文档库 最新最全的文档下载
当前位置:文档库 › 石墨烯基本特性

石墨烯基本特性

石墨烯基本特性
石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10)石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽频的光吸收和非线性光学性质, 以及室温下的量子霍尔效应等。常温下石墨烯电子迁移率超过15000cm2/V·s,比纳米碳管或硅晶体高,而电阻率只约为10-6Ω·cm,比铜或银更低,是世上电阻率最小的材料。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。

这些优异的性能使石墨烯在太阳能电池、触摸屏、场效应晶体管、高频器件、自旋器件、场发射材料、灵敏传感器、高性能电池和超级电容、微纳机电器件及复合材料诸多领域都有潜在应用。石墨烯是新一代的透明导电材料,在可见光区,四层石墨烯的透过率与传统的ITO 薄膜相当,在其它波段,四层石墨烯的透过率远远高于ITO薄膜。石墨烯几乎是完全透明的,透光率高达97.4%。另一方面,它非常致密,即使是最小的气体原子(氢原子)也无法穿透。并且石墨烯导热系数高达5300W/m·K,高于碳纳米管和金刚石。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。[5] 此外,石墨烯具有超大的比表面积,理论值为263012gm ;热导率达500011W K m,是金刚石的3 倍; 还具有零半导体特性、亚格子对称性、室温量子霍尔效应及室温铁磁性等特殊性质。同时,石墨烯还具有高平整性、热稳定性、相对轻的质量和相对稳定的化学性质等特性,使得石墨烯成为理想的新型材料.作为碳纳米材料家族的新成员,石墨烯相对稳定的特性和其具有的二维层状纳米结构使得石墨烯在催化、电子元件、气敏元件领域具有光明的应用前景。而且研究发现, 石墨烯在燃料电池领域中具有比其他碳纳米材料更优异的潜能, 是当前电极材料的极佳选择.研究发现石墨烯存在双极性电场效应,具有极大的载流子浓度,超高的载流子迁移率和亚微米尺度的弹性输运等特性,这些优异的性能引起了物理学、材料学、化学等科研领域的广泛关注。掀起了继富勒烯和碳纳米管后的又一次碳材料研究热潮。石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。[1](9)(2)石墨烯独特的性能与其电子能带结构紧密相关。石墨烯的每个晶胞由两个原子组成,产生两个锥顶点,使得每个布里渊区里相对应的能带均能发生交叉,且交叉点附近的电子能E取决于波矢量。石墨烯电子能带结构以独立碳原子为基,将周围碳原子产生的势作为微扰,可以用矩阵的方法计算出石墨烯的能级分布。在狄拉克点(Dirac Point)附近展开,可得能量与波矢呈线性关系(类似于光子的色散关系),且在狄拉克点出现奇点(singularity)。这意味着在费米面附近,石墨烯中电子的有效质量为零,这也解释了该材料独特的电学等性质。

石墨烯电子能带结构然而,由于石墨烯没有能带隙,使得其电导性不能像传统的半导体一样完全被控制,而且石墨烯表面光滑且呈惰性,不利于与其他材料的复合,从而阻碍了石墨烯的应用。近年来,研究者努力探索改善石墨烯性质的方法,其中,石墨烯掺氮在拓展石

墨烯的应用领域方面起着关键作用。石墨烯掺氮,可以打开能带隙并调整导电类型,改变石墨烯的电子结构,提高石墨烯的自由载流子密度,从而提高石墨烯的导电性能和稳定性。此外,在石墨烯的碳网格中引入含氮原子结构,可以增加石墨烯表面吸附金属粒子的活性位,从而增强金属粒子与石墨烯的相互作用。(6)石墨烯晶格常数n的实验值为0.246nm ,为了得到更准确的值,对其附近不同晶格常数的石墨烯进行了优化,结果如图1所示。从图1可以看出,随着晶格常数a的增加,总能量Eg先减小后增大,最小值点对应的横坐标就是石墨烯的最佳晶格常数,其值为0.2462nm,以下计算均采用此值。在石墨烯蜂窝状平面上,共有3个高对称吸附位,分别为顶位(T ) 、桥位(B ) 、间隙位(H ) ,它们分别位于石墨烯碳原子的正上方、碳碳键正上方、六边形碳环正上方,如图

但是, 本征石墨烯零带隙的特点也给其在电子器件领域的应用带来了困难, 如漏电流大、开关比低等; 同时获得p 型和n 型石墨烯也是其应用于电子信息器件的必要条件. 因此对石墨烯可控的进行掺杂和能带调控具有极大挑战, 成为国际上研究的热点. 本征石墨烯的价带和导带在布里渊区中心呈锥形接触, 因此是零带隙的半导体或半金属; 又由于其能量色散关系为线性, 载流子有效质量为零, 载流子运动方程要用含相对论效应的狄拉克方程描述, 因此载流子称为狄拉克载流子, 图 1 为石墨烯的能带结构图. 这种零带隙的能带结构容易受到各种因素,如外电场、表面吸附、晶格变形、晶格替换掺杂等的影响而发

生改变, 与半导体类似的形成掺杂效应, 使石墨烯的费米面从狄拉克锥点进行上移或下移(图1), 从而使主要载流子变成电子型或空穴型, 进而可以有效的打开石墨烯的带隙。

石墨烯基本特性

2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用高度定向的热解石墨首次获得了独立存在的高质量石墨烯,打破了传统的物理学观点:二维晶体在常温下不能稳定存在。两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯是一种碳原子分布在二维蜂巢晶体点阵上的单原子层晶体。被认为是构建所有其他维数石墨材料的基本单元,它可以包裹成零维的富勒烯,卷曲成一维的碳纳米管或者堆垛成三维的石墨,如图所示。石墨烯晶体C-C键长为0.142nm,每个碳原子4 个价电子中的3 个通过σ键与临近的3个碳原子相连,S、Px 和Py3个杂化轨道形成强的共价键合,组成sp2杂化结构。这些σ键赋予了石墨烯极其优异的力学性质和结构刚性。拉伸强度高达130Gpa,破坏强度为42N/m,杨氏模量为1.0TPa,断裂强度为125Gpa 与碳纳米管相当。石墨烯的厚度仅为0.35nm左右,是世界上最薄的二维材料。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。(百度百科)石墨烯的硬度比最好的钢铁强100倍,甚至还要超过钻石,是已知的世上最薄、最坚硬的纳米材料。

石墨烯结构示意图(10) 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。传统的半导体和导体,例如硅和铜,由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费了72%-81%的电能。而在石墨烯中,每个碳原子都有一个垂直于碳原子平面的σz轨道的未成键的p电子,在晶格平面两侧如苯环一样形成高度巡游的大π键,可以在晶体中自由高效的迁移,且运动速度高达光速的1/300,电子能量不会被损耗,赋予了石墨烯良好的导电性。晶格平面两侧高度巡游的大π键电子又使其具有零带隙半导体和狄拉克载流子特性宽

氧化石墨烯薄膜的光电化学性质

2011年第69卷化学学报V ol. 69, 2011第21期, 2539~2542 ACTA CHIMICA SINICA No. 21, 2539~2542 * E-mail: kzwang@https://www.wendangku.net/doc/9c3461882.html, Received April 2, 2011; revised May 25, 2011; accepted June 3, 2011. 国家自然科学基金(Nos. 90922004, 20971016)、中央高校基本科研业务费专项资金、北京市大学生科学研究与创业行动计划和北京师范大学分析测试

2540化学学报V ol. 69, 2011 器有限责任公司); 冷场发射扫描电镜(S-4800 日立高新技术株式会社); FZ-A型辐照计(北京师范大学光电仪器厂); KQ-50B型超声波清洗器(昆山市超声仪器有限公司); 采用三电极系统, 覆盖有自组装膜的氧化铟-氧化硒(ITO)玻璃为工作电极, 铂片为对电极, 饱和甘汞电极为参比电极, 0.1 mol?L-1的Na2SO4溶液为支持电解质; 配有红外和紫外截止滤光片的500 W高压氙灯光源系统(北京畅拓科技有限公司). 试剂均为分析纯. 1.2 GO及其静电自组装薄膜的制备 在傅玲等[9]将Hummers法制备氧化石墨分为低温、中温、高温反应三个阶段的基础上, 延长中温反应时间至8 h; 充分超声剥离后, 通过脱脂棉抽滤和渗析的方法除去少量沉淀和杂质离子, 得到均一稳定的GO水溶胶, 放置7个月后无沉淀. GO的静电自组装薄膜的制备: 将按文献[10]报道的方法清洗和表面硅烷化的石英和ITO导电玻璃放入pH 3的HCl溶液中质子化处理, 使基片表面带有正电荷. 然后此基片浸入GO溶液中(1 mg?mL-1) 10 min, 取出并用去离子水清洗, 空气吹干. 1.3 光电化学性质 所有光电化学研究均以GO膜修饰的电极为工作电极, 其有效光照面积为0.28 cm2. 光电流的测量在电化学工作站上进行, 入射光的强度用辐照计测定. 不同波长的入射光是在氙灯光路上加具有所需带宽的滤光片得到. 2 结果与讨论 2.1 紫外-可见吸收光谱 图1为GO水溶液(a)和石英基片上单层薄膜(b)的紫外-可见光谱图的对比. GO在231 nm处有1个C—C键上的π-π*跃迁吸收峰, 在298 nm处有1个C=O键上的n-π* 跃迁肩峰[11], 这与在石英片上单层薄膜在30 nm 处的吸收峰吻合, 表明GO已成功组装到基片上. 处理后的基片浸泡在1 mg?mL-1 GO溶液, 利用紫外-可见光谱对浸泡时间进行了监测(图2). 结果表明: 当在GO水溶液的浸泡时间达10 min时, 吸光度基本达最大值. 2.2 冷场发射扫描电镜 我们制备的GO水溶液具有明显的丁达尔效应, 与文献[12]报道的结果吻合. GO水溶液在铝箔上流沿. 待液体干燥后, 剪取部分于样品台上经磁控溅射镀膜(喷金)处理后, 用冷场发射扫描电镜研究其形貌(图 3). 氧化石墨因超声剥离, 脱落成许多大小为几十纳米的片状GO. 这与氧化石墨烯是一种二维结构材料及其水溶液具有明显的丁达尔效应吻合 . 图1 (a) GO水溶液和(b)石英片上GO薄膜的紫外-可见光谱Figure 1 UV-Vis spectra of (a) GO aqueous solution and (b) GO film on quartz substrate 图2基片在230 nm处的吸光度随其在GO溶胶中浸泡不同时间的变化图 Figure 2Changes in absorbance at 230 nm of protonated quartz substrate at varied immersion time in GO aqueous solution 图3GO冷场发射扫描电镜图 Figure 3 Cold-field emission scanning electron microscope image of GO 2.3 GO修饰的ITO电极的光电响应 在0.1 mol?L-1的Na2SO4溶液中, 当用100 mW/cm2的白光照射GO膜修饰的ITO电极时, 所得光电流随偏

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

最新石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。

图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少

与石墨烯相关的特征剖析

1 拓扑绝缘体 自然界的材料根据其电学输运性质,可分为导体,半导体和绝缘体。一般的导体中存在着费米面(如图a所示),半导体和绝缘体的费米面存在于禁带之中(如图b所示)。拓扑绝缘体在边界上存在着受到拓扑保护的稳定的低维金属态,这些无能隙的边缘激发处在禁带之中,并且连接价带顶和导带底(如图c,d所示)。从这个意义上讲,拓扑绝缘体是介于普通绝缘体和低维金属之间的一种新物态。根据能带理论,费米能落在晶体材料的带隙中时,材料表现为绝缘体。拓扑绝缘体的材料的能带结构类似于一般绝缘体,存在全局的能隙。但不同于一般的绝缘体,当考虑存在边界的拓扑绝缘体时,将出现贯穿整个能隙的边界态,这些特殊的边界态和体系的拓扑性质(由体系的拓扑数决定)严格对应,因而只要不改变体系的拓扑性质,这些边界态就不会被破坏。 拓扑绝缘体的典型特征是体内元激发存在能隙,但边界上或表面具有受拓扑保护的无能隙边缘激发。拓扑绝缘体的内部的电子能带结构和一般绝缘体相似,它的费米能级位于导带和价带之间,而在其表面存在一些特殊量子态,这些量子态位于块体能带结构的带隙之中,从而允许导电。拓扑绝缘体表面或边界导电是有材料电子态的拓扑结构决定,与表面的具体结构无关。也正是因为其表面金属态的出现由拓扑结构对称性所决定,所以它的存在非常稳定,基本不会受到杂志与无序的影响。 从广义上讲,可分为两大类:一类是破坏时间反演的量子霍尔体系;另一类是最近发现的时间反演不变的拓扑绝缘体。 2半金属 semimetal halfmetal 半金属:介于金属和非金属之间的物质。从能带结构来看,金属中被电子填充的最高能带是半满的或部分填充的,电子能自由运动,有较高的电导率。绝缘体中被电子填充的最高能带是满带(又称价带),价带与导带之间的禁带宽度较大。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

石墨烯文献检索

《文献检索与科技论文写作》作业 学生姓名 年级专业 班级学号 指导教师职称

目录 第一部分文献查阅练习 (1) 第二部分文献总结练习 (7) 第三部分科技论文图表练习 (8) 第四部分心得体会 (11)

第一部分文献查阅练习 1、黄毅,陈永胜.石墨烯的功能化及其相关应用.中国科学B辑:化学2009年第39卷第9期:887-896 摘要:石墨烯是2004年才被发现的一种新型二维平面纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的物理性质.过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点.在石墨烯的研究和应用中,为了充分发挥其优良性质,并改善其成型加工性(如分散性和溶解性等),必须对石墨烯进行功能化,研究人员也在这方面开展了积极而有效的工作.但是,关于石墨烯的功能化方面的研究还处在探索阶段,对各种功能化的方法和效果还缺乏系统的认识.如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战.本文重点阐述了石墨烯的共价键和非共价键功能化领域的最新进展,并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望. 关键词:功能化应用 2、胡耀娟,金娟.石墨烯的制备、功能化及在化学中的应用. 物理化学学报(Wuli Huaxue Xuebao)Acta Phys.-Chim.Sin.,2010,26(8):2073-2086 摘要:石墨烯是最近发现的一种具有二维平面结构的碳纳米材料,它的特殊单原子层结构使其具有许多独特的物理化学性质.有关石墨烯的基础和应用研究已成为当前的前沿和热点课题之一.本文仅就目前石墨烯的制备方法、功能化方法以及在化学领域中的应用作一综述,重点阐述石墨烯应用于化学修饰电极、化学电源、催化剂和药物载体以及气体传感器等方面的研究进展,并对石墨烯在相关领域的应用前景作了展望。 关键词:制备功能化应用. 3、杨永岗,陈成猛,温月芳.新型炭材料.第23卷第3期 2008年9月:193-200 摘要:石墨烯是单原子厚度的二维碳原子晶体,也是性能优异的新型纳米复合填料。近三年来,石墨烯从概念上的二维材料变成现实材料,在化学和物理学界均引起轰动。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合

石墨烯在热领域的特性及利用

特性机理: 在石墨烯中,碳原子在不停的振动,振动的幅度有可能超过其厚度。其中最重要的石墨烯的晶格振动,不仅仅影响石墨烯的形貌特征,还影响的石墨烯的力学性质、输运特性、热学性质和光电性质。 对石墨烯的热学性质的影响主要是由于石墨烯晶格振动。 由石墨烯的导热系数经验公式 -2bd 8f 可得如下图表 150 200 250 300 350 400 斟度心 从图中看岀来石墨烯的导热系数随温度的增加而减小。在同一温度下,导热系数随石墨烯的宽度的增加而增加。 由经典的热传导理论可知,随着温度的升高,晶格振动加强,声子运动剧烈,热流中的声子数目也增加。 声子间的相互作用或碰撞更加频繁,原子偏离对平衡位置的振幅增大,引起的声子散射加剧,使导热载体 (声子)的平均自由程减小。这是石墨烯的导热系数随温度升高而降低的主要原因。对于石墨烯,电子的运动 对导热也有一定的贡献,但在高温情况下,晶格振动对石墨烯的导热贡献是主要的,起主导作用。 二?应用: 发热: 由石墨烯制成的加热膜与传统取暖方式相比, 1加热速度快(1min内达到稳定工作温度,而传统取暖如油汀需要20min才能达到稳定温度) 10 000 HD00 4 000

2电热辐射转换效率高(经第三方检测,电热辐射转换效率达80% 以上),与传统取暖方式相比可节能省电; 3石墨烯加热膜是整个面加热,温度均匀分布; 4石墨烯加热膜与某些对人体有害辐射的取暖方式相比是安全的。 例子: 1制作理疗护具石墨烯的高导电、导热性能应用在理疗护具领域,利用石墨烯在发热过程中产生的远红外线,与人体波长相同,产生共振作用,形成热反应,深入皮下组织,使毛细血管扩张,促进血液循环,强化组织新陈代谢,提高机体免疫能力,排除疲劳,缓和酸痛,从而起到消炎、镇痛的理疗保健作用。 2制作发热服石墨烯智能发热服将石墨烯独特的导热性能和日常穿戴完美结合,为人体营造温暖舒适的感受,通过手机端app 的控制可以使得发热服迅速升温,产生对人体有益的远红外线,为生活带来更好的健康理疗体验,重新定义温暖。 散热: 石墨烯具有极高的热导率和热辐射系数,单层石墨烯的导热系数可达5300W/mK ,不仅优于碳纳米管,更是远高于金属中导热系数最高的银、铜、金、铝等,因此石墨烯作为辅助散热的导热塑料或者膜片具有巨大的应用前景。 1 石墨烯导热塑料的开发,可以为各种散热需求提供性能更加优异的新型的散热产品,例如各种电子设备(如LED 灯)的外壳散热,目前国外已经有厂家开发出了成型的导热塑料并进入市场。 ? 例子:飞利浦MASTER LED MR16 新式灯具作为全球首例大功率LED 应用,其铝制外壳已经被帝斯曼公司开发出的Stanyl TC 导热塑料所取代,其效果不仅达到了同等级的散热目的,而且整个灯具更轻,耐腐蚀。 2 石墨烯制成的散热膜散热性能会大大优于石墨片,实测的热导率可达到1000W/mK 以上,同时膜片具有良好的柔韧性易于加工。散热薄膜是计算机、手机制造中的关键材料 例子:苹果手机目前用的散热膜是用石墨片制成的,因此高性能的石墨烯散热薄膜是如智能手机、平板电脑等高性能、超薄电子产品的理想散热材料。 储热: 石墨烯具有高导热性这一特性在热工装备及余热利用中具有广泛的应用前景。应用最新的石墨烯材料,结合现有的工艺和设备,实现能耗的大幅下降,帮助传统产业满足越来越严格的环保法规,获得企业生存空间。 原理:在热工设备中,热的传递主要有两种形式, 一种是热能直接传递给物料,代表炉型是加热炉等,石墨烯材料可用在烟气余热回收上 另外一种是热能先传递给导热储热材料再传递给物料,代表炉型为焦炉、热风炉等,石墨烯可用在开发高导热材料上 1 石墨烯相变储热材料在热风炉上可以得到应用,以取代目前的格子砖,减少设备体积。

石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用 摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。 关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体; 1、前言 石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。 目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。 2、石墨烯的基本性质 石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。 在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。 在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。 石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。 3、基于石墨烯的光调制器 3.1 直波导结构石墨烯光调制器 光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

石墨烯的表面性质及其分析测试技术

Journal of Advances in Physical Chemistry 物理化学进展, 2016, 5(2), 48-57 Published Online May 2016 in Hans. https://www.wendangku.net/doc/9c3461882.html,/journal/japc https://www.wendangku.net/doc/9c3461882.html,/10.12677/japc.2016.52006 Progress in Surface Properties and the Surface Testing of Graphene Jinfeng Dai1*, Guojian Wang1,2, Chengken Wu1 1School of Materials Science and Engineering, Tongji University, Shanghai 2Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai Received: Apr. 22nd, 2016; accepted: May 10th, 2016; published: May 13th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.wendangku.net/doc/9c3461882.html,/licenses/by/4.0/ Abstract Graphene has been paid much attention for its special two-dimensional structure and excellent physicochemical properties. Researchers have done a great number of studies on these fields, and have made lots of outstanding results, while less on the surface properties, relatively. However, the surface properties of graphene usually play an important role in the practical application of graphene-based materials, especially, in the nano-composites, nano-coating and electrical nano- devices. In this review, the recent developments of surface properties and surface modification of graphene are summarized, where the relationship between the structure and surface properties of graphene is highlighted. The method of surface testing is also compared and commented on briefly. We believe that the future prospects of research emphasis on preparation of functiona-lized graphene with special surface properties, and a new comprehensive technique for testing the surface properties of graphene. Finally, the current challenges of research on structural surface and surface properties of graphene are commented based on our own opnion. Keywords Surface Properties, Structural Surface, Surface Energy, Surface Testing, Graphene 石墨烯的表面性质及其分析测试技术 戴进峰1*,王国建1,2,吴承恳1 1同济大学材料科学与工程学院,上海 *通讯作者。

石墨烯的特殊性能

石墨烯的特殊性能 摘要:石墨烯是2004年才发现的一种有奇异性能的新型材料,它是由碳原子组成的二维六角点阵结构,具有单一原子层或几个原子层厚。石墨烯因其具有独特的电子能带结构和具相对论电子学特性,是迄今为止人类发现的最理想的二维电子系统,且具有丰富而新奇的物理特性。本文详细介绍了石墨烯的结构,特殊性能以及对石墨烯原胞进行了5×5×1的扩展,通过密度泛函理论 ( DFT) 和广义梯度近似( GGA)对50个碳原子的本征石墨烯超晶胞进行电子结构计算。 关键字:石墨烯,结构,特殊性能,超晶胞,电子结构计算 一、引言 石墨烯是2004年以来发现的新型电子材料石墨烯是sp2杂化碳原子形成的厚度仅为单层原子的排列成蜂窝状六角平面晶体。在单层石墨烯中,碳碳键长为0.142nm,厚度只有0.334nm。石墨烯是构成下列碳同素异型体的基本单元:例如:石墨,碳纳米管和富勒烯。石墨烯被认为是平面多环芳香烃原子晶体。石墨烯在电子和光电器件领域有着重要和广阔的应用前景正因为如此,石墨烯的两位发现者获得了2010年的诺贝尔物理学奖。

石墨烯是一种没有能隙的半导体,具有比硅高100倍的载流子迁移率,在室温下具有微米级自由程和大的相干长度,因此石墨烯是纳米电路的理想材料,石墨烯具有良好的导热性[3000W/(m〃K)]、高强度(110GPa)和超大的比表面积 (2630mZ/g)。这些优异的性能使得石墨烯在纳米电子器件、气体传感器、能量存储及 复合材料等领域有光明的应用前景 二、石墨烯的特殊性能 石墨烯是一种半金属或者零带隙二维材料,在靠近布里渊区6个角处的低能区,其E-k色散关系是线性的 ,因而电子或空穴的有效质量为零,这里的电子或空穴是相对论粒子,可以用自旋为1/2粒子的狄拉克方程来描述。 石墨烯的电子迁移率实验测量值超过15000cm/(V〃s)(载流子浓度n≈10 cm ),在10~100K范围内,迁移率几乎与温度无关,说明石墨烯中的主要散射机制是缺陷散射,因此,可以通过提高石墨烯的完整性来增加其迁移率,长波的声学声子散射使得石墨烯的室温迁移率大约为200000cm /(V〃s),其相应的电阻率为lO -6 〃cm,

最新石墨烯在热领域的特性及利用整理

一.特性机理: 在石墨烯中,碳原子在不停的振动,振动的幅度有可能超过其厚度。其中最重要的石墨烯的晶格振动,不 仅仅影响石墨烯的形貌特征,还影响的石墨烯的力学性质、输运特性、热学性质和光电性质。 对石墨烯的热学性质的影响主要是由于石墨烯晶格振动。 由石墨烯的导热系数经验公式 可得如下图表 从图中看出来石墨烯的导热系数随温度的增加而减小。在同一温度下,导热系数随石墨烯的宽度的增加而 增加。 由经典的热传导理论可知,随着温度的升高,晶格振动加强,声子运动剧烈,热流中的声子数目也增加。 声子间的相互作用或碰撞更加频繁,原子偏离对平衡位置的振幅增大,引起的声子散射加剧,使导热载体(声子)的平均自由程减小。这是石墨烯的导热系数随温度升高而降低的主要原因。对于石墨烯,电子的运动对 导热也有一定的贡献,但在高温情况下,晶格振动对石墨烯的导热贡献是主要的,起主导作用。二.应用:

发热: 由石墨烯制成的加热膜与传统取暖方式相比, 1加热速度快(1min内达到稳定工作温度,而传统取暖如油汀需要20min才能达到稳定温度); 2电热辐射转换效率高(经第三方检测,电热辐射转换效率达80%以上),与传统取暖方式相比可节能省电; 3石墨烯加热膜是整个面加热,温度均匀分布; 4石墨烯加热膜与某些对人体有害辐射的取暖方式相比是安全的。 例子: 1制作理疗护具 石墨烯的高导电、导热性能应用在理疗护具领域,利用石墨烯在发热过程中产生的远红外线,与人体波长 相同,产生共振作用,形成热反应,深入皮下组织,使毛细血管扩张,促进血液循环,强化组织新陈代谢,提高机体免疫能力,排除疲劳,缓和酸痛,从而起到消炎、镇痛的理疗保健作用。 2制作发热服 石墨烯智能发热服将石墨烯独特的导热性能和日常穿戴完美结合,为人体营造温暖舒适的感受,通过手机 端app的控制可以使得发热服迅速升温,产生对人体有益的远红外线,为生活带来更好的健康理疗体验, 重新定义温暖。 散热: 石墨烯具有极高的热导率和热辐射系数,单层石墨烯的导热系数可达5300W/mK,不仅优于碳纳米管,更是远高于金属中导热系数最高的银、铜、金、铝等,因此石墨烯作为辅助散热的导热塑料或者膜片具有巨 大的应用前景。 1石墨烯导热塑料的开发,可以为各种散热需求提供性能更加优异的新型的散热产品,例如各种电子设备 (如LED灯)的外壳散热,目前国外已经有厂家开发出了成型的导热塑料并进入市场。 例子:飞利浦MASTER LED MR16 新式灯具作为全球首例大功率LED应用,其铝制外壳已经被帝斯曼公 司开发出的Stanyl TC 导热塑料所取代,其效果不仅达到了同等级的散热目的,而且整个灯具更轻,耐腐 蚀。 2石墨烯制成的散热膜散热性能会大大优于石墨片,实测的热导率可达到1000W/mK以上,同时膜片具有良好的柔韧性易于加工。散热薄膜是计算机、手机制造中的关键材料 例子:苹果手机目前用的散热膜是用石墨片制成的,因此高性能的石墨烯散热薄膜是如智能手机、平板电 脑等高性能、超薄电子产品的理想散热材料。

石墨烯基础学习知识简介.docx

WORD整理版 1.石墨烯( Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图 1.1 所示,石墨烯的原胞由晶格矢量 a1和 a2定义每个原胞内有两个原子,分别位于 A 和 B 的晶格上。 C原子外层 3 个电子通过sp2杂化形成强σ 键(蓝),相邻两个键之间的夹角120°,第4 个电子为公共,形成弱π键(紫)。石墨烯的碳 - 碳键长约为 0.142nm,每个晶格 内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形 成一个离域π 键,其贯穿整个石墨烯。 如图 1.2 所示,石墨烯是富勒烯(0 维)、碳纳米管( 1 维)、石墨(3 维) 的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层 碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过 sp2杂化与周围碳原子构成正六边形,每一个六边形单元实 际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为 0.335nm,约为头发丝直径的二十万分之一。

图 1.1 ( a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 专业学习参考资料

WORD整理版 图 1.2 石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图 石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石 墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两 片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出 明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期

相关文档
相关文档 最新文档