文档库 最新最全的文档下载
当前位置:文档库 › 模电实践作业用运放实现U0=5U3-2U2-2U1的运算电路

模电实践作业用运放实现U0=5U3-2U2-2U1的运算电路

模电实践作业用运放实现U0=5U3-2U2-2U1的运算电路
模电实践作业用运放实现U0=5U3-2U2-2U1的运算电路

模拟电子实践作业

班级:14电本

名字:

学号:201404020121 指导老师:崔用明

用运放实现U0=5U3-2U2-2U1的运算电路

一、摘要

集成运算放大器是模拟集成电路中应用极为广泛的一种器件。用运算放大器和若干电阻实现U0=5U3-2U2-2U1的运算电路

关键词:运算,运放。

英文:Integrated operational amplifier is analog integrated circuits are widely in a device. With the operational amplifiers and realize some resistance U0=5U3-2U2-2U1 operation circuit.

二、设计要求

1、理解运算放大器的原理;

2、用运放实现U0=5U3-2U2-2U1运算电路;

3、掌握并分析结果。

三、设计步骤

1、电路原理图

2、器件选择:运算放大器,电阻元件

3、参数计算:

Uo1=-U1*R3/R1=-2U1

Uo2=-U2*R3/R2=-2U2

Uo3=U3*[1+R3/(R1//R2//R4)]=5U3

Uo=Uo1+Uo2+Uo3=5U3-2U1-2U2

4、工作原理:

将输入信号U1 和U2通过一个减法器首先实现一级放大;再将放大的信号与U3通过一个反相加法器,实现二级放大;再将放大的信号通过一个反相器得到满足要求的U0。

5、理论验算:

设U1=2V U2=2V U3=2V R1=R2=R4=2K R3=4k

得U0=5U3-2U2-2U1=2V

四、仿真模拟

1、仿真电路:

2、仿真结果:

U0=2V,与理论值相符,达到实验要求。

五、心得体会

通过本次实践,更加深刻的了解了运算放大器;掌握了模拟电路设计的基本方法,设计步骤和综合能力。在设计过程中,我理解了运算放大器的基本原理,同时学会了基本的参数选择与设计。同时,这次实践还教会我:无论做任何事,都应该要踏踏实实,坚持不懈。

集成运放基本应用之一模拟运算电路

实验十二集成运放基本应用之模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各 种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=x 输入阻抗n=x 输出阻抗r o=0 带宽f BW=x 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U o= A ud (U + —U-) 由于A ud=『而U o为有限值,因此,U + —U-即U + "U—,称为虚短” (2)由于「i=x,故流进运放两个输入端的电流可视为零,即I IB = 0,称为虚断”这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5—1所示。对于理想运放,该电路的输出电压与输入电压之间的 U。一割 R1

(a)同相比例运算电路 图5-3同相比例运算电路 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻 R 2 = R I / F F o Ri 100K -CZ) ------------- + 12V I I? 100K -12V 5-2反相加法运算电路 2)反相加法电路 电路如图5 — 2所示,输出电压与输入电压之间的关系为 R 3= R 1/R 2/R F 3)同相比例运算电路 图5— 3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 U °=(1 空)U i R 2= R I /R F 当R i —E 时,U o = U i ,即得到如图5 — 3(b)所示的电压跟随器。图中R 2= R F , 用以减小漂移和起保护作用。一般 R F 取10K Q , R F 太小起不到保护作用,太大 则影响跟随性。 Ui ------ + 12V9 + 12V? + 5 -- ° Rs ~ — [>8 + ■ + Ui a -----1—1— —+ (b)电压跟随器 图5-1反相比例运算电路图 JOK Ri Ri 100K 9 IK [RwJ 100K 1ODK. -12V Vfl

模电实验02_基本放大电路实验

实验二 基本放大电路实验 验证性实验——晶体管共射放大电路 1.实验目的 ①掌握放大电路的静态工作点和电压放大倍数的测量方法。 ②了解电路元件参数改变对静态工作点及电压放大倍数的影响。 ③掌握放大电路输入、输出电阻的测量方法。 2.实验电路及仪器设备 ⑴ 实验电路 单管共射放大电路如图1-6所示。 图1-6 单级共射放大电路 R b1 20k Ω R b2 10k Ω R c 、R s 、R L 3k Ω R e 2k Ω C 1、C 2 10μF C e 47μF V 3DG6 β 50~60 V CC 12V ⑵ 实验仪器设备 ①双踪示波器 1台 ②直流稳压电源 1台 ③信号发生器 1台 ④交流毫伏表 1台 ⑤数字(或指针)式万用表 1块 3.实验内容及步骤 ⑴ 测量静态工作点 ①先将直流电源调整到12V ,关闭电源。 ②按图1-6连接电路,注意电容器C 1、C 2、C e 的极性不要接反,最后连接电源线。 ③仔细检查连接好的电路,确认无误后,接通直流稳压电源。 ④按表1-5用数字万用表测量各静态电压值,并将结果记入表1-5中。 表1-5 静态工作点实验数据 ⑵ 测量电压放大倍数 ①按图1-7将信号发生器和交流毫伏表接入放大器的输入端,示波器接入放大器的输出端。调节信号 发生器为放大电路提供输入信号为1kHz 的正弦波i U ,示波器用来观察输出电压o U 的波形。适当调整信号发生器的值,确保输出电压o U 不失真时,分别测出o U 和i U 的值,求出放大电路的电压放大倍数u A 。

图1-7 实验线路与所用仪器连接图 ②观察交流毫伏表读数,保持U i 不变,改变R L ,观察负载电阻改变对电压放大倍数的影响,将测量结果记入表1-6中。 表1-6 电压放大倍数实测数据(保持U i 不变) ⑶ 观察工作点变化对输出波形的影响 调整信号发生器的输出电压幅值(增大放大器的输入电压U i ),观察放大电路的输出电压的波形,使放大电路处于最大不失真电压时,逐个改变基极电阻R b1的值,分别观察R b1变化对静态工作点及输出波形的影响,将所测结果记入表1-7中。 表1-7 R b1对静态、动态影响的实验结果 ⑷ 测量输入电阻R i 及输出电阻R o ①测量输入电阻R i 方法一:测量原理图如图1-8所示,在放大电路与信号源之间串入一固定电阻 R =3k Ω,在输入电压波形不失真的条件下,用交流毫伏表测量U s 以及相应U i 的值,并按式(1-1)计算R i i i s i U R R U U = - (1-1) 方法二:测量原理图如图1-9所示,当R =0时,在输出电压波形不失真的条件下,用交流毫伏表测出输出电压U o1;当R =3k Ω时,测出输出电压U o2,并按式(1-2)计算R i o2 i o1o2 U R R U U = - (1-2) 将两种方法的测量结果计算出的R i 与理论值比较,分析测量误差。R 的取值接近于R i 。

集成运放组成的基本运算电路 实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 基本运算电路设计 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握集成运放组成的比例、加法和积分等基本运算电路的设计。 2.掌握基本运算电路的调试方法。 3.学习集成运算放大器的实际应用。 二、实验内容和原理 1.实现反相加法运算电路 2.实现反相减法运算电路 3.用积分电路将方波转换为三角波 4.同相比例运算电路的电压传输特性(选做) 5.查看积分电路的输出轨迹(选做) 三、主要仪器设备 HY3003D-3型可调式直流稳压稳流电源 示波器、信号发生器、万用表 实验箱LM358运放模块 四、操作方法和实验步骤 1.两个信号的反相加法运算 1) 按设计的运算电路进行连接。 2) 静态测试:将输入接地,测试直流输出电压。保证零输入时电路为零输出。 3) 调出0.2V 三角波和0.5V 方波,送示波器验证。 4) V S1输入0.2V 三角波,V S2输入0.5V 方波,用示波器双踪观察输入和输出波形,确认电路功能正确。记录示波器波形(坐标对齐,注明幅值)。 2. 减法器(差分放大电路) 减法器电路,为了消除输入偏置电流以及输入共模成分的影响,要求R1=R2、RF=R3。

1) 按设计的运算电路进行连接。 2) 静态测试:输入接地,保证零输入时为零输出。 3) V S1和V S2输入正弦波(频率和幅值),用示波器观察输入和输出波形,确认电路功能正确。 4) 用示波器测量输入和输出信号幅值,记到表格中。 3.用积分电路转换方波为三角波 电路中电阻R2的接入是为了抑制由I IO、V IO所造成的积分漂移,从而稳定运放的输出零点。 在t<<τ2(τ2=R2C)的条件下,若V S为常数,则V O与t将近似成线性关系。因此,当V S为方波信号并满足T P<<τ2时(T P为方波半个周期时间),则V O将转变为三角波,且方波的周期越小,三角波的线性越好,但三角波的幅度将随之减小。 1) 连接积分电路,加入方波信号(幅度?)。 2) 选择频率,使T P <<τ2,用示波器观察输出和输入波形,记录线性情况和幅度。 3) 改变方波频率,使T P ≈τ2,观察并记录输出波形的线性情况和幅度的变化。 4) 改变方波频率,使T P >>τ2,观察并记录输出波形的线性情况和幅度的变化。 4.同相比例运算电压传输特性 同相比例运算电路同反相加法运算电路,其特点是输入电阻比较大,电阻R’的接入同样是为了消除平均偏置电流的影响,故要求R’=R1//R F。 1) 连接同相比例运算电路。 2) 静态测试:输入接地,保证零输入时为零输出。 3) 加入正弦波,用示波器观察输入和输出波形,验证电路功能。 4) 用示波器测出电压传输特性:示波器选择XY显示模式,选择适合的按钮设置。 5) 适当增大输入信号,使示波器显示整个电压传输特性曲线(即包含线性放大区和饱和区)。

模拟运算电路(三)

实验五模拟运算电路(三) 一、实验目的 1、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念。 2、熟练掌握运算放大电路的故障检查和排除方法,以及输入阻抗、输出阻抗、增益、幅频 特性、传输特性曲线的测量方法。 二、实验原理 三、预习思考 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。 T:TIP 参数名称参数值参数意义及设计时应该如何考虑 直流参数 输入 失调电压V IO 1(T) <6mV 该参数表示使输出电压为零时需要在输入端作用的电压差。理 想运放当输入电压为零时,其输出电压也为零,但实际运放当 输入电压为零时,其输出端仍有一个偏离零的直流电压,这是 由于运放电路参数不对称所引起的。 输入 偏置电流I IB 80(T)<500nA 该参数指运算放大器工作在线性区时流入输入端的平均电流。 指运放输入级差分对管的基极电流 12 , B B I I,通常由于晶体管参

数的分散性,12B B I I ≠。输入偏置电流的大小,在电路外接电阻确定之后,主要取决于运放差分输入级的性能,当他的β值太小时,将引起偏置电流增加。从使用角度看,偏置电流愈小,由信号源内阻变化引起的输出电压变化也愈小。 输入 失调电流I IO 20(T)<200nA 该参数是指流入两个输入端的电流之差。输出电压为零时,两 输入端静态电流的差值,即12io B B I I I =-。其典型值为几十至 几百Na .由于信号源内阻的存在,io I 会引起一输入电压,破坏放大器的平衡,使放大器输出电压不为零。io I 越小越好,他反映了输入级有效差分对管的不对称程度。 失调电压温漂 αV IO 20/uV C ±? 该参数指温度变化引起的输入失调电压的变化,通常以 /uV C ? 为单位表示.指在规定范围内io V 的温度系数。 共模抑制比K CMR 70(T)<90dB 差模电压增益VD A 与共模电压增益VC A 之比 开环差模 电压增益A VD 6 10 集成运放工作在线性区,接入规定的负载,无负反馈情况下的 直流差模电压增益。VD A 与输出电压0V 的大小有关。通常是在规定的输出电压幅度(如010V V =±)测得的值。VD A 又是频率的函数,频率高于某一数值后,VD A 的数值开始下降。 输出 电压摆幅V OM +/-10 ~14 正负输出电压的摆动幅度极限 差模输入电阻R ID 0.3~2M Ω 输出电阻R O 75 Ω 交流参数 增益带宽积G.BW 0.7~1.6MHZ 增益带宽积A OL * ? 是一个常量,定义在开环增益随频率变化的特性曲线中以-20dB/十倍频程滚降的区域。运放的增益是随信号的频率而变化的,输出电压随信号频率增大而使其下降到最大值的0.707倍的频率范围,称为带宽。 转换速率S R 0.25~0.5V/us (RL>2K) 该参数是指输出电压的变化量与发生这个变化所需时间之比的最大值。SR 通常以V/μs 为单位表示, 有时也分别表示成正向变化和负向变化。当运放在闭环情 况下,其输入端加上大信号(通常为阶跃信号时) ,其输出电压 波形将呈现一定的延时,其主要原因是运放内部电率中的电容 充放电需要一定的时间。SR 表示运放在闭环状态下,每1us 时间内输出电压变化的最大值。 极限参数 最大差模 输入电压V IOR 30V ± 反相和同相输入端所能承受的最大电压值。超过这个电压值, 运放输入级某一侧的BJT 将出现发射结的反向击穿,而使运放的性能显著恶化,甚至可能造成永久性损坏。 最大共模 13V ± 运放所能承受的最大共模输入电压。超过IC R V 值,它的共模抑

基本放大电路题解1(第四版模电答案)资料

第二章基本放大电路 自测题 一、在括号内用“ ”或“×”表明下列说法是否正确。 (1)只有电路既放大电流又放大电压,才称其有放大作用;() (2)可以说任何放大电路都有功率放大作用;() (3)放大电路中输出的电流和电压都是由有源元件提供的;() (4)电路中各电量的交流成份是交流信号源提供的;() (5)放大电路必须加上合适的直流电源才能正常工作;() (6)由于放大的对象是变化量,所以当输入信号为直流信号时,任何放大电路的输出都毫无变化;() (7)只要是共射放大电路,输出电压的底部失真都是饱和失真。()解:(1)×(2)√(3)×(4)×(5)√(6)×(7)× 二、试分析图T2.2所示各电路是否能够放大正弦交流信号,简述理由。设图中所有电容对交流信号均可视为短路。

图T2.2 解:(a)不能。因为输入信号被V B B短路。 (b)可能。 (c)不能。因为输入信号作用于基极与地之间,不能驮载在静态电压之上,必然失真。 (d)不能。晶体管将因发射结电压过大而损坏。 (e)不能。因为输入信号被C2短路。 (f)不能。因为输出信号被V C C短路,恒为零。 (g)可能。 (h)可能。 (i)不能。因为T截止。

三、在图T2.3所示电路中, 已知V C C =12V ,晶体管的β=100,' b R = 100k Ω。填空:要求先填文字表达式后填得数。 (1)当i U =0V 时,测得U B E Q =0.7V ,若 要基极电流I B Q =20μA , 则' b R 和R W 之和R b = ≈ k Ω;而若测得U C E Q =6V ,则R c = ≈ k Ω。 (2)若测得输入电压有效值i U =5mV 时,输 出电压有效值'o U =0.6V , 则电压放大倍数 u A = ≈ 。 若负载电阻R L 值与R C 相等 ,则带上负载 图T2.3 后输出电压有效值o U = = V 。 解:(1)3 ) ( 565 )(BQ CEQ CC BQ BEQ CC ,;,I U V I U V β-- 。 (2)0.3 120 ' o L C L i o U R R R U U ?-+;- 。 四、已知图T2.3所示电路中V C C =12V ,R C =3k Ω,静态管压降U C E Q =6V ;并在输出端加负载电阻R L ,其阻值为3k Ω。选择一个合适的答案填入空内。 (1)该电路的最大不失真输出电压有效值U o m ≈ ; A.2V B.3V C.6V (2)当i U =1mV 时,若在不失真的条件下,减小R W ,则输出电压的幅值将 ; A.减小 B.不变 C.增大 (3)在i U =1mV 时,将R w 调到输出电压最大且刚好不失真,若此时增大输入电压,则输出电压波形将 ; A.顶部失真 B.底部失真 C.为正弦波 (4)若发现电路出现饱和失真,则为消除失真,可将 。 A.R W 减小 B.R c 减小 C.V C C 减小 解:(1)A (2)C (3)B (4)B

集成运放组成的运算电路 习题解答

第7章 集成运放组成的运算电路 本章教学基本要求 本章介绍了集成运放的比例、加减、积分、微分、对数、指数和乘法等模拟运算电路及其应用电路以及集成运放在实际应用中的几个问题。表为本章的教学基本要求。 表 第7章教学内容与要求 学完本章后应能运用虚短和虚断概念分析各种运算电路,掌握比例、求和、积分电路的工作原理和输出与输入的函数关系,理解微分电路、对数运算电路、模拟乘法器的工作原理和输出与输入的函数关系,并能根据需要合理选择上述有关电路。 本章主要知识点 1. 集成运放线性应用和非线性应用的特点 由于实际集成运放与理想集成运放比较接近,因此在分析、计算应用电路时,用理想集成运放代替实际集成运放所带来的误差并不严重,在一般工程计算中是允许的。本章中凡未特别说明,均将集成运放视为理想集成运放。 集成运放的应用划分为两大类:线性应用和非线性应用。 (1) 线性应用及其特点 集成运放工作在线性区必须引入深度负反馈或是兼有正反馈而以负反馈为主,此时其输出量与净输入量成线性关系,但是整个应用电路的输出和输入也可能是非线性关系。 集成运放工作在线性区时,它的输出信号o U 和输入信号(同相输入端+U 和反相输入端-U 之差)满足式(7-1) )(od o -+-=U U A U (7-1) 在理想情况下,集成运放工作于线性区满足虚短和虚断。虚短:是指运放两个输入端之间的电压几乎等于零;虚断:是指运放两个输入端的电流几乎等于零。即 虚短:0≈-+-U U 或 +-≈U U 虚断:0≈=+-I I

(2) 非线性应用及其特点 非线性应用中集成运放工作在非线性区,电路为开环或正反馈状态,集成运放的输出量与净输入量成非线性关系)(od o +--≠U U A U 。输入端有很微小的变化量时,输出电压为正饱和电压或负饱和电压值(饱和电压接近正、负电源电压),+-=U U 为两种状态的转折点。即 当+->U U 时,OL o U U = 当+-

模电-模拟运算电路实验

实验五 模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。 开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽 f BW =∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式 U O =A ud (U +-U -) 由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 (2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 i F O U R U -=

关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 / R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10KΩ, R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图5-3 同相比例运算电路 4) 差动放大电路(减法器)

运算电路设计

运算电路设计 预习资料: 一. 实验内容概述 本实验需要利用实验室提供的元器件在实验箱上搭建并调试一个运算电路,其电路功能为先将一正弦信号比例放大,再经过积分变为余弦信号,再通过减法运算消除信号中的直流分量。 二. 调试步骤 电路调试时通常做法是:先将整个电路图按功能划分为若干模块,本次电路应该会分为(比例运算电路、积分运算电路、减法运算电路)三个模块;然后分别将各模块内部电路连好,并按照信号流向逐级调试(即从最初信号开始,每次多加一个模块,直至最后整机电路调试成功),本次实验根据题目要求依次调试比例运算电路、积分运算电路、减法运算电路既可。 1. 按照设计好的电路图在实验箱上实现比例运算电路连线,详见下面各步: (1)选取电阻R1,并将其一端连接至运放反相输入端,如下图所示 (2)将电阻R1另一端连线至电源接地端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(3)选取电阻Rf ,并将其一端连接至运放反相输入端,如下边左图所示 (4)将电阻Rf 另一端连线至运放输出端,如上边右图所示 (5)选取电阻R2,并将其一端连接至运放同相输入端,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7

(6)将信号发生器信号端连线至电阻R2另一端,并且将信号发生器接地端连线至电源接地端;如下图所示 (7)将电源+12V 连接至运放“7”脚,电源-12V 连接至运放“4”脚,如下图所示 O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7O u 8-+A I u 1 R 2 R F R +12V -12V 2346 7信号发生器

模拟电路的基本放大电路知识汇总

1.2.1 模拟信号的放大 放大是最基本的模拟信号处理功能,它是通过放大电路实现的,大多数模拟电子系统中都应用了不同类型的放大电路。放大电路也是构成其他模拟电路,如滤波、振荡、稳压等功能电路的基本单元电路。 电子技术里的“放大”有两方面的含义: 一是能将微弱的电信号增强到人们所需要的数值(即放大电信号),以便于人们测量和使用; 检测外部物理信号的传感器所输出的电信号通常是很微弱的,例如前面介绍的高温计,其输出电压仅有毫伏量级,而细胞电生理实验中所检测到的细胞膜离子单通道电流甚至只有皮安(pA,10-12A)量级。对这些能量过于微弱的信号,既无法直接显示,一般也很难作进一步分析处理。通常必须把它们放大到数百毫伏量级,才能用数字式仪表或传统的指针式仪表显示出来。若对信号进行数字化处理,则须把信号放大到数伏量级才能被一般的模数转换器所接受。 二是要求放大后的信号波形与放大前的波形的形状相同或基本相同,即信号不能失真,否则就会丢失要传送的信息,失去了放大的意义。 某些电子系统需要输出较大的功率,如家用音响系统往往需要把声频信号功率提高到数瓦或数十瓦。而输入信号的能量较微弱,不足以推动负载,因此需要给放大电路另外提供一个直流能源,通过输入信号的控制,使放大电路能将直流能源的能量转化为较大的输出能量,去推动负载。这种小能量对大能量的控制作用是放大的本质。 针对不同的应用,需要设计不同的放大电路。 1.2.2 放大电路的四种模型

放大电路的一般符号如图1所示,为信号源电压,Rs为信号源内阻, 和分别为输入电压和输入电流,RL为负载电阻,和分别为输出电压和输出电流。在实际应用中,根据放大电路输入信号的条件和对输出信号的要求,放大电路可分为四种类型。 电压放大电路 如果只需考虑电路的输出电压和输出电压的关系,则可表达为 式中为电路的电压增益。前述炉温控制系统中对高温计输出电压信号的放大,就是使用了这种放大电路。 电流放大电路 若只考虑图1中放大电路的输出电流和输入电流的关系,则可表达为 式中为电流增益,这种电路称为电流放大电路。 互阻放大电路 当需要把电流信号转换为电压信号,如前述细胞电生理技术中,需要检测细胞膜离子通道的微弱电流时,则可利用互阻放大电路,其表达式为 式中为放大电路的输入电流,为输出电压,为互阻增益,其量纲为W。这里把信号放大的的概念延伸了,与前述无量纲的电压增益和电流增益不同。 互导放大电路

集成运放基本应用之一—模拟运算电路

集成运放基本应用之一—模拟运算电路

————————————————————————————————作者:————————————————————————————————日期:

实验十二集成运放基本应用之一——模拟运算电路 一、实验目的 1、了解并掌握由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的原理与功能。 2、了解运算放大器在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 理想运算放大器特性: 在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放: 开环电压增益A ud=∞ 输入阻抗r i=∞ 输出阻抗r o=0 带宽f BW=∞ 失调与漂移均为零等。 理想运放在线性应用时的两个重要特性: (1)输出电压U O与输入电压之间满足关系式 U O=A ud(U+-U-) 由于A ud=∞,而U O为有限值,因此,U+-U-≈0。即U+≈U-,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 基本运算电路 1) 反相比例运算电路 电路如图5-1所示。对于理想运放, 该电路的输出电压与输入电压之间的 关系为 为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。 图5-1 反相比例运算电路 图5-2 反相加法运算电路 2) 反相加法电路 电路如图5-2所示,输出电压与输入电压之间的关系为 )U R R U R R ( U i22 F i11F O +-= R 3=R 1 / R 2 // R F 3) 同相比例运算电路 图5-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 i 1 F O )U R R (1U + = R 2=R 1 / R F 当R 1→∞时,U O =U i ,即得到如图5-3(b)所示的电压跟随器。图中R 2=R F , i 1 F O U R R U -=

模拟电子技术课程习题第二章基本放大电路

在基本放大电路的三种组态中,输入电阻最大的放大电路是[ ] A.共射放大电路 B.共基放大电路 C.共集放大电路 D.不能确定 在基本共射放大电路中,负载电阻R L 减小时,输出电阻R O 将[ ] A.增大 B.减少 C.不变 D.不能确定 在三种基本放大电路中,输入电阻最小的放大电路是[ ] A.共射放大电路 B.共基放大电路 C.共集放大电路 D.不能确定 在电路中我们可以利用[ ]实现高内阻信号源与低阻负载之间较好的配合。 A 共射电路 B 共基电路 C 共集电路 D 共射-共基电路 在基本放大电路的三种组态中,输出电阻最小的是[ ] A.共射放大电路 B.共基放大电路 C.共集放大电路 D.不能确定 在由NPN晶体管组成的基本共射放大电路中,当输入信号为1kHz,5mV的正弦电压时,输出电压波形出现了底部削平的失真,这种失真是[ ] A.饱和失真 B.截止失真 C.交越失真 D.频率失真 以下电路中,可用作电压跟随器的是[ ] A.差分放大电路 B.共基电路 C.共射电路 D.共集电路 晶体三极管的关系式i E =f(u EB )|u CB 代表三极管的 A.共射极输入特性 B.共射极输出特性 C.共基极输入特性 D.共基极输出特性 对于图所示的复合管,穿透电流为(设I CEO1、I CEO2 分别表示T 1 、T 2 管的穿透电 流) A.I CEO = I CEO2 I CEO B.I CEO =I CEO1 +I CEO2 C.I CEO =(1+ 2 )I CEO1 +I CEO2 D.I CEO =I CEO1 图 [ ] 在由PNP晶体管组成的基本共射放大电路中,当输入信号为1kHz,5mV的正弦电压时,输出电压波形出现了顶部削平的失真,这种失真是[ ] B.饱和失真 B.截止失真 C.交越失真 D.频率失真

实验二集成运算放大器的应用模拟运算 (1)

实验七 集成运算放大器的应用(一) 模拟运算电路 预习部分 一、实验目的 1. 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。 2. 掌握运算放大器的使用方法,了解其在实际应用时应考虑的一些问题。 二、实验原理 集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。本实验采用的集成运放型号为μA741,引脚排列如图2-7-1所示。它是八脚双列直插式组件,②脚和③脚为反相和同相输入端,⑥脚为输出端,⑦脚和④脚为正,负电源端,①脚和⑤脚为失调调零端,①⑤脚之间可接入一只几十K Ω的电位器并将滑动触头接到负电源端。 ⑧脚为空脚。 当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 1) 反相比例运算电路 电路如图2-7-2所示。对于理想运放, 该电路 的输出电压与输入电压之间的关系为 Uo =-(R F / R 1)Ui 为了减小输入级偏置电流引起的运算误差,在 同相输入端应接入平衡电阻 R 2=R 1‖R F 。 2) 反相加法电路 图2-7-2 反相比例运算电路 图2-7-3反相加法运算电路 电路如图2-7-3所示,输出电压与输入电压之间的关系为 F i F i F O //R //R R R U R R U R R U 2132211 =??? ? ??+-= 图2-7-1 μA741管脚图

3) 同相比例运算电路 图2-7-4(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为 Uo =(1+R F / R 1)Ui R 2=R 1 // R F 当R 1→∞时,Uo =Ui ,即得到如图2-7-4(b)所示的电压跟随器。图中R 2=R F ,用以减小漂移和起保护作用。一般R F 取10K Ω,R F 太小起不到保护作用,太大则影响跟随性。 (a) 同相比例运算电路 (b) 电压跟随器 图2-7-4 同相比例运算电路 4) 差动放大电路(减法器) 对于图2-7-5所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 图2-7-5 减法运算电路 图2-7-6 积分运算电路 5) 积分运算电路 反相积分电路如图2-7-6所示。在理想化条件下,输出电压uo 等于 ()()01 C t i O U dt U RC t U +-=? 式中 Uc(o)是t =0时刻电容C 两端的电压值,即初始值。 如果u i (t)是幅值为E 的阶跃电压,并设Uc(o)=0,则 ()RC E Edt RC t U t O -=-=?01 即输出电压 Uo(t)随时间增长而线性下降。显然R C 的数值越大,达到给定的Uo 值所需的时间就越长。积分输出电压所能达到的最大值受集成运放最大输出范围的限值。 ()121 i i F O U U R R U -=

集成运放电路的设计

一设计目的 1.集成运算放大电路当外部接入不同的线性或非线性元器件组成输入和负反 馈电路时,可以灵活地实现各种特定的函数关系,在线性应用方面,可组成比例、加法、减法、积分、微分等模拟运算电路。 2.本课程设计通过Mulitisim编写程序几种运算放大电路仿真程序,通过输入 不同类型与幅度的波形信号,测量输出波形信号对电路进行验证,并利用Protel软件对实现对积累运算放大电路的设计,并最终实现PCB版图形式。二设计工具:计算机,Mulitisim,Protel软件 三设计任务及步骤要求 1)通过Mulitisim编写程序运算放大电路仿真程序,通过输入不同类型与 幅度的波形信号,测量输出波形信号对电路进行验证。输入电压波形可以任意选取,并且可对输入波形的运算进行实时显示,并进行比较; 2)对设计完成的运算放大电路功能验证无误后,通过Protel软件对首先对电 路进行原理图SCH设计,要求:所有运算放大电路在一张原理图上; 输入输出信号需预留接口; 3)设计完成原理图SCH后,利用Protel软件设计完成印制板图PCB,要求:至 少为双层PCB板; 四设计内容 1集成运算放大器放大电路概述

集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2集成运放芯片的选取和介绍 由于LM324具有电源电压范围宽,静态功耗小,可单电源使用,价格低廉等优点,而本次电子设计实验对精度要求不是非常高,LM324完全满足要求,因此我们这里选用LM 324作为运放元件 LM324是四运放集成电路,它采用14脚双列直插塑料封装,外形如图。它的内部包含四组形式完全相同的运算放大器,除电源共用外,四组运放相互独立。每一组运算放大器可如图所示的符号来表示,它有5个引出脚,其中“+”、“-”为两个信号输入端,“V+”、“V-”为正、负电源端,“Vo”为输出端。两个信号输入端中,Vi-(-)为反相输入端,表示运放输出端Vo的信号与该输入端的位相反;Vi+(+)为同相输入端,表示运放输出端Vo的信号与该输入端的相位相同。LM324的引脚排列见图。 3运放电路基本原理及其Mulitisim仿真 3.1.同相比例运放电路

基本运算放大器电路设计

基本运算放大器电路设计

————————————————————————————————作者:————————————————————————————————日期:

武汉理工大学 开放性实验报告 (A类) 项目名称:基本运算放大器电路设计实验室名称:创新实验室 学生姓名:**

创新实验项目报告书 实验名称基本运算放大器电路设计日期2018.1.14 姓名** 专业电子信息工程 一、实验目的(详细指明输入输出) 1、采用LM324集成运放完成反相放大器与加法器设计 2、电源为单5V供电,输入输出阻抗均为50Ω,测试负载为50Ω输出误差 不大于5% 3、输入正弦信号峰峰值V1≤50mV,V2=1V,输出为-10V1+V2. 二、实验原理(详细写出理论计算、理论电路分析过程)(不超过1页) 通过使用LM324来设计反相放大器和加法器,因为每一个芯片内都有4个运放,所以我们就是使用其内部的运放来连接成运算放大器电路。 我们采用两个芯片串联的方式进行芯片的级联。对于反相放大器,输出电压Vo=-Rf/R1*Vi;对于同相加法器,Vo=(Rf/R1*Vi1+Rf/R2*Vi2)。 由于对该运放使用单电源5V供电,故需要对整个电路的共地端进行 2.5V 的直流偏置。为实现2.5V的共地端,在这里采用了电压跟随器的运放模型。2.5V 的分压点用两个相同100k的电阻进行分压,并根据经验选取了一个10uF的极性电容并联在2.5V分压点处,起滤除电源噪声的作用。最终由电压跟随器输出端作为后面电路的共地端。同样为使反相放大器能够放大10倍,有-Rf/R1=-10,即Rf=10R1,可取R1=10kΩ,Rf=100kΩ,则R2=R1//Rf。对于加法器,有R1=R2=Rf,均取为100kΩ,则R=100kΩ。

运放三种输入方式的基本运算电路及其设计方法

熟悉运放三种输入方式的基本运算电路及其设计方法 2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系。 3、了解积分、微分电路的工作原理和输出与输入的函数关系。 学习重点:应用虚短和虚断的概念分析运算电路。 学习难点:实际运算放大器的误差分析 集成运放的线性工作区域 前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。 当集成运放工作在线性区时,作为一个线性放大元件 v o=A vo v id=A vo(v+-v-) 通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o不超出线性范围。 对于工作在线性区的理想运放有如下特点: ∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v- ∵理想运放R i=∞ i+=i-=0 这恰好就是深度负反馈下的虚短概念。 已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ。则v+-v-=?,i+=?,i-=?

可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计。 这说明在工程应用上,把实际运放当成理想运放来分析是合理的。 返回 第二节基本运算电路 比例运算电路是一种最基本、最简单的运算电路,如图8.1所示。后面几种运算电路都可在比例电路的基础上发展起来演变得到。v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i) 输入信号的接法有三种: 反相输入(电压并联负反馈)见图8.2

同相输入(电压串联负反馈)见图8.3 差动输入(前两种方式的组合) 讨论: 1)各种比例电路的共同之处是:无一例外地引入了电压负反馈。 2)分析时都可利用"虚短"和"虚断"的结论: i I=0、v N=v p。见图8.4

运算放大器的设计与仿真

集成运算放大器放大电路仿真设计 1集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。 2 电路原理分析 2.1 电路如图1所示 R1 10kΩV1 500mV U1A TL082CD 3 2 4 8 1 R2 9.1kΩ RF 100kΩ V2 12 V V3 12 V XMM1 1 此电路为反向比例运算电路,这是电压并联负反馈电路。输入电压V1通过电阻R1作用于集成运放的反相输入端,故输出电压V0与V1反相。 图2 仿真结果图 输入输出关系理论输仿真输出值电路功能

其中 1 //2R RF R = 2.2电路如图3所示 R1 10kΩ Ui2 200mV U1A TL082CD 3 2 4 8 1 R24.7kΩ RF 100kΩ V212 V V312 V XMM1 Ui1 100mV R310kΩ 3 此电路为反相求和运算电路,其电路的多个输入信号均作用于集成运放的反相输入端,根据“虚短”和“虚断”的原则,0==p N u u ,节点N 的电流方程为F i i i =+31 所以)1 2 31( 0R Ui R Ui RF U +-= 输入输出关系 理论输出值 仿真输出值 电路功能 )1 2 31( 0R Ui R Ui RF U +-= -3V 2.999V 反相求和放大电路 其中RF R R R //3//12= 2.3电路如图5所示 出值 11 0V R RF V -= -5V -5V 反相比例运算电路

东南大学模电实验报告模拟运算放大电路

东南大学电工电子实验中心 实验报告 课程名称:模拟电路实验 第一次实验 实验名称:模拟运算放大电路(一)院(系):专业: 姓名:学号: 实验室: 实验组别: 同组人员:实验时间: 评定成绩:审阅教师:

实验一 模拟运算放大电路(一) 一、实验目的: 1、 熟练掌握反相比例、同相比例、加法、减法等电路的设计方法。 2、 熟练掌握运算放大电路的故障检查和排除方法,以及增益、传输特性曲线的测量方法。 3、 了解运放调零和相位补偿的基本概念。 二、实验原理: 1、反向比例放大器 反馈电阻R F 值一般为几十千欧至几百千欧,太大容易产生较大的噪声及漂移。R 的取值则应远大于信号源v i 的内阻。 若R F = R ,则为倒相器,可作为信号的极性转换电路。 2、电压传输特性曲线 双端口网络的输出电压值随输入电压值的变化而变化的特性叫做电压传输特性。电压传输特性在实验中一般采用两种方法进行测量。一种是手工逐点测量法,另一种是采用示波器X-Y 方式进行直接观察。 示波器X-Y 方式直接观察法:是把一个电压随时间变化的信号(如:正弦波、三角波、锯齿波)在加到电路输入端的同时加到示波器的X 通道,电路的输出信号加到示波器的Y 通道,利用示波器X-Y 图示仪的功能,在屏幕上显示完整的电压传输特性曲线,同时还可以 测量相关参数。 具体测量步骤如下: F V R A =- R

(1) 选择合理的输入信号电压,一般与电路实际的输入动态范围相同,太大除了会影响测量结果以外还可能会损坏器件;太小不能完全反应电路的传输特性。 (2) 选择合理的输入信号频率,频率太高会引起电路的各种高频效应,太低则使显示的波形闪烁,都会影响观察和读数。一般取50~500Hz 即可。 (3) 选择示波器输入耦合方式,一般要将输入耦合方式设定为DC,比较容易忽视的是在X-Y 方式下,X 通道的耦合方式是通过触发耦合按钮来设定的,同样也要设成DC。 (4) 选择示波器显示方式,示波器设成X-Y 方式,对于模拟示波器,将扫描速率旋钮逆时针旋到底就是X-Y 方式;对于数字示波器,按下“Display”按钮,在菜单项中选择X-Y。 (5) 进行原点校准,对于模拟示波器,可把两个通道都接地,此时应该能看到一个光点,调节相应位移旋钮,使光点处于坐标原点;对于数字示波器,先将CH1 通道接地,此时显示一条竖线,调节相应位移旋钮,将其调到和Y 轴重合,然后将CH1 改成直流耦合,CH2 接地,此时显示一条水平线,调节相应位移旋钮,将其调到和X 轴重合。 3、电压增益(电压放大倍数A V) 电压增益是电路的输出电压和输入电压的比值,包括直流电压增益和交流电压增益。实验中一般采用万用表的直流档测量直流电压增益,测量时要注意表笔的正负。 交流电压增益测量要在输出波形不失真的条件下,用交流毫伏表或示波器测量输入电压V i(有效值)或V im(峰值)或V ip-p(峰-峰值)与输出电压V o(有效值)或V om(峰值)或 V op-p(峰-峰值),再通过计算可得。 三、预习思考: 1、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上; 2、设计一个电路满足运算关系V O= -2V i1 + 3V i2 四、实验内容: 1、23页实验内容1,具体内容改为: (I)图5-1电路中电源电压±15V,R1=10kΩ,R F=100 kΩ,R L=100 kΩ,R P=10k//100kΩ。 按图连接电路,输入直流信号V i分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同V i时的V o值,列表计算A vf并和理论值相比较。其中V i通过电阻分压电路产生。

相关文档
相关文档 最新文档