矩形)单元,依此类推。网格划分&单元定义被称为有限元的离散化。 离散化产生的误差可以被定义为: 大部分的分析应该把这个误差控制在10%以内。同时由于建立模型和模型的离散化一定会产生这个误差,正确运用有限元分析就包括对这两类误差进行评估和控制。有限元分析结果中的名义误差&真实误差是有区别的,最好能够加以区别: 名义误差可以比建模误差和离散误差的总和小,二者可能反号而相互抵消。结果的好坏取决于模型是否反应实际(模型误差的大小)和有限元软件在转化过程中的精度控制(离散

化误差的大小)。 WHAT IS MODELING ERROR? 何为模型误差? 假设要分析一个支架,我们首先考虑到的问题应该包括:我们想得到什么结果?是最大应力还是最大变形?是固有频率、弯曲刚度、还是温度分布?支架是否处于弹性变形阶段?极限荷载形式有几种情况?如何模拟支撑条件等等。有了一个明确的目标和对我们使用的理论自身局限性的把握,分析者就可以建立模型了。有时这个模型与CAD模型是相似的,但相当多的情况是,为了简化网格的划分,我们有必要修改模型的拓扑描述。部分建模的过程包括以下一些问题:用壳单元模拟薄壁墙体,对对称性、反对称性或两者的运用,是否考虑细部及忽略不重要的特征等。比如,选用壳单元而不用实体单元意味着我们考虑到数学模型和相应的有限元软件的运作方式而作出了一个重要的决定。 当(研究对象的)拓扑描述已经比较理想后,我们还需要对材料属性(选择线弹性、弹塑性或其他)、荷载及支撑条件进行理想的简化。我们认为这些简化精确反应了所需模型的重要数据,而建模当中的一些重要决策有时并未过多的考虑这些(方面)。简化了的模型经常是概念错误的,一个检验模型是否不合理的方法是其解析解对应的应变能是否无穷大或趋近于零;另一个方法是对应于数学模型的我们感兴趣的数据在结果没有得到体现。很多分析者认为一个有效的网格生成器可以生成高质量的网格并降低模型误差,其实不尽然,模型是在网格划分前假定的,因此,最合理的网格划分也无法修正一个简化不合理的数学模型。 A SYSTEMATIC APPROACH 一个系统的方法 确保模型误差较小的唯一方式是把所需研究的数据放在对模型假设不敏感之处。类似地,通过把所需研究的数据放在对离散不敏感之处(不敏感的表现是:结果对更细的网格划分或更大的p值并不发生明显的改变),以减少离散误差。举个例子:比如说我们对一块简支板沿着边缘方向的剪力感兴趣,那么经典的克西霍夫板模型(Kirchhoff’s plate)是不可用的,可以通过一个Reissner模型或一个全3D的弹性模型轻而易举地检验出来。一个关于板弯曲的Reissner模型假设所有平面内位移沿厚度方向呈线性变化、剪应变沿厚度方向保持不变。若采用更厚的板的话会迫使人们去置疑简支的意义、同时会置疑是否可以给出一

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模 曲哲 2006-5-29 一、试验标定 选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。 图1:剪力墙尺寸与配筋 该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。 (a)墙体分区及网格(b)钢筋网 图2:ABAQUS中的有限元模型 剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。 ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性 混凝土 钢筋 材料非线性模型 Damaged Plasticity Plasticity 初始弹性模量(GPa ) 38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa ) 3.65 注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。 (a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线 图3:混凝土塑性硬化及损伤参数 ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。 02 0000012c c c c E E εσεεεσεε= ??????+?+???????????? (1) e k t t f λ ωσ?= (2) 图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了 文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。 与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。 与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

钢筋混凝土与素混凝土有限元模拟对比分析

钢筋混凝土与素混凝土有限元模拟对比分析 Comparison and analysis of finite element simulation of reinforced concrete and plain concrete 李君 Li Jun (广西大学 土木建筑工程学院,广西 南宁 530004) (College of Civil and Architectural Engineering, Guangxi University, Nanning 530004, China) 摘要:钢砼内钢筋与砼弹性模量相差很大,但钢筋用量少,截面积所占比例少,忽略钢筋进行计算,可以减少很多繁琐的计算。本文利用abaqus 进行模拟,计算钢筋砼与素砼在相同受荷条件下的应力和挠度,同时假定钢筋和砼均在弹性范围内。 Abstract: the steel in reinforced concrete and concrete elastic modulus vary widely, but the steel consumption, less proportion of sectional area, ignore reinforced calculation, can reduce a lot of tedious calculation. In this paper, using abaqus simulation, calculation of reinforced concrete and plain concrete in the same load conditions of the deflection and stress, at the same time assume that steel and concrete are within the elastic range. 通过摸拟计算如图的钢砼简支梁与不计钢筋的该梁,求出跨中应力和挠度及比值。为了避免出现梁局部受压破坏,在支座和集中力作用处设置0.2m*0.1m*0.05m 的钢板,取材料特性如下: 1、混凝土:弹性模量2c 3e10N/m =E ,密度32400kg/m =c ρ,2.0=μ 2、钢筋:弹性模量22.1e11N/m =Es ,密度300kg/m 87=s ρ,3.0=μ 3、垫块:弹性模量22.1e12N/m =E ,密度300kg/m 87=ρ,3.0=μ 一、建立模型 1、创建部件,选择进入部件模块 创建混凝土梁:点击创建部件图标,进入创建部件对话框,部件名称liang ,选择三维实体拉伸类型,大致尺寸取0.6,点击继续,进入二维绘图界面,绘制梁截面0.2m*0.3m ,完成后输入梁长度2m ,所创建的梁部件如下图。

混凝土有限元分析

混凝土有限元分析 廖奕全 (06级防灾减灾工程及防护工程,06114249) 摘要:用传统的理论解析方法分析钢筋混凝土结构,只能解决一些非常简单的构件或结构的非线性问题,对大量的钢筋混凝土结构的非线性分析问题只能用数值方法解决,因此,有限元方法作为一个强有力的数值分析工具,在钢筋混凝土结构的非线性分析中得到了广泛地应用。随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 关键词:钢筋混凝土有限元分析有限元模型 钢筋混凝土结构是土木工程中应用最广泛的一种建筑结构。相比其它材料结构,钢筋混凝土结构有以下特点:①造价低,往往是建筑结构的首选材料;②易于浇注成各种形状,满足建筑功能及各种工艺的要求;⑧充分发挥钢筋和混凝土的作用,结构受力合理:④材料的重度与强度之比不大;⑤材料性能复杂,一般的计算模型难与实际结构的受力情况相符。正因为钢筋混凝土材料的这些优缺点,长期以来,钢筋混凝土在工程中的应用如此广泛;为了满足工程需要所建立的反映混凝土材料性能的计算模型也不断完善。然而,混凝土是一种由水泥、水、砂、石及各种掺合料、外加剂混合而成的成分复杂、性能多样的材料。到目前为止,还没有一种公认的、能全面反映混凝土的力学行为和性质的计算模型或本构关系。因此,对钢筋混凝土的力学性能研究还需要学术界和工程人员继续努力。长期以来,人们用线弹性理论来分析钢筋混凝土结构的受力和变形,以极限状态的设计方法来确定构件的承载能力。这种设计方法在一定程度上能满足工程的要求。随着国民经济的发展,越来越多大型、复杂的钢筋混凝土结构需要修建,而且对设计周期和工程质量也提出了更高的要求。这样一来,常规的线弹性理论分析方法用于钢筋混凝土结构和构件的设计就力不从心。设计人员常有“算不清楚”以及“到底会不会倒”的困惑。为此,钢筋混凝土非线性有限元分析方法开始受到重视。同时,随着有限元理论和计算机技术的进步,钢筋混凝土非线性有限元分析方法也得以迅速的发展并发挥出巨大的作用。 一、钢筋混凝土结构有限元分析的意义 钢筋混凝土结构是目前各种建筑结构物的主要结构形式,由于钢筋混凝土结构受到较大的荷载(如地震荷载)作用时其非线性特性对结构的性能影响很大,所以钢筋混凝土结构的非线性分析在结构抗震工程领域中十分重要并成为一个研究热点。用传统的理论解析方法分析钢筋混凝土结构,只能解决一些非常简单的构件或结构的非线性问题,对大量的钢筋混凝土结构的非线性分析问题只能用数值方法解决,因此,有限元方法作为一个强有力的数值分析工具,在钢筋混凝土结构的非线性分析中得到了广泛地应用。由于钢筋混凝土是由两种性质不同的材料——混凝土和钢筋组合而成的,它的性能明显地依赖于这两种材料的性能以及它们的相互作用,特别是在非线性阶段,混凝土钢筋本身的各种非线性性能,都不同程度地在这种组合材料中反映出来。以下是与钢筋混凝土结构计算分析有关的一些非线性问题: 1)由于钢筋和混凝土的抗拉强度相差很大,钢筋混凝土结构在正常使用状态下,大部分受弯构件都已经开裂而进入非线性状态。2)混凝土和钢筋在一个结构中共同工作的条件是两者之间的变形协调而且没有相对的滑移,但实际上,这种条件并不能完全满足,特别是在反

ABAQUS钢筋混凝土有限元分析

ABAQUS钢筋混凝土有限元分析 发表时间:2009-10-12 刘劲松刘红军来源:万方数据 钢筋混凝土材料,是一种非匀质的力学性能复杂的建筑材料。随着计算机和有限元方法的发展,有限元法已经成为研究混凝土结构的一个重要的手段。由于数值计算具有快速、代价低和易于实现等诸多优点,这种分析方法已经广泛用于实际工程中。然而,要在有限元软件中尽可能准确地模拟混凝土这种材料,是不容易的,国内外学者提出了基于各种理论的混凝土本构模型。但是迄今为止,还没有一种理论被公认为可以完全描述混凝土的本构关系。 ABAQUS是大型通用的有限元分析软件,其在非线性分析方面的巨大优势,获得了广大用户的认可,在结构分析领域的应用趋于广泛。本文把规范建议的混凝土本构关系,应用到损伤塑性模型,对一悬臂梁进行了精细的有限元建模计算和探讨。 1 混凝土损伤塑性模型 ABAQUS在钢筋混凝土分析上有很强的能力。它提供了三种混凝土本构模型:混凝土损伤塑性模型,混凝土弥散裂缝模型和ABAQUS/Explic it中的混凝土开裂模型。其中混凝土损伤塑性模型可以用于单向加载、循环加载以及动态加载等场合,它使用非关联多硬化塑性和各向同性损伤弹性相结合的方式描述了混凝土破碎过程中发生的不可恢复的损伤。这一特性使得损伤塑性模型具有更好的收敛性。 2 模型材料的定义 2.1 混凝土的单轴拉压应力-应变曲线 本模型中选用的混凝土本构关系是《混凝土结构设计规范》所建议的曲线,其应力应变关系可由函数表达式定义。 2.2 钢筋的本构关系 钢筋采用本构关系为强化的二折线模型,无刚度退化。折线第一上升段的斜率,为钢筋本身的弹性模量,第二上升段为钢筋强化段,此时的斜率大致可取为第一段的1/100。 2.3 损伤的定义 损伤是指在单调加载或重复加载下,材料性质所产生的一种劣化现象,损伤在宏观方面的表现就是(微)裂纹的产生。材料的损伤状态,可以用损伤因子来描述。根据前面确定的混凝土非弹性阶段的应力一应变关系。可求得损伤因子的数值。 2.4混凝土塑性数值的计算 混凝土在单向拉伸,压缩试验中得到的数据,通常是以名义应变和名义应力表示的,为了准确地描述大变形过程中截面积的改变,需要使用真实应变和真实应力,可通过它们之间的换算公式计算。真实应变是由塑性应变和弹性应变两部分构成的。在ABAQUS中定义塑性材料参数时,需要使用塑性应变。 3 钢筋混凝土悬臂梁实例分析 3.1 模型设计 该悬臂梁的具体情况如图1所示,梁截面尺寸为200mm×300mm,梁长1500mm;纵筋为HRB335钢筋,箍筋为HPB235钢筋,混凝土强度等级为C30。混凝土和钢筋的各力学参数均取自《混凝土结构设计规范》的标准值。

有限元分析中钢筋混凝土梁的预应力模拟

2009 年 9 月 第 6 卷 第 3 期 深圳土木与 与建筑 VOL.6?NO O.3?SEP2009 9
有限元分 有 分析中钢筋 筋混凝土 土梁的预 预应力模拟 拟?
陈宜 宜言 林松 尧国皇 尧
(深圳市市 市政设计研究院 院有限公司)
【摘要】通 ABAQUS软 通过 软件对钢筋混 混凝土梁的预 预应力进行模 模拟,通过计 计算结果进行 行比较分析知 知:用降温度 度 法和初始应 应力法施加预 预应力时,所 所得到的预应 应力效果相同 同,相当于先 先张法,而reb 施加初始 bar 始应力法相当 于后张法。 。 【关键词】有限元 ABA AQUS 预应力 力模拟
1 引言?
当梁的 的跨度或荷载较大时,其变 变形和裂缝宽 宽度 可能无法满 满足正常使用要求,研究和 和工程经验表 表明, 使用预应力 力技术能较好 好地解决上述问题,同时还 还可 增加梁的弹 弹性工作范围,提高承载力 力,充分利用 用材 料性能,从 从而降低结构高度、减轻自重、减小地 地震 作用,增加 加强度储备,延长使用期限 1 ,因此预 预应 力钢筋混凝 凝土梁得到广泛应用,本文 文将采用通用 用有 限元软件 ABAQUS 中不同的方法对钢 钢筋混凝土梁 梁的 行模拟,并探讨不同计算结 结果之间的区 区别。 预应力进行

(a) 整体 体有限元?
2 有限元模 模型?
对 一 跨 度 为 8000 , 截 面 高 800 ,宽 400 的预 预应力钢筋混 混凝土简支梁 梁进行弹性分 分析, 其目的主要 要是探讨 ABA AQUS 中不同预 预应力模拟方 方法 之间的区别 别。混凝土取为 C30,按规 规范取其弹性 性模 量 3.0 10 /mm ;梁顶缘和 m 和底缘分别设 设置 四根直径为 为20 的二级 级钢筋,并在 在沿梁高方向 向左 右两边各设 设置两根直径 径12 的二级 级钢筋,箍筋 筋采 用直径10 的一级钢 钢筋,取钢筋 筋的弹性模量 量为 2.1 10 / ,预应力钢筋 筋以直线的形 形式 布置在梁底 底缘,共设置 4 根,直径 径为15.2 。在 。 梁的跨中施 施加1200 的 的集中荷载, ,并对预应力 力钢 1 筋施加600 的预应力 均施加在 力, 在荷载步 中,图 1 示 示处了简支梁 梁的有限元模型。 对于混 混凝土采用实体单元 C3D D20R,普通钢 钢筋 采用桁架单 单元 T3D2;边 边界条件为: :约束梁一端 端的 平动自由度 度,而另一端只约束竖向自由度。
(b) 钢筋 筋骨架 图 1 有限元模型?
降温法其工 工作机理就是 是通过设置 材料的线膨 膨 胀系 系数,并对索 索单元进行降 降温,从而达 达到施加预应 应 力的 的目的,所施 施加的温度荷 荷载可以通过 过下式求得: 1 式中: — —施加的温度; —预应力钢绞 — 绞线的弹性摸 摸量; —材料的线膨胀系数; — —预应力钢绞 — 绞线的面积; —预加力的大 — 大小。 (b)初始 始应力法 初始应力法 法与降温法相 相类似,只是 是形式上有所 所 不同 同,其实质是 是一样的,初 初始应力法即 即在预应力钢 钢 筋上 上施加初始预 预应力。 (c)rebar 施加初始应 r 应力法 rebar 施加 加初始应力法 法与上述两种 种方法不同, 钢筋 筋不是由杆单 单元模拟,而 而是通过创建 建一个具有钢 钢 筋属 属性的几何面 面,网格划分 分时选取几何 何面的单元种 种 类为 surface, 为 然后通过关键 Initial?co 然 键词 onditions 及
3?ABAQUS 中常用的预应力模拟 S 拟方法?
ABAQU US通用有限元 元软件中,常 常用的有限元 元模 拟方法有: 降温法、 始应力法以及 初始 及rebar施加初 初始 2 。 应力法 降温法 (a)降
陈宜言,深圳 圳市市政设计研 研究院有限公司 司,教授级高工 工 地址: 深圳市 市笋岗西路 300 号市政设计大 07 大厦附楼, 8029 518 电话:83324 4956 22

相关文档