文档库 最新最全的文档下载
当前位置:文档库 › 1.2 纯金属的结晶

1.2 纯金属的结晶

1.2 纯金属的结晶
1.2 纯金属的结晶

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:003

§1-2 纯金属的结晶

【使用说明】

1、依据学习目标,全体同学积极主动的根据教材内容认真预习并完

成导学案,小组长做好监督与检查,确保每位同学都能认真及时的预习相关知识。

2、结合导学案中的问题提示,认真研读教材,回答相关问题。

3、要求每位同学认真预习、研读课本,找出不明白的问题,用红笔

做好标记。

【学习目标】

1、知识与技能:了解纯金属的结晶过程,掌握晶粒大小对金属材料

性能的影响和纯铁的同素异构转变。

2、学习与方法:通过研读课本,积极讨论,踊跃展示,理解纯金属

的结晶过程规律与金属材料的性能之间的密切关系。

3、情感态度价值观:激情投入,大胆质疑,快乐学习。

【重点难点】

纯金属的结晶过程

纯铁的冷却曲线

【自主学习】

班级:姓名:使用时间:年月日结晶过程重要级别:★★★★

冷却曲线重要级别:★★★★★

细化晶粒重要级别:★★★★

同素异构转变重要级别:★★★★★

【合作探究】

1、什么是结晶、结晶潜热?

2、什么是过冷度?其大小与什么有关?

3、什么是同素异构转变?具有同素异构转变的金属有哪些?

4、纯金属结晶时,其冷却曲线为何有一段水平线?结晶由哪两个基本过程组成(结晶的普遍规律)?

5、晶粒大小对金属材料性能有什么影响?分析影响晶粒大小的因素

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:003

有哪些?铸件在浇铸过程中是如何细化晶粒的?

6、金属的同素异构转变与液态金属的结晶相比有哪些异同点?

7、分析纯铁的冷却曲线,有哪几条特殊恒温线?钢铁能够进行热处理的重要依据是什么?

【课后作业】(自己默写,组长监督)

1、理解掌握本导学案内容,并完成习题册第一章第二节相关题目。【学后反思】

第二章 纯金属的结晶

第二章纯金属的结晶 一、名词: 结晶:金属由液态转变为固态晶体的转变过程. 结晶潜热:金属结晶时从液相转变为固相放出的热量。 孕育期:当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并末立即出生,而是经过了一定时间后才开始出现第一批晶核。结晶开始前的这段停留时间称为孕育期。 近程有序:液态金属中微小范围内存在的紧密接触规则排列的原子集团。 远程有序:固态晶体中存在的大范围内的原子有序排列集团。 结构起伏(相起伏):液态金属中不断变化着的近程有序原子集团。 晶胚:过冷液体中存在的有可能在结晶时转变为晶核的尺寸较大的相起伏。 形核率:单位时间单位体积液体中形成的晶核数目。 过冷度:金属的实际结晶温度与理论结晶温度之差。 均匀形核:液相中各个区域出现新相晶核的几率都相同的形核方式。 非均匀形核:新相优先出现于液相中的某些区域的形核方式。 变质处理:在浇注前向液态金属中加入形核剂以促进形成大量的非均匀晶核来细化晶粒的液态金属处理方法。 能量起伏:液态金属中各微观区的能量此起彼伏、变化不定偏离平衡能量的现象。 正温度梯度:液相中的温度随至界面距离的增加而提高的温度分布状况。 负温度梯度:液相中的温度随至界面距离的增加而降低的温度分布状况 细晶强化:用细化晶粒来提高材料强度的方法。 晶粒度:晶粒的大小。 缩孔:液态金属凝固,体积收缩,不再能填满原来铸型,如没有液态金属继续补充而出现的收缩孔洞。 二、简答: 1. 热分析曲线表征了结晶过程的哪两个重要宏观特征? 答:过冷现象、结晶潜热释放现象 2. 影响过冷度的因素有那些?如何影响的? 答:金属的本性、纯度和冷却速度。 金属不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大;冷却速度越大,则过冷度越大。。 3. 决定晶体长大方式和长大速度的主要因素? 1)界面结构;2)界面附近的温度分布; 4. 晶体长大机制有哪几种? 1)二维晶核长大机制;2)螺型位错长大机制;3)垂直长大机制 5、结晶过程的普遍规律是什么? 答:结晶是形核和晶核长大的过程 6、均匀形核的条件是什么?

金属结晶的现象

第四讲金属结晶的现象及条件 第一节金属结晶的现象 一、主要内容: 金属结晶的宏观现象 金属结晶的微观现象 二、要点: 金属结晶的热分析曲线,热分析法,过冷现象,过冷度,结晶潜热,金属结晶的热分析曲线分析,金属结晶的微观过程分析,形核,晶核长大。 三、方法说明: 首先介绍热分析法,说明热分析曲线,介绍金属的热分析曲线的特征,说明过冷现象,过冷度,结晶潜热,金属结晶的微观现象,可举例说明晶核的形成和长大的过程,如窗花,盐,冰,植物等增加学生的感性认识和对形核、长大的理解。 授课内容: 物质从液态冷却转变为固态的过程称为凝固。 凝固后的物质可以是晶体,也可以是非晶体。若凝固后的物质为晶体,则这种凝固称为结晶。 一、金属结晶过程中的宏观现象 热分析法:将纯金属放入坩埚中加热熔化成液态,然后插入热电偶测量温度,让液态金属缓慢而均匀的冷却,用X-Y记录仪将冷却过程中的温度与时间记录下来,获得冷却曲线,这种实验方法叫热分析法。如图 图1 热分析实验装置示意图图2 纯金属的冷却曲线 2、热分析曲线:纯金属的冷却曲线,即温度随时间的变化曲线。 3、过冷现象:金属的实际开始凝固温度Tn总是低于理论凝固温度Tm的现象。 4、过冷度:理论凝固温度与实际开始凝固温度之差,即Δ T=Tm-Tn。 结晶潜热:金属熔化时从固态转变为液态需要吸收热量,而结晶时从液态转化为固态要放出热量,前者叫熔化潜热,后者叫结晶潜热。 二、金属结晶的微观过程 金属的结晶是一个晶核的形成和晶核的长大过程。

第二节金属结晶的热力学条件 第三节金属结晶的结构条件 一、主要内容: 金属结晶的驱动力和热力学条件 结构起伏的概念 二、要点: 热力学第二定律,物质系统,自发过程,熵的概念, 金属结晶过程液固两相自由能之差的推导, 液相、固相自由能随温度变化示意图 晶胚,晶核,近程有序,远程有序,液态金属的结构,液态金属中不同尺寸结构起伏出现的几率,最大结构起伏尺寸与过冷度的关系 三、方法说明: 熵,物质系统,自发过程等概念较抽象,打比方形象的说明有利于学生的理解。 用液态金属的宏观特性解释液态金属的微观结构,解释金属结晶的微观过程,讲清晶胚,晶核等概念及影响因素,说明金属结晶的结构条件 授课内容: 第二节金属结晶的热力学条件 热力学第二定律:在等温等压下,过程自发进行的方向是体系自由能降低的方向。自由能G 用下式表示: G=H-TS, 式中,H是焓;T是绝对温度;S是熵,可推导得 dG= Vdp- SdT。 在等压时,dp=0,故上式简化为: dG=- SdT。 由于熵恒为正值,所以自由能是随温度增高而减小。 图3 自由能随温度变化的示意图

金属学与热处理课后习题答案第二章

第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答: 2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答:

2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使G s<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<G s,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 1、形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。

2、具有相同的临界形核半径。 3、所需形核功都等于所增加表面能的1/3。 不同点: 1、非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变 化而变化。 2、非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 3、两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的 影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界 面是平直的。 晶体生长形状与温度梯度关系: 1、在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面-晶体学小平面与熔点等温面成一定角度,这种情况有利于形成规则几何形状的晶体,固液界面通常呈锯齿状。 粗糙界面的晶体,其显微界面平行于熔点等温面,与散热方向垂直,所以晶体长大只能随着液体冷却而均匀一致地向液相推移,呈平面长大方式,固液界面始终保持近似地平面。 2、在负温度梯度下: 具有光滑界面的晶体:如果杰克逊因子不太大,晶体则可能呈树枝状生长;当杰克逊因子很大时,即时在较大的负温度梯度下,仍可能形成规则几何形状的晶体。具有粗糙界面的晶体呈树枝状生长。 树枝晶生长过程:固液界面前沿过冷度较大,如果界面的某一局部生长较快偶有突出,此时则更加有利于此突出尖端向液体中的生长。在尖端的前方,结晶潜热散失要比横向容易,因而此尖端向前生长的速度要比横向长大的速度大,很块就长成一个细长的晶体,称为主干。这些主干即为一次晶轴或一次晶枝。在主干形成的同时,主干与周围过冷液体的界面也是不稳的的,主干上同样会出现很多凸出尖端,它们会长大成为新的枝晶,称为称为二次晶轴或二次晶枝。二次晶枝发展到一定程度,又会在它上面长出三次晶枝,如此不断地枝上生枝的方式称为树枝状生长,所形成的具有树枝状骨架的晶体称为树枝晶,简称枝晶。 2-6 简述三晶区形成的原因及每个晶区的特点。 答: 三晶区的形成原因及各晶区特点: 一、表层细晶区

第二章 纯金属的结晶

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是和 2 在金属学中,通常把金属从液态向固态的转变称为,通常把金属从一种结构的固态向另一种结构的固态的转变称为。 3.当对金属液体进行变质处理时,变质剂的作用是 4.铸锭和铸件的区别是。 铸锭是将熔化的金属倒入永久的或可以重复使用的铸模中制造出来的。凝固之后,这些锭(或棒料、板坯或方坯,根据容器而定)被进一步机械加工成多种新的形状。用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先准备好的铸型中,冷却后经落砂、清理和后处理,所得到的具有一定形状,尺寸和性能的物件。 5.液态金属结晶时,获得细晶粒组织的主要方法是 6.金属冷却时的结晶过程是一个热过程。 7.液态金属的结构特点为。 8.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。 9.过冷度是。一般金属结晶时,过冷度越大,则晶粒越。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 2.凡是由液体凝固成固体的过程都是结晶过程。 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的过程。( ) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( ) 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。 14.在实际生产条件下,金属凝固时的过冷度都很小(<20℃),其主要原因是由于非均匀 形核的结果。( ) 15.过冷是结晶的必要条件,无论过冷度大小,均能保证结晶过程得以进行。( ) (三) 选择题 1 液态金属结晶的基本过程是 A.边形核边长大B.先形核后长大 C.自发形核和非自发形核D.枝晶生长 2.液态金属结晶时,越大,结晶后金属的晶粒越细小。 A.形核率N B.长大率G C.比值N/G D.比值G/N 3.过冷度越大,则 A.N增大、G减少,所以晶粒细小B.N增大、G增大,所以晶粒细小 C N增大、G增大,所以晶粒粗大D.N减少、G减少,所以晶粒细小 4.纯金属结晶时,冷却速度越快,则实际结晶温度将。 A.越高 B 越低C.越接近理论结晶温度D.没有变化 5.若纯金属结晶过程处在液—固两相平衡共存状态下,此时的温度将比理论结晶温度A.更高B.更低C;相等D.高低波动 T0为金属的晶体与液体平衡共存的温度,称为理论结晶温度。显然,在这一温度时,金属的结晶速度与熔化速度相等,所以只有进一步冷却,使金属的实际结晶温度Tn低于,T。时,结晶才能进行。结晶时Tn低于T0的现象称为过冷。纯金属的冷却曲线出现一个水

结晶过程观察与纯金属铸锭组织分析

结晶过程观察与纯金属铸锭组织分析 一、实验目的 1.熟悉盐类和金属的结晶过程。 2.了解铸造条件对纯金属铸锭组织的影响。 二、实验原理 熔化状态的金属进行冷却时,当温度降到T m (熔点)时并不立即开始结晶,而是当降到T m以下的某一温度后结晶才开始,这一现象称为过冷。熔点T m与开始结晶的温度T m之差Δ T 称为过冷度。过冷现象表明,金属结晶必须有一定的过冷度,只有具有一定的过冷度下才能为结晶提供相变驱动力。 结晶由两个基本过程所组成,即过冷液体产生细小的结晶核心(形核)以及这些核心的成长(长大)。其中,形核又分为均匀形核和非均匀形核。通常情况下,由于外来杂质、容器或模壁等的影响,一般都是非均匀形核。 由于金属不透明,通常不能用显微镜直接观察液态金属的结晶过程。然而通过采用生物显微镜可以直接观察盐溶液的结晶过程。实践证明,对透明盐类结晶过程的研究所得出的许多结论,对于金属的结晶都是适用的。 在玻璃片上摘上一滴接近饱和的氯化铵水溶液,放在生物显微镜下观察其结晶过程。随着液体的蒸发,液体逐渐达到饱和。由于液滴边缘处最薄,将首先达到饱和,放结晶过程首先从边线开始,然后逐渐向里扩展。 结晶的第一阶段是在液滴的最外层形成一圈细小的等轴晶体。这是由于液滴外层蒸发最快,在短时间内形成了大量晶核之故。 结晶的第二阶段是形成较为粗大的柱状晶体,其成长的方向是伸向液滴的中心。这是由于此时液滴的蒸发已比较慢,而且液滴的饱和顺序是由外向里的,最外层的细小等轴晶中只有少数位向有利的才能向中心生长,而其横向生长则受到了彼此间的限制,因而形成了比较粗大、带有方向性的柱状晶体。 结晶的第三阶段是在液滴中心部分形成不同位向的等轴晶体。这是由于液滴的中心此时也变得较薄,蒸发也较快,同时液体的补充也不足的缘故。这时可以看到明显的等轴晶体。 图4-1示出了氯化铵水溶液结晶过程的一组照片,其中( a )、( b )为在液滴边缘形成的细小等轴晶体和正在生长的柱状晶体,( c )为在液滴中心部分形成的位向不同的等轴枝晶。 利用化学中的取代反应,可以看到置换出来的金属以枝晶形式进行生长的过程。例如,在硝酸银水溶液中放入一小段细铜丝,铜将发生溶解,而银则以枝晶形态沉积出来,其反应式为:

第二章 纯金属的结晶(金属学与热处理崔忠圻课后答案)

金属学与热处理第二版(崔忠圻)答案 第二章纯金属的结晶 2-1 a)试证明均匀形核时,形成临界晶粒的△Gk与其体积V之间关系式为△Gk=V△Gv/2 b)当非均匀形核形成球冠状晶核时,其△Gk与V之间的关系如何? 答:

2-2 如果临界晶核是边长为a的正方体,试求出△Gk和a之间的关系。为什么形成立方体晶核的△Gk比球形晶核要大。 答: 2-3 为什么金属结晶时一定要由过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么? 答: 金属结晶时需过冷的原因: 如图所示,液态金属和固态金属的吉布斯自由能随温度的增高而降低,由于液态金属原子排列混乱程度比固态高,也就是熵值比固态高,所以液相自由能下降的比固态快。当两线相交于Tm温度时,

即Gs=Gl,表示固相和液相具有相同的稳定性,可以同时存在。所以如果液态金属要结晶,必须在Tm温度以下某一温度Tn,才能使Gs<Gl,也就是在过冷的情况下才可自发地发生结晶。把Tm-Tn的差值称为液态金属的过冷度 影响过冷度的因素: 金属材质不同,过冷度大小不同;金属纯度越高,则过冷度越大;当材质和纯度一定时,冷却速度越大,则过冷度越大,实际结晶温度越低。 固态金属熔化时是否会出现过热及原因: 会。原因:与液态金属结晶需要过冷的原因相似,只有在过热的情况下,Gl<Gs,固态金属才会发生自发地熔化。 2-4 试比较均匀形核和非均匀形核的异同点。 答: 相同点: 形核驱动力都是体积自由能的下降,形核阻力都是表面能的增加。 具有相同的临界形核半径。 所需形核功都等于所增加表面能的1/3。 不同点: 非均匀形核的△Gk小于等于均匀形核的△Gk,随晶核与基体的润湿角的变化而变化。 非均匀形核所需要的临界过冷度小于等于均匀形核的临界过冷度。 两者对形核率的影响因素不同。非均匀形核的形核率除了受过冷度和温度的影响,还受固态杂质结构、数量、形貌及其他一些物理因素的影响。 2-5 说明晶体生长形状与温度梯度的关系。 答: 液相中的温度梯度分为: 正温度梯度:指液相中的温度随至固液界面距离的增加而提高的温度分布情况。 负温度梯度:指液相中的温度随至固液界面距离的增加而降低的温度分布情况。 固液界面的微观结构分为: 光滑界面:从原子尺度看,界面是光滑的,液固两相被截然分开。在金相显微镜下,由曲折的若干小平面组成。 粗糙界面:从原子尺度看,界面高低不平,并存在着几个原子间距厚度的过渡层,在过渡层中,液固两相原子相互交错分布。在金相显微镜下,这类界面是平直的。 晶体生长形状与温度梯度关系: 在正温度梯度下:结晶潜热只能通过已结晶的固相和型壁散失。 光滑界面的晶体,其显微界面(显微镜下观察到的界面)-晶体学小平面与熔点等温面成一定

纯金属的凝固习题与答案

纯金属的凝固习题与答案 1 说明下列基本概念 凝固、结晶、过冷、过冷度、结构起伏、能量起伏、均匀形核、非均匀形核、临界晶核半径、临界晶核形核功、形核率、生长线速度、光滑界面、粗糙界面、动态过冷度、柱状晶、等轴晶、树枝状晶、单晶、非晶态、微晶、液晶。 2 当球状晶核在液相中形成时,系统自由能的变化为σππ2 3344r G r G V +?=?, (1)求临界晶核半径c r ;(2)证明V V c c G A G c ?- ==?2 31 σ(c V 为临界晶核体积);(3)说明上式的物理 意义。 3 试比较均匀形核与非均匀形核的异同点,说明为什么非均匀形核往往比均匀形核更容易进行。 4 何谓动态过冷度?说明动态过冷度与晶体生长的关系。在单晶制备时控制动态过冷度的意义? 5 分析在负温度梯度下,液态金属结晶出树枝晶的过程。 6 在同样的负温度梯下,为什么Pb 结晶出树枝状晶而Si 的结晶界面却是平整的? 7 实际生产中怎样控制铸件的晶粒大小?试举例说明。 8 何谓非晶态金属?简述几种制备非晶态金属的方法。非晶态金属与晶态金属的结构和性能有什么不同。 9 何谓急冷凝固技术?在急冷条件下会得到哪些不同于一般晶体的组织、结构?能获得何种新材料? . 计算当压力增加到500×105 Pa 时锡的熔点的变化,已知在105 Pa 下,锡的熔点为505K ,熔化热7196J/mol ,摩尔质量为× 10-3 kg/mol ,固体锡的体积质量×103 kg/m 3 ,熔化时的体积变化为+%。 2. 考虑在一个大气压下液态铝的凝固,对于不同程度的过冷度,即:ΔT=1,10,100和200℃,计算: (a)临界晶核尺寸;(b)半径为r*的团簇个数; (c)从液态转变到固态时,单位体积的自由能变化ΔGv ; (d)从液态转变到固态时,临界尺寸r*处的自由能的变化 ΔGv 。 铝的熔点T m =993K ,单位体积熔化热ΔH f =×109 J/m 3 ,固液界面自由能γsc =93J/m 2 ,原子体积V 0=×10-29 m 3 。 3. (a)已知液态纯镍在×105 Pa(1个大气压),过冷度为319℃时发生均匀形核。设临界晶核半径为1nm ,纯镍的熔点为

第二章 纯金属的结晶

第二章纯金属的结晶 一.名词解释 结晶、过冷度、临界过冷度、结晶潜热、结构起伏、能量起伏、晶胚、晶核、枝晶、晶粒度、均匀形核、非均匀形核、形核功、形核率、光滑界面、粗糙界面、正温度梯度、负温度梯度、变质处理 二.填空题 1.在金属学中,通常把金属从液态向固态的转变称为,而把金属从一种结构的固态向另一种结构的固态的转变称为。 2.金属实际结晶温度与理论结晶温度之差称为。 3.金属冷却时的结晶过程是一个热过程。 4.过冷是金属结晶的条件。 5.过冷度是。一般金属结晶时,过冷度越大,则晶粒越。6.液态金属结晶时,结晶过程的推动力是,阻力是。 7.金属结晶两个密切联系的基本过程是和。 8.纯金属结晶必须满足的热力学条件为__________ _ 。 9.液态金属结晶时,获得细晶粒组织的主要方法是和。 液态金属的结构特点为。 10.当对金属液体进行变质处理时,变质剂的作用是。 11.如果其它条件相同,则金属模浇注铸件的晶粒比砂模浇注的__________,高温浇注铸件的晶粒比低温浇注的_____________,采用振动浇注铸件的晶粒比不采用振动的,薄铸件的晶粒比厚铸件。 12.影响非晶体凝固的主要因素是和。 三.选择题 1.液态金属结晶的基本过程是_____________。 A、边形核边长大 B、先形核后长大 C、自发形核和非自发形核 D、突发相变 2.金属结晶时,冷却速度越快,其实际结晶温度将____________。

A、比理论结晶温度越低 B、比理论结晶温度越高 C、越接近理论结晶温度 D、同理论结晶温度相等 3.液态金属结晶时,___________越大,结晶后金属的晶粒越细小。 A、形核率N B、长大率G C、比值N/G D、比值G/N 4.纯金属结晶过程中,过冷度越大,则_____________。 A、形核率增大、长大率减少,所以晶粒细小 B、形核率增大、长大率增大,所以晶粒细小 C、形核率增大、长大率增大,所以晶粒粗大 D、形核率减少、长大率减少,所以晶粒细小 5.若纯金属结晶过程处在液-固相平衡共存状态下,此时的温度同理论结晶温度相比_____________。 A、相等 B、更高 C、更低 D、难以确定 6.纯金属结晶的冷却曲线中,由于结晶潜热而出现结晶平台现象。这个结晶平台对应的横坐标和纵坐标表示_____________。 A、自由能和温度 B、温度和自由能 C、理论结晶温度和时间 D、时间和理论结晶温度 四.判断题 1.金属由液态转变为固态的过程称为凝固,是一相变过程。() 2.金属的纯度越高,则过冷度越大,实际结晶温度越高。() 3.液态纯金属的温度以极慢的冷却速度连续降低到其理论结晶温度时,该金属即 开始结晶。()

第二章 纯金属的结晶

第二章纯金属的结晶 一、填空题 1.金属结晶两个密切联系的基本过程是和。 2.当对金属液体进行变质处理时,变质剂的作用是。 3.液态金属结晶时,获得细晶粒组织的主要方法是。 4.金属冷却时的结晶过程是一个热过程。 5.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的,高温浇注的铸件晶粒比低温浇注的,采用振动浇注的铸件晶粒比不采用振动的,薄铸件的晶粒比厚铸件。 6.过冷度是。一般金属结晶时,过冷度越大,则晶粒越。 7.在过冷液中形成固态晶核时,可有两种形核方式:一种是 ,另一种是。 8.金属塑性变形的基本方式是和,冷变形后金属的强 度,塑性。 9.纯金属的实际开始结晶温度总是低于理论结晶温度,这种现象称为, 理论结晶温度与实际开始结晶温度之差称为。 10.液态金属凝固时,粗糙界面晶体的长大机制是_________________,光滑界面晶体的长大机制是______________和___ _____________。 11.液态固溶体合金结晶时,溶质原子重新分布,在固-液界面处形成溶质的从而产生。 12.典型的铸锭可以分为三个区,它们分别是、 和。 13.纯金属结晶应满足三个条件,必须在一定的下进行,且在液态金属中 满足起伏,起伏才能结晶。 14.根据微观结构界面可分为界面、界面。 15.纯金属凝固时,一般只有在条件下才生长成树枝晶,当金属中含有杂质或固溶体合金凝固由于发生所以在条件下也可能生长树枝晶。 二、判断题 1. 液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 2. 液体凝固成固体的过程都是结晶过程。 ( )

第二章纯金属结晶作业答案

第二章纯金属结晶作业答 案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第二章纯金属的结晶 (一) 填空题 1.金属结晶两个密切联系的基本过程是形核和长大。 2 在金属学中,通常把金属从液态向固态的转变称为结晶,通常把金属从一种结构的固态向另一种结构的固态的转变称为相变。 3.当对金属液体进行变质处理时,变质剂的作用是增加非均质形核的形核率 来细化晶粒 4.液态金属结晶时,获得细晶粒组织的主要方法是控制过冷度、加入结构类 型相同的形核剂、振动、搅动 5.金属冷却时的结晶过程是一个放热过程。 6.液态金属的结构特点为长程无序,短程有序。 7.如果其他条件相同,则金属模浇注的铸件晶粒比砂模浇注的细小,高温浇注的铸件晶粒比低温浇注的粗大,采用振动浇注的铸件晶粒比不采用振动的细小,薄铸件的晶粒比厚铸件细小。 8.过冷度是金属相变过程中冷却到相变点以下某个温度后发生转变,即平衡 相变温度与该实际转变温度之差。一般金属结晶时,过冷度越大,则晶粒越细小。 9、固态相变的驱动力是新、旧两相间的自由能差。 10、金属结晶的热力学条件为金属液必须过冷。 11、金属结晶的结构条件为在过冷金属液中具有尺寸较大的相起伏,即晶 坯。 12、铸锭的宏观组织包括外表面细晶区、中间等轴晶区和心部等轴晶区。 (二) 判断题 1 凡是由液态金属冷却结晶的过程都可分为两个阶段。即先形核,形核停止以后,便发生长大,使晶粒充满整个容积。 ( × ) 2.凡是由液体凝固成固体的过程都是结晶过程。 ( × ) 3.近代研究表明:液态金属的结构与固态金属比较接近,而与气态相差较远。( √ ) 4.金属由液态转变成固态的过程,是由近程有序排列向远程有序排列转变的 过程。( √ ) 5.当纯金属结晶时,形核率随过冷度的增加而不断增加。( × ) P41+7 6.在结晶过程中,当晶核成长时,晶核的长大速度随过冷度的增大而增大,但当过冷度很大时,晶核的长大速度则很快减小。 ( √ ) P53 图2-33 7.金属结晶时,冷却速度愈大,则其结晶后的晶粒愈细。( √ ) P53-12 8.所有相变的基本过程都是形核和核长大的过程。( √ ) 9.在其它条件相同时,金属模浇注的铸件晶粒比砂模浇注的铸件晶粒更细(√ ) 10.在其它条件相同时,高温浇注的铸件晶粒比低温浇注的铸件晶粒更细。( × ) 11.在其它条件相同时,铸成薄件的晶粒比铸成厚件的晶粒更细。( √ ) 12. 金属的理论结晶温度总是高于实际结晶温度。 ( √ )

第二章 纯金属的结晶

第二章纯金属的结晶 金属由液态转变为固态的过程称为凝固。凝固后的金属有两种:晶体和非晶体。由于在工业生产中,凝固后的金属多为晶体,所以凝固又称为结晶。结晶的实质就是金属原子由液相不规则排列过渡到固相规则排列,形成晶体的过程,这是一个相变过程。 所有通过熔炼和铸造得到的金属材料都必须经过结晶过程。结晶决定了金属材料的铸态结构、组织和性能。对于铸态条件下使用的铸件来说,结晶基本上决定了它的使用性能和使用寿命;而对于需要进一步加工的铸锭来说,结晶既影响到它的工艺性能,又影响到制成品的使用性能。因此,研究和控制结晶过程,已成为提高金属材料性能的一个重要手段。 同合金相比,纯金属的结晶过程比较简单。本章主要介绍纯金属的结晶。 §2.1金属结晶的现象 一.金属结晶的宏观特征 金属结晶的宏观现象可以用冷却曲线来描述,冷却曲线是用热分析法在极为缓慢的冷却条件下绘制的。如图2.2是纯金属结晶过程的冷却曲线,从冷却曲线可以看出两个重要的宏观特征。 1.液体金属必须具有一定的过冷度,才能结晶。 本部分内容的重点问题:1)什么是过冷度?2) 过冷度和冷却速度的关系 3)结晶是否能在理论结晶温度进行? 2.金属结晶过程中有结晶潜热的释放。 本部分内容重点问题:1)什么是结晶潜热? 2)纯金属结晶的冷却曲线上的两个转折点分别代表什么? ●这两个宏观特征是从纯金属的冷却曲线得到的,但合金的结晶同样具有这两个特征,只是合金的结晶冷却曲线上不会平台,因为合金结晶是在一定温度范围内进行的。 二.金属结晶的微观过程是晶核形成和晶核长大的过程 缓慢冷却条件下,小体积液态金属的结晶微观过程可用图2.3描述出来。从图中可见,液态金属在某一过冷温度下,结晶并不马上开始,而是需要一段时间才能观察出来,这段时间称为孕育期。结晶开始时,首先在液相中形成一定尺寸的微小晶体,它们被称为晶核。然后这些晶核会逐渐长大,在此过程中液相又有其它新的晶核源源不断地形成、长大。这一过程一直进行到液体金属全部消失为止,结晶就结束了。 结晶结束后,每个晶核长大成为一个小晶体,称为晶粒。因为各晶核的形成是随机的,空间位向各不相同,所以各晶粒的位向也不相同,结果结晶后得到的是多晶体金属。一般条件下结晶得到的都是多晶体。如果在结晶过程中采取特殊的措施,只允许一个晶核形成和长大,则结晶后得到的是单晶体。所以,从微观上看,就一个晶粒来说,结晶是晶核形成和晶核长大的过程。 ●以上结晶过程的微观描述是建立在小体积的液体金属内部温度均匀一致的基础上的。关于大体积,内部温度不均匀的液体金属的结晶,例如:铸锭的结晶,其晶核形成和晶核长大过程要复杂得多,这将在第三章介绍。 §2.2 金属结晶的热力学条件 一.自由能和自由能最小原理 1 . 自由能﹝G﹞

1.2 纯金属的结晶

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:003 §1-2 纯金属的结晶 【使用说明】 1、依据学习目标,全体同学积极主动的根据教材内容认真预习并完 成导学案,小组长做好监督与检查,确保每位同学都能认真及时的预习相关知识。 2、结合导学案中的问题提示,认真研读教材,回答相关问题。 3、要求每位同学认真预习、研读课本,找出不明白的问题,用红笔 做好标记。 【学习目标】 1、知识与技能:了解纯金属的结晶过程,掌握晶粒大小对金属材料 性能的影响和纯铁的同素异构转变。 2、学习与方法:通过研读课本,积极讨论,踊跃展示,理解纯金属 的结晶过程规律与金属材料的性能之间的密切关系。 3、情感态度价值观:激情投入,大胆质疑,快乐学习。 【重点难点】 纯金属的结晶过程 纯铁的冷却曲线 【自主学习】

班级:姓名:使用时间:年月日结晶过程重要级别:★★★★ 冷却曲线重要级别:★★★★★ 细化晶粒重要级别:★★★★ 同素异构转变重要级别:★★★★★ 【合作探究】 1、什么是结晶、结晶潜热? 2、什么是过冷度?其大小与什么有关? 3、什么是同素异构转变?具有同素异构转变的金属有哪些? 4、纯金属结晶时,其冷却曲线为何有一段水平线?结晶由哪两个基本过程组成(结晶的普遍规律)? 5、晶粒大小对金属材料性能有什么影响?分析影响晶粒大小的因素

《金属材料与热处理》导学案主备人:栾义审核人:栾义编号:003 有哪些?铸件在浇铸过程中是如何细化晶粒的? 6、金属的同素异构转变与液态金属的结晶相比有哪些异同点? 7、分析纯铁的冷却曲线,有哪几条特殊恒温线?钢铁能够进行热处理的重要依据是什么? 【课后作业】(自己默写,组长监督) 1、理解掌握本导学案内容,并完成习题册第一章第二节相关题目。【学后反思】

金属结晶现象和条件

金属结晶的现象 一、晶体结晶过程的宏观现象(过冷度和结晶潜热)。 1)过冷度(ΔT=T m-T n) 2)过冷度和金属的属性和冷却速度有关。 3)金属不同,过冷度不同;金属的纯度越高,过冷度越大;冷却 速度越快,过冷度越大。 4)相变潜热1摩尔物资从一个相转变为另一个相时,伴随着吸 收或放出的热量。金属由固态变为液态,需要吸热;由液态 变为固态需要放热。前者称为融化潜热,后者称为结晶潜热。 二、从微观上说,金属的结晶过程就是形核和长大的过程。 1)当金属液体冷却到实际结晶温度时,晶核并未立即出生,而是 经过一段时间才出现第一批晶核。结晶开始前的这段停留时间 称为孕育期。 2)晶核由晶胚形成。 3)由一个晶核长成的晶体就是一个晶粒。 4)一个晶粒内存在很多晶胞,并且晶胞位向一致。 5)因此单晶体表现出各向异性。 6)由两个以上晶粒组成的晶体称为多晶体。 7)一般的金属都是多晶体。并且由无数个晶粒组成。 8)各晶粒位向各异,相互抵消。 9)所以一般金属不表现出各向异性。 金属结晶的热力学条件

1、热力学第二定律:在等温等压条件下,物质系统总是自发的从自 由能较高的状态向自由能较低的状态转变。 2、自由能之差是促进金属相变的热力学条件,即相变驱动力。 3、 4、由上图可知:过冷度越大,自由能之差越大,且液相和固相自 由能之差与过冷度成正比。在过冷度等于0时,自由能之差也为0。 5、过冷度越大,自由能之差越大,相变驱动力越大,结晶速度越 快。 金属结晶的结构条件 1、液态金属的一个重要特点就是相起伏。只有在过冷液中相起伏 才能形成晶胚。但不是所有晶胚都可以转化成晶核。下节将讨论晶胚转化成晶核的条件。

1.2纯金属的结晶

纯金属的结晶 一、填空题 1.金属的结晶是指由原子排列转变为原子 排列的过程。 2.金属的结晶过程是由和两个基本过程组成的。 3.细化晶粒的根本途径是提高并控制。 4.常用的细化晶体颗粒的方法有、和三种。 5. 结晶温度和结晶温度之间存在的温度差称为用 表示。 6.金属结晶时,过冷度的大小与有关,冷却,其实际结晶的温度就,过冷度也就。 7.金属材料的晶粒越细,和性能越高。 8.金属的结晶过程可以通过进行研究并绘制冷却曲线图,图中纵坐标表示,横坐标表示。 9.形核率越,长大速度越,则结晶后的晶粒越细小。 10.晶体中某处有一列或若干列原子发生有规律的错排现象叫做。 11.晶体中存在、、、、 、等结构缺陷,都会造成,引起 增大,从而使材料的提高。 12.晶界越多使金属材料的力学性能越。 13.金属在下,随的改变,由转变为的现象称为同素异构转变。 二、选择题 1.金刚石和石墨具有相同。() A.组成原子 B.力学性能 C.晶格类型 D.显微组织 2.合金固溶强化的基本原因是() A.晶粒变细 B.晶格发生畸变 C.晶格类型发生了改变 D.以上都不是 3.金属结晶时,冷却速度越快,其实际结晶温度将()

A.越高 B.越低 C.越接近理论结晶温度 D.等于理论结晶温度 4.为了细化晶粒,可采用() A.快速浇注 B.加变质剂 C.以砂型代金属型 D.都不行 5.金属发生结构改变的温度称为() A.凝固点 B.临界点 C.过冷度 D.结晶温度 6.面心立方晶格的原子数为() A.12 B.14 C.17 D.9 7.以下金属中属于体心立方晶格的是() A. Cu B. γ-Fe C. Fe3C D. Cr 8.下列说法错误的是() A.纯金属的结晶是在恒温下进行的 B.纯金属结晶所用的时间是指冷却到室温的时间 C.结晶结束,不再有结晶潜热释放出来 D.理论结晶温度与实际结晶温度之间存在温度差 9.下列不属于细化晶粒的方法是() A.超声波震动 B.电磁震动 C.机械震动 D.加热保温 10.下列物质中属于非晶体的是() A.硫酸铜 B.明矾 C.食盐 D.松香 11.金属凝固前向金属液体中加入变质剂,主要是() A.增加晶粒体积 B.使晶粒变细 C.降低结晶速度 D.使晶粒变成单晶体 12.以下各细化晶粒方法中与长大速度有关的是() A.变质处理 B.增加过冷度 C.震动处理 D.加热处理 三、综合分析题 如图为纯金属的冷却曲线,试解答下列问题:

材料科学基础课件 2.纯金属的凝固

第二章 纯金属的凝固 物质从液态到固态的转变过程称为凝固。绝大多数材料的生产或成形都经历熔化、浇注、冷却过程,凝固为固态得到铸件,再经过其他加工成材。凝固过程中由于外界条件的差异,所获得铸件的内部组织会有所不同,它们的物理、化学和力学性能也会因之而异,对随后的加工工艺或使用带来很大的影响。 了解材料的凝固过程,掌握其有关规律。对控制铸件质量,提高制品的性能等都是很重要的。 如果固态下,材料的结构为晶体,凝固过程是晶体从液态中的生成过程,也称为结晶过程。结晶过程是一相变过程,了解结晶过程也为了解相变过程及相变的普遍规律提供重要的基础。 2-1 金属结晶的现象 一、过冷现象 人们常用热分析法(thermal analysis )来研究纯金属的结晶过程,即将纯金属加热熔化成液态,然后缓慢冷却下来,记录下如图3.1所示的温度随时间变化的曲线,称为冷却曲线(cooling curve )。从冷却曲线上可以看出,纯金属自液态缓慢冷却时,随着冷却时间的不断增加,热量不断地向外界散失,温度也连续下降;当温度降到理论结晶温度T 0时,液态纯金属并未开始结晶,而是需要继续冷却到T 0以下某一温度T n 时,液态金属方开始结晶,这种现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度(super cooling degree ),即有ΔT=T 0-T n 。 如图3.1所示,当液态纯金属的温度降到实际结晶温度T n 开始结晶后,冷却曲线上会出现一个平台,这是由于液态纯金属在结晶时产生的结晶潜热(latent 溫度 時間图3.1 纯金属的冷却曲线

heat )与向外界散失的热量相等的原因,这个平台一直延续到结晶过程完毕,纯金属全部转变为固态为止,然后再继续向外散热直至冷却到室温,相应的冷却曲线呈连续下降。 一般来讲,实际结晶温度总是低于理论结晶温度,但是在极其缓慢的冷却速度条件下,两者相差甚微(约0.02℃左右)。过冷度随金属的本性和纯度的不同,以及冷却速度的差异可以在很大的范围内变化。金属种类不同,过冷度的大小也不同;金属的纯度越高,则过冷度越大。当以上两个因素确定之后,过冷度的大小主要取决于冷却速度。在实际工程应用中,液态金属冷却速度总是比较快,冷却速度越快,则过冷度越大,实际结晶温度越低。 二、形核与长大过程 人们通过实验证明,结晶过程是形核与长大的过程。结晶时,首先在液体中形成具有某一临界尺寸的晶核(nucleus of crystallization ),然后这些晶核再不断地凝聚液体中的原子继续长大。形核过程与长大过程既紧密联系又相互区别。图3.3示意地表示了液态金属的结晶过程。当液态金属过冷至理论结晶温度以下的实际结晶温度时,晶核并未立即产生,而需要经过一定时间以后才开始出现第一批晶核;结晶开始前的这段停留时间称为孕育期。随着时间的推移,已形成的晶核不断长大,与此同时,液态金属中又产生第二批晶核;依此类推,原有的晶核不断长大,同时又不断产生新的第三批、第四批……晶核,就这样液态金属中不断形核,形成的晶核不断长大,使液态金属越来越少,直到各个晶体相互接触,液态金属耗尽,结晶过程进行完毕。由一个晶核长成的晶体,就是一个晶粒。由于各个晶核是随机形成的,其位向各不相同,所以各晶粒的位向也不相同,这样就形成一块多晶体金属;如果在结晶过程中只有一个晶核形成并长大,则形成一块单晶体金属。 总之,结晶过程是由形核和长大这两个过程交替重叠在一起进行的,对于一个晶粒来说,可以严格地区分其形核和长大这两个阶段,但就整个金属来说,形核和长大是互相交替重叠进行的。 2-2 金属凝固的热力学条件 为什么液态金属在理论结晶温度还不能开始结晶,而必须在一定的过冷条件下才能进行呢?这是由热力学条件决定的。热力学第二定律指出,在等温等压条件下,物质系统总是自发地从自由能较高的状态向自由能较低的状态转变。 这就(a) (b) (c) (d) (e) 图3.3 金属结晶过程示意图

02 金属材料热处理 第二章 纯金属的结晶 教案

第二章 纯金属的结晶 大多数金属材料都是经过冶炼得到液态金属,然后再经过浇铸而得到固态金属。由液态金属凝固成具有晶态结构固相金属的过程称为结晶。掌握液态金属的结晶规律,对控制铸件或铸锭的组织和性能具有重要作用。 一、本章教学目的 1 介绍金属结晶的基本概念和基本过程 2 阐明金属实际的结晶组织及其控制 二、 教学内容及要求 (1)了解金属结晶的宏观现象与微观过程, 掌握金属结晶的热力学条件, 金属结晶的结构条件; (2)掌握晶核形成的均匀形核与非均匀形核机制; (3)了解晶核的长大, 液固界面的微观结构, 晶体长大机制; (4)掌握液固界面前沿液体中的温度梯度, 晶体生长的界面形状与晶体形态, 长大速度, 晶粒大小的控制; (5)掌握金属铸锭的组织与缺陷, 铸锭三晶区的形成,铸锭组织的控制。 重点: (1)晶核的形成条件与方式; (2)晶核长大界面形状与晶体形态, 晶粒大小的控制; (2)铸锭三晶区的形成与控制 难点: (1)金属结晶的热力学条件、结构条件; (2)温度梯度与生长形态; (3)铸锭组织的控制。 §2-1 金属结晶的现象 一、冷却曲线与过冷现象 研究纯金属的结晶过程常采用热分析法,即将纯金属加热熔化成液态,然后缓慢冷却下来,记录温度随时间变化的曲线,称为冷却曲线.。从冷却曲线上可以看出,纯金属自液态缓慢冷却时,随着冷却时间的不断增加,热量不断地向外界散失,温度也连续下降;当温度降到理论结晶温度 Tm 时,液态纯金属并未开始结晶,而是需要继续冷却到 Tm以下某一温度 Tn时,液态金属才开始结晶,这种现象称为过冷现象。理论结晶温度与实际结晶温度之差称为过冷度,即有ΔT=Tm-Tn。

相关文档
相关文档 最新文档