文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析练习题第一二章

泛函分析练习题第一二章

泛函分析练习题第一二章

第一章

1. 设1(0,)n A n

=,求n n n n A A lim ,lim

2. 设E 为R 中的可数集,对任意实数a ,记}|{E x a x E a ∈+=,证明:

(1)},|{E y x y x A ∈-=也是可数集;

(2)证明必存在R a ∈使得φ=?a E E .

3.证明[0,1]上连续函数的全体]1,0[C 的基数c .

第二章

1. 证明B A B A ???,在R 中举等式不成立的反例.

2. 设n R E ?,证明E 是一切包含E 的闭集F 之交.

3. 设n R G G ?21,为开集,且φ=?21G G ,则φ=?21G G .

4. 设}{n G 为n R 中单调递增开集列,令 ∞==1k k G

G ,证明对任意有界闭集G F ?,必存在

0k ,当0k k ≥时,有k G F ?.

实变函数与泛函分析报告初步试题

浙江省2008年1月高等教育自学考试 实变函数与泛函分析初步试题 课程代码:10023 一、单项选择题(本大题共4小题,每小题4分,共16分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设Q 是I =[0,1]中有理数的全体,从R 1来看,边界?Q =( ) A.I B.Q C.I \Q D.φ 2.设R 是实数集,P 是Cantor 三分集,x ∈P ,下列叙述正确的是( ) A.x 是P 的内点 B.x 是P 的外点 C.x 是P 的界点 D.x 是P 的孤立点 3.设f (x )在闭集E ?R n 上R 可积,I 1=(R ) ?E x x f )d (,I 2=(L )?E x x f )d (,则有( ) A.I 1<I 2 B.I 1=I 2 C.I 1>I 2 D.不能比较 4.设A n (n =1,2,…)是一列递增集合,F = ∞=∞→= 1lim n n n n A G A ,,则F 与G 的外测度满足( ) A.m *F <m *G B.m*F=m*G C.m *F >m *G D.不能比较 二、判断题(本大题共6小题,每小题3分,共18分)判断下列各题,正确的在题后括号内打“√”,错的打“×”。 1.完全集是没有邻接余区间的闭集.( ) 2.Cantor 三分集中必含有内点.( ) 3.外测度为零的集是可测集.( ) 4.设f (x )=0 a . e . 于E ,则?E x )x (f d =0.( ) 5.设f (x )是[a ,b ]上有界变差函数,则f ′(x )在[a ,b ]上可积.( ) 6.y =f (x )在[a ,b ]满足Lipschitz 条件,则y =f (x )在[a ,b ]能表示为两个增函数之差.( ) 三、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。错填、不填均无分。 1.设A n (n =1,2,…)是一列集合,则 ∞=∞=1n n m m A =_________. 2.设A 2n -1=[0,n 1], A 2n =[0,n ],n =1,2,…, 则n n A ∞→lim =_________. 3.设S n =(n ,+∞), 则n n mS ∞→lim =_________.

泛函分析试题B

泛函分析试题B PTU院期末考试试卷 (B)卷 2010 ——2011 学年第 1 学期课程名称: 泛函分析适用年级/专业 07 数学试卷类别:开卷(?)闭卷( ) 学历层次: 本科考试用时: 120 分钟 《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》(((((((((((((((((((((((((((一、填空题(每小题3分,共15分) (,)Xdx1.设=是度量空间,是中点列,如果____________________________, XX,,n x则称是中的收敛点列。 X,,n ffNf2. 设是赋范线性空间,是上线性泛函,那么的零空间是中的闭子空XXX,,间的充要条件为_____________________________。 3. 为赋范线性空间到赋范线性空间中的线性算子,如果_________________, TXY 则称T是同构映射。 xyX,,4. 设是实Hilbert空间,对中任何两个向量满足的极化恒等式公式 为:XX ___________________________________________。 ,,5. 设是赋范线性空间,是的共轭空间,泛函列,如果XXXfXn,,(1,2,)Ln ff_______________________________________________,则称点列强收敛 于。 ,,n二、计算题(共20分) ppl叙述空间的定义,并求的共轭空间。 lp(1),,,, 三、证明题(共65分) p1、(12分)叙述并证明空间中的Holder不等式。 lp(1),

,,MM,2、(15分)设是Hilbert空间的闭子空间,证明。 MX 试卷第 1 页共 2 页 3、(14分)Hilbert空间是可分的,证明任何规范正交系至多为可数集。 XX 4、(12分) 证明Banach空间自反的充要条件是的共轭空间自反。 XX ,,ll5、(12分)叙述空间的定义,并证明空间是不可分的。 试卷第 2 页共 2 页

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

《应用泛函分析》前四章重点复习大纲

1 第1章预备知识 1.1集合的一般知识 1.1.1概念、集合的运算 上限集、上极限 下限集、下极限 1.1.2映射与逆映射 1.1.3可列集 可列集 集合的对等关系~(定义1.1)1.2实数集的基本结构 1.2.1建立实数的原则及实数的序关系 阿基米德有序域(定义1.4)1.2.2确界与确界原理 上确界sup E(定义1.5) 下确界inf E 确界原理(定理1.7) 1.2.3实数集的度量结构 数列极限与函数极限 单调有界原理 区间套定理 Bolzano-Weierstrass定理 Heine-Bore定理 Cauchy收敛准则 1.3函数列及函数项技术的收敛性1.3.1函数的连续性与一致连续 函数的一致连续性(定义1.10)1.3.2函数列和函数项级数的一致收敛 逐点收敛(定义1.11) 一致收敛(定义1.12) Weierstrass M-判别法(定理1.15)1.3.3一致收敛的性质 极限与积分可交换次序 1.4 Lebesgue积分 1.4.1一维点集的测度 开集、闭集 有界开集、闭集的测度m G m F 外测度内测度 可测集(定义1.16) 1.4.2可测函数 简单函数(定义1.18) 零测度集 按测度收敛 1.4.3 Lebesgue积分 有界可测集上的Lebesgue积分 Levi引理 Lebesgue控制收敛定理(性质1.9) R可积、L可积 1.4.4 Rn空间上的Lebesgue定理 1.5 空间 Lp空间(定义1.28) Holder不等式 Minkowski不等式(性质1.16)

2 第2章度量空间与赋范线性空间 2.1度量空间的基本概念 2.1.1距离空间 度量函数 度量空间(X,ρ) 2.1.2距离空间中点列的收敛性 点列一致收敛 按度量收敛 2.2度量空间中的开、闭集与连续映射 2.2.1度量空间中的开集、闭集 开球、闭球 内点、外点、边界点、聚点 开集、闭集 2.2.2度量空间上的连续映射 度量空间中的连续映射(定义2.7) 同胚映射 2.3度量空间中的可分性、完备性与列紧性 2.3.1度量空间的可分性 稠密子集(定义2.9) 可分性 2.3.2度量空间的完备性 度量空间中Cauchy列(定义2.11) 完备性 完备子空间 距离空间中的闭球套定理(定理2.9) 闭球套半径趋于零,则闭球的交为2.3.3度量空间的列紧性 列紧集、紧集(定义2.13) 全有界集 2.4 Banach压缩映射原理 压缩映像 不动点 Banach压缩映射原理(定理2.16)2.4.1应用 隐函数存在性定理(例2.31) 2.5 线性空间 2.5.1线性空间的定义 线性空间(定义2.17) 维数与基、直和 2.5.2线性算子与线性泛函 线性算子 线性泛函(定义2.18) 零空间ker(T)与值域空间R(T) 2.6 赋范线性空间 2.6.1赋范线性空间的定义及例子 赋范线性空间 Banach空间(定义2.20) 2.6.2赋范线性空间的性质 收敛性——一致收敛 绝对收敛 连续性与有界性 2.6.3有限维赋范线性空间 N维实赋范线性空间

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

应用泛函分析相关习题.doc

泛函分析练习题 一?名词解释: 1.范数与线性赋范空间 2.无处稠密子集与第一纲集 3.紧集与相对紧集 4.开映射 5.共貌算子 6.内点、内部: 7.线性算子、线性范函: 8.自然嵌入算子 9.共貌算子 10.内积与内积空间: 11.弱有界集: 12.紧算子: 13.凸集 14.有界集 15.距离 16.可分 17.Cauchy 列 18.自反空间 二、定理叙述 1、压缩映射原理 2.共鸣定理 3.逆算子定理 4.闭图像定理 5.实空间上的Hahn-Banach延拓定理 6、Bai re纲定理 7、开映射定理 8、Riesz表现定理 三证明题: 1.若(x,p)是度量空间,则d = d也使X成为度量空间。 1 + Q 证明:Vx,y,zcX 显然有(1)d(x, y) > 0 ,日3,),)= 0当且仅当x = (2) d(x9y) = d(y,x) (3)由/(/) = — = !一一, (/>0)关于,单调递增,得 1+,1+r d(x, z) = PE < Q(x,.y)+Q(y,z)

' 1 + Q(x, z) 一1 + p(x, y) + Q(y, z) 匕Q(x,)') | Q()',z) 一1 + Q(3)1+ /?(),, z) = d(x,y) + d(y,z) 故』也是X上的度量。 2,设H是内积空间,天则当尤〃—尤,乂T y时"(七,月)t (寻),),即内积关于两变元连续。 证明:| (% X,)一(x, y) I2 =| (x/t - x, >; - y)\2<\\x n-x\\-\\y tt-y\\ 己知即II七一尤II—0,|| 乂一>||—0。 故有I ,以)一(x, y)『—。 即Cw〃)T(x,y)。 5.设7x(r) = 若T是从心[0,1]-匕[0,1]的算子,计算||T||;若T是从 ZJ0,1]T ZJ0,1]的算子再求1171。 解:(1)当T是从ZJ0,l]—匕[0,1]的算子。 取x&)=同,贝j]||x()||2=1>||片)川=[后广出=*. 所以||T||>-^e 故有11『11=±? (2)当T是从ZJ0,1]T ZJ0,1]的算子时 ||八||2=(。誓⑴力度严=nxii2 Vn,(!--

泛函分析试题一

泛函分析试题一 一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题. 设)||||,(11?E 和)||||,(22?E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(?E 为一个赋范线性空间. 2 叙述共鸣定理并回答下列问题. 设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈?, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例. 二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分) 1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密. 2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记 ),(),(sup 111 x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞ =n n α1, 则A 在X 中存在唯一不动点. 3. 设H 是内积空间, H N M ?,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L . 三、应用题 (20分) 设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b a )(),())((?=定义的

泛函分析重要内容

们同意前人的提法,认为线性泛函与无穷维空间上引进坐标的思想有关,而对偶理论则有如无穷维线性空间上的解析几何学。 Chp.1 距离线性空间 SS1. 选择公理,良序定理,佐恩引理 有序集的定义: (1)若a在b之先,则b便不在a之先。 (2)若a在b之先,b在c之先,则a在c之先。 这种先后关系记作 良序集:A的任何非空子集C都必有一个属于C的最先元素。 良序集的超限归纳法: (1)为真,这里是A中最先的元素。 2)对一切,为真,则亦真 那么对一切皆真。 选择公理 设N={N}是一个非空集合构成的族,则必存在定义在N上的函数f,使得对一切N都有 部分有序 称元素族X是部分有序的,如果在其中某些元素对(a,b)上有二元关系,它据有性质: 例如X中包换关系 在部分有序集下,有上界、极大元和完全有序 其中完全有序的C:。 例如在复数域中,按大小关系定义两个复数的关系,则复平面是部分有序的,实轴、虚轴是完全有序的。 佐恩引理 设X非空的部分有序集,如果X的任何完全有序子集都有一个上界在X中,则X必含有极大元。 从现代观点来看,泛函分析研究的主要是研究实数域或者复数域上的完备赋线性空间。 SS2. 线性空间,哈迈尔(Hamel)基 线性空间的定义:加法交换、加法结合、有零元,有负元、有单位元等。 线性流形:线性空间中的非空子集,如果它加法封闭、数乘封闭。 线性流形的和M+N:所有形如m+n的元素的集合,其中m∈M, n∈N。 线性流形的直和:如果M∩N={θ},则以代替M+N 如果,则称M与N是代数互补的线性流形。 于是有下述定理:

定理2.1 设M,N是线性空间X的线性流形,则当且仅当对每个x∈X都有唯一的表达式 x=m+n, m∈M,n∈N. 定理2.2 若,则dimX=dimM+dimN Hamel基的定义: 设X是具有非零元的线性空间,X的子集H称为X的Hamel基,如果 (1)H是线性无关的。 (2)H成的线性流形是整个空间。 则有Hamel基和线性无关子集的关系: 定理2.3 设X是线性空间,S是X中任意的线性无关子集,则存在X的一个Hamel基使得 推论任何非零线性空间必有Hamel基 由定理2.3,可有 定理2.4 设M是线性空间X的线性流形,则必有线性流形使得,即N是M的代数补。 SS3 距离空间(度量空间),距离线性空间 定义了距离(满足正定性、对称性和三角不等式的映射)d(x,y)的空间即为距离空间,记为 按距离收敛: 设距离空间中的点列使得 ,则称按d(·,·)收敛到x,简记为 距离线性空间: 设赋有距离d(·,·)的线性空间X满足 (1) (2) 距离线性空间的例子 例1 有界序列空间(m) 设X代表所有有界数列的集合,设

泛函分析试题

1. 对于积分方程 ()()() 1 t s x t e x t ds y t λ--=?为一给定的函数,λ为 常数,1λ<,求证存在唯一解()[]0,1x t ∈。 2. 设s 为一切实(或复)数列组成的集合,在s 中定义距离为 ()11,21+k k k k k k x y ξηρξη=-=-∑,其中, ()() 11,,,=,,n n x y ξξηη=??????。求证s 为 一完备的距离空间。 3. 在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>, 存在基本列{}n y ,使(),0n n x y ρ<。求证{}n x 收敛。 4. 证明内积空间()(),,x 是严格凸的* B 空间 5. 为了()F C M ?使一个列紧集,必须且仅需F 是一致有界的 且等度连续的函数族。 6. 设 () ,A x y ?∈,求证(1). 1 sup x A AX ≤=,(2 ) 1 sup x A AX <=。 7. 设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数, 并存在0M >,使得( ),a x y M x y ≤,则存在唯一的()A x ?∈, 使得 ()() ,,a x y x Ay =且 ()(),0,0 ,sup x y X X x y a x y A x y ∈?≠≠=。 8. 求证()2f L ?∈Ω,方程() 0u f u ?Ω?-?=Ω?? =??在内若解存在唯一。 9. 设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ?∈≠。求 证存在X 上的线性泛函f 满足()()01.1f x =,()()() ()02.x f x x ρρ≤ 。 10. 叙述开映象定理并给出证明。 11. 叙述共鸣定理并给出证明。

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

实变函数与泛函分析课程教学大纲

《实变函数与泛函分析》课程教学大纲 一、课程基本信息 课程代码:110047 课程名称:实变函数与泛函分析 英文名称:Real variable analysis And Functional analysis 课程类别:专业基础课 学时:50 学分:3 适用对象:信息与计算科学专业本科 考核方式:考试,平时成绩30%,期末成绩70% 先修课程:数学分析和高等代数 二、课程简介 中文简介:实变函数起源于对连续而不可微函数以及Riemann可积函数等的透彻研究,在点集论的基础上讨论分析数学中一些最基本的概念和性质,其主要内容是引入Lebesgue积分并克服了Riemann积分的不足。它是数学分析的继续、深化和推广,是一门培养学生数学素质的重要课程,也是现代数学的基础。泛函分析起源于经典的数学物理边值问题和变分问题,同时概括了经典分析的许多重要概念,是现代数学中一个重要的分支,它综合运用了分析、代数与几何的观点和方法研究、分析数学和工程问题,其理论与方法具有高度概括性和广泛应用性的特点。 英文简介:Real variable analysis And Functional analysis is a theoretical course of mathematics which can be used in variable fields such as engineering and technology, physics, chemical, biology, economic and other fields. The educational aim in this course is to develop the abilities of students in analyzing and solving practical problem by the special ways of Real variable analysis And Functional analysis’ thinking and reasoning. 三、课程性质与教学目的 本课程是在实变函数与泛函分析基本理论的基础上,着重泛函分析的应用,教学的目的是丰富学生的知识和培养学生解决实际问题的能力。本课程就其实质来说是方法性的,但对于应用学科的学生来说,作为授课的目的,则是知识性的,故在教学方法和内容的选择上来说,只能让学生了解那些体现实变函数与泛函分析基本特征的思想内容,冗难的证明过程应尽量避免。本课程要求如下: 1. 理解和掌握集合间的关系和集与映射间的关系,了解度量空间的相关概念和Lebesgue可测集的有关内容和性质。

应用泛函分析复习资料小结

-` 第一章实分析概要 本章将简要的介绍数学分析与实变函数的一些基础知识,特别是点集的勒贝格测度与勒贝格积分理论。这些知识不仅是学习泛函分析的必要准备,而且在数学及其它学科中有直接的应用。 第一节集合及其运算第 二节实数的完备性第三 节可数集与不可数集 第四节直线上的点集与连续函数第 五节点集的勒贝格测度与可测函数

-` 1

-` 第六节勒贝格积分 第一节集合及其运算 1)A∪A=A,A∩A=A; 2)A∪ Φ=A,A∩ Φ=Φ; 3)若A?B,则A∪B=B,A∩B=A,A\B=Φ; 4) 设X为基本集,则 A ∪ A C= X , A ∩ A C=Φ, ( A C)C= A, A \ B = A ∩ B C 又若A?B,则A C?B C。 集合的运算法则: 2

-` 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A ; 结合律( A∪B) ∪C=A∪ (B∪C) =A∪B∪C; ( A∩B) ∩C=A∩ (B∩C) =A∩B∩C; 分配律( A∪B) ∩C= ( A∩C) ∪ (B∩C) ; ( A∩B) ∪C= ( A∪C) ∩ (B∪C) ; ( A \ B) ∩C= ( A∩C) \ (B∩C) . 定理 1.1 设X为基本集,Aα为任意集组,则 1) ( U Aα )C=I ( Aα )C (1.6) α∈I α∈I 2) ( I Aα )C=U ( Aα )C (1.7) α∈I α∈I A \ ( A \ B)= A I B 3

第二节实数的完备性 2.1有理数的稠密性 2.2实数的完备性定理 定义 2.1(闭区间套) 设{[a n,b n]}(n=1,2,L, )是一列闭区间,a n

距离空间 泛函分析第四章习题第一部分(1-18)

第四章习题第一部分(1-18) 1. 在 1中令ρ1(x , y ) = (x - y )2,ρ2(x , y ) = | x - y |1/2,,问ρ1, ρ2是否为 1上的距离? [解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性. 但ρ1不满足三角不等式:取点x = -1, y = 0, z = 1,则 ρ1(x , z ) = 4 > 2 = ρ1(x , y ) + ρ1(y , z ),所以ρ1不是 1上的距离。 而?x , y , z ∈ 1, ρ2(x , y ) = ||||2||||||||||y z z x y z z x y z z x y x -?-+-+-≤-+-≤- ||||)||||(2y z z x y z z x -+-=-+-==ρ2(x , z ) + ρ2(z , y ); 所以ρ2是 1上的距离. 2. 设(X , ρ)是距离空间,令ρ1(x , y ) = n y x ),(ρ,?x , y ∈X .证明(X , ρ1)也是距离空 间. [证明] 显然ρ1满足距离空间定义中的非负性和对称性, 故只需证明ρ1满足三角不等式即可. 实际上?x , y , z ∈X ,n n y z z x y x y x ),(),(),(),(1ρρρρ+≤= n n n n n y z z x n z y x M y z z x )),(),((),,,(),(),(ρρρρ+=++≤ ),(),(),(),(11y z z x y z z x n n ρρρρ+=+=. 3. 设(X , ρ)是距离空间,证明 | ρ(x , z ) - ρ(y , z ) | ≤ ρ(x , y ),?x , y , z ∈X ; | ρ(x , y ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ),?x , y , z , w ∈X . [证明] ?x , y , z , w ∈X ,由三角不等式有 - ρ(x , y ) ≤ ρ(x , z ) - ρ(y , z ) ≤ ρ(x , y ),故第一个不等式成立. 由第一个不等式可直接推出第二个不等式: | ρ(x , y ) - ρ(z , w ) | ≤ | ρ(x , y ) - ρ(y , z ) | + | ρ(y , z ) - ρ(z , w ) | ≤ ρ(x , z ) + ρ(y , w ). 4. 用Cauchy 不等式证明(| ζ1 | + | ζ1 | + ... + | ζn | )2 ≤ n (| ζ1 |2 + | ζ1 |2 + ... + | ζn |2 ). [证明] 在P159中的Cauchy 不等式中令a i = | ζi |,b i = 1,?i = 1, 2, ..., n 即可. 5. 用图形表示C [a , b ]上的S (x 0, 1). [注] 我不明白此题意义,建议不做. 6. 设(X , d )是距离空间,A ? X ,int(A )表示A 的全体内点所组成的集合.证明int(A ) 是开集. [证明] 若A = ?,则int(A ) = ?,结论显然成立. 若A ≠ ?,则?x ∈ A ,?r > 0使得S (x , r ) ? A . 对?y ∈ S (x , r ),令s = r - d (x , y ),则s > 0,并且S (y , s ) ? S (x , r ) ? A ; 所以y ∈ int(A ).故S (x , r ) ? int(A ),从而int(A )是开集. 7. 设(X , d )是距离空间,A ? X ,A ≠ ?.证明:A 是开集当且仅当A 是开球的并. [证明] 若A 是开球的并,由于开球是开集,所以A 是开集.

泛函分析课程总结论文

泛函分析课程总结论文 第一部分:知识点体系 第七章:度量空间和赋范线性空间 度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间的定义 定义1.1 设X 为一个集合,一个映射X X R ?→d :.若对于任何x ,y,z 属 于X ,有 1°d(,)0x y ≥,且d(,)0x y =当且仅当x y =(非负性); 2°(,)(,)d x y d y x =(对称性); 3°(,)(,)(,)d x y d x z d z y ≤+ (三角不等式) 则称d 为集合X 的一个度量,同时称 () ,X d 为一个度量空间 (课本第二章第一节中已经讲解了度量空间的定义,第七章第一节接着讲解度量空间,下面介绍六种度量空间。) 2、常见的度量空间 例2.1 离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 例2.2 序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 例2.3 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体, 对B(A)中任意两点x,y ,定义 ,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...), n n x y ξξξηηη==1|| 1(,)21||i i i i i i d x y ξηξη∞ =-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-

相关文档
相关文档 最新文档