文档库 最新最全的文档下载
当前位置:文档库 › 高考数学第二轮专题复习----解析几何专题

高考数学第二轮专题复习----解析几何专题

高考数学第二轮专题复习----解析几何专题
高考数学第二轮专题复习----解析几何专题

《曲线的方程和性质》专题

一、《考试大纲》要求

⒈直线和圆的方程

(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.

(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法.

(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程

(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用.

二、高考试题回放

1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B

两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( )

A .

33 B .32 C .22 D .2

3

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=

2

1x 2

上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求

|

||

|||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( )

A .2

3-

B .3

2-

C .41

D .4

5.(湖北)两个圆0124:0222:2

22221=+--+=-+++y x y x C y x y x C 与的公切

线有且仅有

( )

A .1条

B .2条

C .3条

D .4条

6.(湖北)直线12:1:2

2

=-+=y x C kx y l 与双曲线的右支交于不同的两点A 、B. (Ⅰ)求实数k 的取值范围;

(Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,

求出k 的值;若不存在,说明理由.

7.(湖南)如果双曲线112

132

2=-y x 上一点P 到右焦点的距离为13, 那么点P 到右准线的

距离是 ( )

A .

5

13

B .13

C .5

D .

13

5 8.(湖南)F 1,F 2是椭圆C :14

82

2=+x x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为__________.

9.(湖南)如图,过抛物线x 2=4y 的对称轴上任一点P (0,m )(m>0)作直线与抛物线交于A,B 两点,点Q 是点P 关于原点的对称点。

(I )设点P 分有向线段AB 所成的比为λ,证明:)(QB QA QP λ-⊥

(II )设直线AB 的方程是x -2y+12=0,过A,B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.

10.(广东)若双曲线22

20)x y k k -=>(的焦点到它相对应的准线的距离是2,则k=

A . 6

B . 8

C . 1

D . 4

11.(广东)如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0

与直线 x –y+1=0的交点在( ) A .第四象限 B . 第三象限 C .第二象限 D 、第一象限 12.(广东)设直线 与椭圆

2

2

125

16

x y +

=相交于A 、B 两点, 又

与双曲线x 2–y 2

=1相交于C 、D 两点, C 、D 三等分线段AB . 求直线 的方程.

13.(江苏)若双曲线1822

2=-b

y x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )

A .2

B .22

C . 4

D .24

14、(江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________. 15.(江苏)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

x

16.(江苏)已知椭圆的中心在原点,离心率为1

2

,一个焦点是F (-m,0)(m 是大于0的常数).

(Ⅰ)求椭圆的方程;

(Ⅱ)设Q 是椭圆上的一点,且过点F 、Q 的直线l 与y 轴交于点M. =,求直线l 的斜率. 17、(辽宁)已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标

2

1

时,点P 到坐标原点的距离是 ( ) A .2

6

B .23

C .3

D .2

18、(辽宁)若经过点P (-1,0)的直线与圆03242

2=+-++y x y x 相切,则此直线

在y 轴上的截距是 .

19、(辽宁)设椭圆方程为142

2

=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)2

1

,21(,当l 绕点M 旋转时,

求: (1)动点P 的轨迹方程; (2)||NP 的最小值与最大值.

20.(上海)设抛物线的顶点坐标为(2,0),准线方程为x =-1,则它的焦点坐标为 . 21.(上海)圆心在直线x =2上的圆C 与y 轴交于两点A(0, -4),B(0, -2),则圆C 的方程为 .

22、(上海)如图, 直线y=

21x 与抛物线y=8

1

x 2-4交于A 、B 两点, 线段AB 的垂直平分线与直线y=

-5交于Q 点.

(1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB 下方(含A 、B) 的动点时, 求ΔOPQ 面积的最大值.

23.(重庆)圆2

2

2430x y x y +-++=的圆心到直线1x y -=的距离为( )

A .2 C .1 D 24.(重庆)已知双曲线22

221,(0,0)x y a b a b

-=>>的左,右焦点分别为12,F F ,点P 在双曲

线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为( )

A .43

B .53

C .2

D .7

3

25、(重庆)设直线2-=x ay 与抛物线p y 22

=交于相异两点A 、B ,以线段AB 为直经

作圆H (H 为圆心). 试证抛物线顶点在圆H 的圆周上;并求a 的值,使圆H 的面积最小.

26.(河南)椭圆14

22

=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( )

A .

2

3 B .3

C .

2

7 D .4

27、(河南)设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 ( )

A .]2

1,21[-

B .[-2,2]

C .[-1,1]

D .[-4,4]

28、(河南)由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,

则动点P 的轨迹方程为 .

29、(河南)设双曲线C :1:)0(12

22=+>=-y x l a y a

x 与直线相交于两个不同的点A 、

B.(I )求双曲线C 的离心率e 的取值范围:

(II )设直线l 与y 轴的交点为P ,且.12

5

=求a 的值. 30.(四川)已知圆C 与圆1)1(2

2=+-y x 关于直线x y -=对称,则圆C 的方程为( )

A .1)1(2

2

=++y x

B .12

2=+y x

C .1)1(2

2

=++y x D .1)1(2

2

=-+y x 31、(四川)在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线

( )

A .1条

B .2条

C .3条

D .4条 32、(四川).设中心在原点的椭圆与双曲线2222y x -=1有公共的焦点,且它们的离心率

互为倒数,则该椭圆的方程是 . 33、(四川)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点。 (Ⅰ)设l 的斜率为1,求OA 与OB 的夹角的大小;

(Ⅱ)设AF FB λ=,若λ∈[4,9],求l 在y 轴上截距的变化范围. 34.(宁夏)过点(-1,3)且垂直于直线032=+-y x 的直线方程为 ( )

A .012=-+y x

B .052=-+y x

C .052=-+y x

D .072=+-y x

35.(宁夏)已知椭圆的中心在原点,离心率2

1=e ,且它的一个焦点与抛物线x y 42

-=的焦点重合, 则此椭圆方程为

( )

A .13

42

2=+y x B .

16

822=+y x C .1222

=+y x D .14

22

=+y x 36.(宁夏)设y x ,满足约束条件: 1,,

0,x y y x y +≤??≤??≥?

则y x z +=2的最大值是 .

37.(宁夏)双曲线)0,1(122

22>>=-b a b

y a x 的焦点距为2c ,直线l 过点(a ,0)和(0,

b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.5

4

c s ≥求双曲线的

离心率e 的取值范围.

三、高考试题分析

2.1 题型稳定:近几年来高考解析几何试题一直稳定在1~2个选择题,1个填空题,1个解答题上,分值约为30分, 占总分值的20%左右。

2.2 整体平衡,重点突出:《考试大纲》中解析几何部分有27个知识点,一般考查16 至18 个,其中对直线、线性归划、圆、圆锥曲线等知识的考查几乎没有遗漏,通过对知识的重新组合,考查时既注意全面,更注意突出重点, 对支撑数学科知识体系的主干知识, 考查时保证较高的比例并保持必要深度。

2.3、能力立意,渗透数学思想:如河南第(21)题,将双曲线的方程、性质与坐标法、定比分点的坐标公式、向量、离心率等知识融为一体,有很强的综合性。

2.4、与新教材融合,注意知识的链接:与导数的几何意义、平面向量相结合,与导数结合仅仅停留在对称轴平行于y 轴的抛物线上,能与向量结合的试题几乎都联系上。解析几何与函数、方程、不等式等主干知识的结合,几乎各省的解答题都有联系。

2.5、难度下降, 位置不定:近几年解析几何试题的难度有所下降, 选择题、填空题

均属易中等题,且解答题不再处于压轴题的位置,计算量减少,思考量增大。 3、综合试题的热点问题:

热点之一:圆锥曲线的定义、圆锥曲线方程 圆锥曲线定义是其一切几何性质的“根”与“源”,是建立曲线方程的基础,揭示了圆锥曲线上的点与焦点及准线间的关系,是解几综合题的重要背景。圆锥曲线的方程是研究几何性质的重要载体。

热点之二:函数与方程的思想 函数与方程的思想是贯穿于解析几何的一条主线,很多解几综合题往往都是以最值问题或圆锥曲线的基本量的求解为依托,通过转化,运用函数与方程的思想加以解决。

热点之三:与圆锥曲线有关的轨迹问题 解析几何的核心就是用方程的思想研究曲线,用曲线的性质研究方程。轨迹问题正是体现这一思想的重要形式。运用定义法、代入法、参数法、结合问题的几何特征,可以较好的求解。

热点之四:曲线组合 除了直线和圆锥曲线是传统的结合外,04年的高考题大量出现了圆与双曲线、圆与抛物线、双曲线与抛物线等的结合。

热点之五:与平面向量、导数等新增内容相结合 利用一切可以利用的机会有机结合。 热点之六:最值及离心率范围问题 通过求最值及离心率的范围问题达到与函数、方程、不等式等主干知识链接。

四、高考试题展望

高考解析几何的命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识。

解析几何解答题在历年的高考中常考常新, 体现在重视能力立意, 强调思维空间, 是用活题考死知识的典范. 考题求解时考查了等价转化, 数形结合, 分类讨论, 函数与方程等数学思想, 以及定义法, 配方法, 待定系数法, 参数法, 判别式法等数学通法. 例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0

(1)写出直线B A ''的方程; (2)计算出点P 、Q 的坐标;

(3)证明:由点P 发出的光线,经AB 反射后,反射光线通过点Q. 解: 通过读图, 看出'

'

,B A 点的坐标.

(1 ) 显然()t A -1,1', (),,‘

t B +-11 于是 直线B A ''

的方程为1+-=tx y ;

(2)由方程组?

??+-==+,1,

122tx y y x

解出 ),(10P 、),(2

2

21112t t t t Q +-+; (3)t

t k PT 1

001-=--=,

t t t t t

t t t t k QT 11112011222

22

=--=-+-+-=)(. 由直线PT 的斜率和直线QT 的斜率互为相反数知,由点P 发出的光线经点T 反射,反射光线通过点Q. 需要注意的是, Q 点的坐标本质上是三角中的万能公式, 有趣吗?

例2 已知直线l 与椭圆)0(122

22>>=+b a b

y a x 有且仅有一个交点Q ,且与x 轴、y

轴分别交于R 、S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.

解:从直线l 所处的位置, 设出直线l 的方程,

由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得

.)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程

.02)(222222222=-+++b a m a mx ka x b k a

于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=? 由已知,得△=0.即.2222m b k a =+ ①

在直线方程m kx y +=中,分别令y=0,x =0,求得).,0(),0,(m S k m

R -

令顶点P 的坐标为(x ,y ), 由已知,得???

????=-=??????

?=-=.,.,y m x y k m y k m x 解得 代入①式并整理,得 12

2

22=+y b x a , 即为所求顶点P 的轨迹方程.

方程12

2

22=+y b x a 形似椭圆的标准方程, 你能画出它的图形吗?

例3已知双曲线12222=-b

y a x 的离心率33

2=e ,过),0(),0,(b B a A -的直线到原点的

距离是.2

3

(1)求双曲线的方程;(2)已知直线)0(5≠+=k kx y 交双曲线于不同的点C ,D 且C ,D 都在以B 为圆心的圆上,求k 的值.

解:∵(1),332=a c 原点到直线

AB :1=-b

y a

x 的距离

.

3,1.

23

22=

=∴==+=a b c ab b

a a

b d . 故所求双曲线方程为 .13

22

=-y x

(2)把33522=-+=y x kx y 代入中消去y ,整理得 07830)31(22=---kx x k .

设CD y x D y x C ),,(),,(2211的中点是),(00y x E ,则

.

1

1,315531152002

002210k x y k k kx y k k x x x BE -=+=-=+=?-=+= ,000=++∴k ky x 即

7,0,0315311522

2=∴≠=+-+-k k k k

k k k 又 故所求k=±7.

为了求出k 的值, 需要通过消元, 想法设法建构k 的方程.

例4 已知椭圆C 的中心在原点,焦点F 1、F 2在x 轴上,点P 为椭圆上的一个动点,且∠F 1PF 2的最大值为90°,直线l 过左焦点F 1与椭圆交于A 、B 两点,△ABF 2的面积最大值为12.

(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 解:(1)设112212||,||,||2PF r PF r F F c ===, 对,21F PF ? 由余弦定理, 得

1)2

(2441244242)(24cos 2

212

22

12221221221212221121-+-≥--=--+=-+=∠r r c a r r c a r r c r r r r r r c r r PF F

0212=-=e ,解出 .2

2=e

(2)考虑直线l 的斜率的存在性,可分两种情况:

i) 当k 存在时,设l 的方程为)(c x k y +=………………①

椭圆方程为),(),,(,1221122

22y x B y x A b

y a x =+

由.2

2=e 得 2222,2c b c a ==.

于是椭圆方程可转化为 2

2

2

220x y c +-=………………② 将①代入②,消去y 得 02)(22222=-++c c x k x ,

整理为x 的一元二次方程,得 0)1(24)21(22222=-+++k c x ck x k . 则x 1、x 2是上述方程的两根.且

2

21221122||k k c x x ++=

-,

2

2122

21)1(22||1||k k c x x k AB ++=

-+=,

AB 边上的高,1||2sin ||2

2121k

k c F BF F F h +?=∠=

c k

k k k c S 21||)211(2221222+++= 也可这样求解:

||||2

1

2121y y F F S -?=

||||21x x k c -??=

.

2141224412221||12222

42

4

2422

2

22

c k k c k k k k c k k k c

<++

=+++=++=

ii) 当k 不存在时,把直线c x -=代入椭圆方程得

2,||,2y AB S =±

==

由①②知S 的最大值为22c 由题意得22c =12 所以2226b c == 2122=a

故当△ABF 2面积最大时椭圆的方程为: .12

62

122

2=+y x

下面给出本题的另一解法,请读者比较二者的优劣: 设过左焦点的直线方程为:c my x -=…………①

(这样设直线方程的好处是什么?还请读者进一步反思反思.)

椭圆的方程为:),(),,(,122112

2

22y x B y x A b

y a x =+

由.

2

2=

e 得:,,22222

c b c a ==于是椭圆方程可化为:022222=-+c y x ……② 把①代入②并整理得:02)2(222=---c mcy y m

于是21,y y 是上述方程的两根

.

21|||

AB y y ==-2

)

2(4412

22222

++++=m m c c m m

2

)1(2222

++=

m m c , AB 边上的高2

12m c h +=,

从而2

22

2

2

2

)2(122122

)1(2221||21++=+?

++?==m m c

m c m m c h AB S

.

221

1

112222

22

c m m c ≤+++

+=

当且仅当m=0取等号,即.22max c S =

由题意知1222=c , 于是 212,26222===a c b .

故当△ABF 2面积最大时椭圆的方程为: .12

62122

2=+y x

例5 已知直线1+-=x y 与椭圆)0(122

22>>=+b a b

y a x 相交于A 、B 两点,且线段

AB 的中点在直线02:=-y x l 上.

(1)求此椭圆的离心率;

(2 )若椭圆的右焦点关于直线l 的对称点的在圆42

2

=+y

x 上,求此椭圆的方程.

解:(1)设A 、B 两点的坐标分别为???

??=++-=1

1).,(),,(22

222211b y a

x x y y x B y x A ,则由 得 02)(2222222=-+-+b a a x a x b a ,

根据韦达定理,得

,22)(,22

22

212122221b a b x x y y b a a x x +=++-=++=+

∴线段AB 的中点坐标为(2

2

2

222,b

a b b a a ++). 由已知得2

222222

222222)(22,02c a c a b a b

a b b a a =∴-==∴=+-+ 故椭圆的离心率为2

2

=

e . (2)由(1)知,c b =从而椭圆的右焦点坐标为),0,(b F 设)0,(b F 关于直线

02:=-y x l 的对称点为,02

221210),,(000000=?-+-=?--y

b x b x y y x 且则

解得 b y b x 5

4

5300==

且 由已知得 4,4)54()53(,42

222020=∴=+∴=+b b b y x

故所求的椭圆方程为14

82

2=+y x . 例6 已知⊙M :x Q y x 是,1)2(22=-+轴上的动点,QA ,QB 分别切⊙M 于A ,

B 两点, (1)如果3

2

4||=

AB ,求直线MQ 的方程; (2)求动弦AB 的中点P 的轨迹方程.

解:(1)由324||=

AB ,可得,31

)322(1)2||(||||2222=-=-=AB MA MP 由射影定理,得 ,3|||,|||||2

=?=MQ MQ MP MB 得 在Rt △MOQ 中,

523||||||222

2=-=

-=MO MQ OQ ,

故55-==a a 或, 所以直线AB 方程是

;0525205252=+-=-+y x y x 或 (2)连接MB ,MQ ,设),0,(),,(a Q y x P 由

点M ,P ,Q 在一直线上,得

① ②

③ (*),22x

y a -=-由射影定理得|,|||||2MQ MP MB ?= 即(**),14)2(2

22=+?-+a y x 把(*)及(**)消去a ,并注意到2

).2(16

1

)47(22≠=-+y y x

适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙. 例7 如图,在Rt △ABC 中,∠CBA=90°,AB=2,AC=

2

2

。DO ⊥AB 于O 点,OA=OB ,DO=2,曲线E 过C 点,动点P 在E 上运动,且保持| PA |+| PB |的值不变. (1)建立适当的坐标系,求曲线E 的方程; (2)过D 点的直线L 与曲线E 相交于不同的两点M 、N 且M 在D 、N 之间,设λ=DN

DM

, 试确定实数λ的取值范围.

解: (1)建立平面直角坐标系, 如图所示 . ∵| PA |+| PB |=| CA |+| CB | =

22)2

2

(22222=++ ∴动点P 的轨迹是椭圆 ∵.1,1,

2===

c b a ∴曲线E 的方程是

12

22

=+y x . (2)设直线L 的方程为 2+=kx y , 代入曲线E 的方程,得

068)12(2

2=+++kx x k

设M 1(),(),221,1y x N y x , 则

???

?

??

???

+=+-=+>?+-=?.126,128,06)12(4)8(2212

212k x x k k x x k k i) L 与y 轴重合时,3

1

||||==

DN DM λ ii) L 与y 轴不重合时,

由①得 .2

32

>

k 又∵2

1x x x x x x DN DM N D M

D =--==λ,

∵,012<>x x

∴0<λ<1 ,

∴212)(122121221++=++=?+λ

λx x x x x x x x .

)

12(332)

12(664)(22

2

2

12

2k

k k x x x x +=+=?+

而,232

>

k ∴.8)1

2(362<+

)

12(33242<+<

k ∴ 316214<++<λλ, 3

10

12<+<λλ,

.131,3101,21,10<

?

??

???

<+>+<<λλλλλλ ∴λ的取值范围是???

???1,31 . 值得读者注意的是,直线L 与y 轴重合的情况易于遗漏,应当引起警惕.

例8 直线l 过抛物线)0(22

≠=p px y 的焦点,且与抛物线相交于

A ),(),(2211y x

B y x 和两点.

(1)求证:2

214p x x =;

(2)求证:对于抛物线的任意给定的一条弦CD ,直线l 不是CD 的垂直平分线.

解: (1)易求得抛物线的焦点. )0,2

(P F

若l ⊥x 轴,则l 的方程为4

,22

21P x x P x ==显然.

若l 不垂直于

x

轴,可设)2

(P x k y -=,代入抛物线方程整理得

4,04)21(2

212

2

2P x x P x k

P P x ==++

-则. 综上可知 2

214p x x =.

(2)设d c d p

d D c p

c C ≠且),2(),,2(2

2

,则CD 的垂直平分线l '的方程为

)

4(2222p

d c x p d c d c y +-+-=+-

假设l '过F ,则)42(2202

2p

d c p p d c d c +-+-=+-整理得

0)2)((222=+++d c p d c 0≠p

02222≠++∴d c p ,0=+∴d c .

这时l '的方程为y=0,从而l '与抛物线px y 22=只相交于原点. 而l 与抛物线有两个不同的交点,因此l '与l 不重合,l 不是CD 的垂直平分线. 此题是课本题的深化,你能够找到它的原形吗?知识在记忆中积累,能力在联想中提升. 课本是高考试题的生长点,复习忌忘掉课本!

五、高考复习建议

1、重视教材的基础作用和示范作用

高考试题年年变,但命题的依据是《考试大纲》,要以此为根本,弄清高考的知识点及对基础知识与能力的要求,这中间实质性的工作就是精通课本,客观题一般直接来源于课本,往往是课本的原题或变式题,解析几何的主观试题的生长点也是课本,所以在复习中要精通课本,贯彻“源于课本,高于课本”的原则.在二轮复习选题时,客观题可以根据课本题改变,加强知识点的覆盖,同时还要注意知识的综合。

2、突出“曲线与方程”这一重点内容.

解析几何有两个主要问题,一是由曲线求方程;二是由方程研究曲线,复习时选题要突出这两个问题.

2.1要掌握求曲线方程的思路和方法.

求曲线方程的方法有多种,但其思路的实质都是根据曲线上点适合的共同条件找出动点的流动坐标x 和y 之间的关系式。常见的求曲线方程的类型有两种,一种是曲线形状明确且便于用标准形式表示,这时可用特定系数法求其方程;一种是曲线形状不明确或不便于用标准形式表示,这时一般地可用直接法,间接代点法,参数法等求方程。

2.2要强化解析几何的基本思想和方法

解析几何的基本思想是在平面直角坐标系中,把点与实数对,曲线与方程,区域与不等式统一起来,用代数方法研究平面上的几何问题.其中最重点的内容是用方程研究曲线,其次是用不等式研究区域问题.研究这一基本思想的实质是等价转化的思想。

2.3复习中要掌握常用的解题策略

平面解析几何是综合性较强的学科,因而解题时就需要运用多种知识、采用多种数学手段。熟记各种定义、基本公式、法则,做到迅速、准确解题。

3、注意解析几何与相关学科的交叉问题

由于解析几何内容在直线与圆锥曲线的几何性质和综合应用方面,涉及的内容丰富,易于纵横联系,对培养学生的数学素质,提高能力和继续学习有重要作用。这就启示我们在备考复习中,应高度重视解析几何与相关学科交叉知识问题的综合应用。04年高考题也给我们揭示了重视这一问题的重要性。应该说,解析几何中的圆锥曲线都是与方程理论相联系的,但在复习过程中,我们不应只停留在这一联系,而应尽可能加强解析几何和函数,解析几何与导数、平面向量的联系。在此,我们特别强调的是应有机加大解几和函数有关性质的联系。

4、专题复习要立足课堂、讲究实效

在实施专题复习的过程中,要对《考试大纲》所涉及的解析几何近30个知识点逐一排查,以题型为线索有针对性精心选题。小题选题要以课本为生长点,一方面要注意知识的覆盖面,同时也要注意知识的内部联系。解答题在选题时要以某圆锥曲线为背景,加强知识的纵横联系,如与函数、不等式、平面向量、导数的联系。用2~3个专题复习解析几何。小题1~2个课时,解答题1~2个课时。

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

高三数学解析几何训练试题(含答案)

高三数学解析几何训练试题(含答案) 2013届高三数学章末综合测试题(15)平面解析几何(1)一、选 择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey =0的圆心在直线x+y=1上,则D与E的关系是( ) A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析 D 依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E=-2. 2.以线段AB:x+y-2=0(0≤x≤2)为直径的圆的方程为( ) A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析 B 直径的两端点为(0,2),(2,0),∴圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2 =1的两个焦点,P为椭圆上一动点,则使|PF1|?|PF2|取最大值的点P为( ) A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析 D 由椭圆定义,|PF1|+|PF2|=2a=4,∴|PF1|?|PF2|≤|PF1|+|PF2|22=4,当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P 是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是( ) A.165 B.3 C.163 D.253 解析 A 椭 圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得 ∠F1PF2<π2,∴∠PF1F2=π2或∠PF2F1=π2,点P到y轴的距离d= |xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为( ) A.4x+y+4=0 B.x-4y-4=0 C.4x-y-12=0 D.4x -y-4=0 解析 D 设切点为(x0,y0),则y′|x=x0=2x0, ∴2x0=4,即x0=2,∴切点为(2,4),方程为y-4=4(x-2),即4x-y-4=0. 6.“m>n>0”是“方程mx2+ny2=1表示焦点在y轴上的椭圆”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件解析 C 方程可化为x21m+ y21n=1,若焦点在y轴上,则1n>1m>0,即m>n>0. 7.设双曲线x2a2-y2b2=1的一条渐近线与抛物线y=x2+1只有一个公共点,则双

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习解析版82页 1.一个顶点的坐标()2,0 ,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 14132 2=+y x 2.已知双曲线的方程为22 221(0,0)x y a b a b -=>>,过左焦点F 1的直线交 双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3 B .32+ C . 31+ D . 32 3.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点, 且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3 D .4 4.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( ) (A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65, 2(π B .)6 ,2(π C .)611,2(π D .)67,2(π 7.曲线的参数方程为???-=+=1 232 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A . 54 B .4 5 C . 254 D .4 25 9. 圆0642 2 =+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、13 10.椭圆 122 2 2=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

高三数学解析几何专题复习讲义(含答案解析)

二轮复习——解析几何 一.专题内容分析 解析几何:解析几何综合问题(椭圆或抛物线)及基本解答策略+圆锥曲线的定义和几何性质+直线与圆+极坐标、参数方程+线性规划 二.解答策略与核心方法、核心思想 圆锥曲线综合问题的解答策略: 核心量的选择: 常见的几何关系与几何特征的代数化: ①线段的中点:坐标公式 ②线段的长:弦长公式;解三角形 ③三角形面积: 2 1底×高,正弦定理面积公式 ④夹角:向量夹角;两角差正切;余弦定理;正弦定理面积公式 ⑤面积之比,线段之比:面积比转化为线段比,线段比转化为坐标差之比 ⑥三点共线:利用向量或相似转化为坐标差之比 ⑦垂直平分:两直线垂直的条件及中点坐标公式 ⑧点关于直线的对称,点关于点,直线关于直线对称 ⑨直线与圆的位置关系 ⑩等腰三角形,平行四边形,菱形,矩形,正方形,圆等图形的特征 代数运算:设参、消参 重视基本解题思路的归纳与整理但不要模式化,学会把不同类型的几何问题转化成代数形式.

三.典型例题分析 1.(海淀区2017.4)已知椭圆C :22 221(0)x y a b a b +=>>的左、右顶点分别为A ,B ,且||4AB =,离心率为12 . (Ⅰ)求椭圆C 的方程; (Ⅱ)设点(4,0)Q , 若点P 在直线4x =上,直线BP 形APQM 为梯形?若存在,求出点P 解法1:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ AP MQ k k =. 设点0(4,)P y ,11(,)M x y ,06 AP y k =,114MQ y k x = -, ∴ 01164y y x =-① ∴直线PB 方程为0(2)2 y y x =-, 由点M 在直线PB 上,则0 11(2)2 y y x = -② ①②联立,0 101(2) 264y x y x -=-,显然00y ≠,可解得11x =. 又由点M 在椭圆上,211143y + =,所以132y =±,即3 (1,)2 M ±, 将其代入①,解得03y =±,∴(4,3)P ±. 解法2:(Ⅰ)椭圆C 的方程为22 143 x y +=. (Ⅱ)假设存在点,P 使得四边形APQM 为梯形. 由题可知,显然,AM PQ 不平行,所以AP 与MQ 平行, AP MQ k k =, 显然直线AP 斜率存在,设直线AP 方程为(2)y k x =+. 由(2)4y k x x =+??=? ,所以6y k =,所以(4,6)P k ,又(2,0)B ,所以632PB k k k ==. ∴直线PB 方程为3(2)y k x =-,由22 3(2) 34120 y k x x y =-?? +-=?,消y , 得2222(121)484840k x k x k +-+-=.

全国高考数学试题汇编——解析几何

7. 2004年全国高考数学试题汇编一一解析几何(一) 1. [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第7题,文科数学第7题] 2 椭圆—? y 2 =1的两个焦点为F i 、F 2,过F i 作垂直于x 轴的直线与椭圆相交,一个交 4 点为P ,则| PF 2 | = ,3 A . 2 2. [2004年全国高考(山东山西河南河北江西安徽) I 的斜率的取值范围是 的轨迹方程为 [2004年全国高考(四川云南吉林黑龙江)? 已知点A (1, 2)、B( 3, 1),则线段AB 的垂直平分线的方程是 A . 4x 2y=5 B . 4x-2y=5 C . x 2y=5 别是O '和A ',则O A "=囂£,其中?= B . .3 ?理科数学第8题,文科数学第8题] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点 Q 的直线I 与抛物线有公共点,则直线 3. 1 1 A . [ — 2, 2] B . [—2, 2] C . [-1, 1] D . [ — 4, 4] [2004年全国高考(山东山西河南河北江西安徽) ?理科数学第14题,文科数学第15题] 由动点P 向圆x 2+y 2=1引两条切线PA 、PB , 切点分别为A 、 B ,Z APB=60 ° , 则动点 4. [2004年全国高考(四川云南吉林黑龙江)? 理科数学第4题, 文科数学第 已知圆C 与圆(x -1)2 y 2 =1关于直线 y = -x 对称,则圆 C 的方程为 A . (x 1)2 y 2 =1 B . x 2 - y 2 =1 2 2 C . x (y 1) =1 2亠/ 八2 D . x (y -1) =1 5. 文科数学第8题] 6. [2004年全国高考(四川云南吉林黑龙江)?理科数学第8题] 在坐标平面内,与点A (1,2)距离为1 ,且与点B (3, 1)距离为2 A . 1条 [2004年全国高考 的直线共有 ( D . 4条 已知平面上直线 B . 2条 C . 3条 (四川云南吉林黑龙江)?理科数学第9题] 4 3 l 的方向向量e =(,—),点0(0, 0)和A (1, — 2)在I 上的射影分 5 5

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

专题11平面解析几何大题强化训练(省赛试题汇编) 1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围. 2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于 A、B两点. ⑴求证:△AOB的面积S是定值; ⑵求△AOB的外心P的轨迹方程. 3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为 在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:. 5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线 交于点,记点的轨迹为曲线. (1)求曲线的方程; (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为. (1)求椭圆的方程;

(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值. 7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由. 8.【2018年山东预赛】已知圆与曲线为曲 线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上. 10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

人教版高考数学专题复习:解析几何专题

高考数学专题复习:解析几何专题 【命题趋向】 1.注意考查直线的基本概念,求在不同条件下的直线方程,直线的位置关系,此类题大多都属中、低档题,以选择、填空题的形式出现,每年必考 2.考查直线与二次曲线的普通方程,属低档题,对称问题常以选择题、填空题出现 3.考查圆锥曲线的基础知识和基本方法的题多以选择题和填空题的形式出现,与求轨迹有关、与向量结合、与求最值结合的往往是一个灵活性、综合性较强的大题,属中、高档题, 4.解析几何的才查,分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题. 【考题解析与考点分析】 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D. 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b ?=-+?++-=?+=-?=+?,进而可求出AB 的中点1 1(,)22M b --+,又由11(,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出AB ==. 故选C 例3.如图,把椭圆2212516x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567 ,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++= ____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.

平面解析几何高考专题复习

第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 1.直线的倾斜角 (1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0,π). 2.直线的斜率 (1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率. (2)过两点的直线的斜率公式: 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2 x 1-x 2. 3.直线方程

1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况. 2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误. 3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B . [试一试] 1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-1 2 解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-3 2时,在x 轴上截距为4m -12m 2+m -3= 1,即2m 2-3m -2=0, 故m =2或m =-1 2 . 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4 -2-m =1,∴m =1. 答案:1 3.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-4 3, 所以y =-4 3x ,即4x +3y =0. ②若直线不过原点. 设x a +y a =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0 1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应

2020高考专题复习解析几何的万能套路

高考解析几何的万能解题套路 一个套路,几乎解决所有高考解析几何问题! 在教学中,一直有一个难以解决的悖论:“题海战术”广遭诟病,但似乎要取得好成绩,除了“题海战术”又别无良策。这是因为,我们每次考试面对的题目都不可能一样,大家心照不宣的想法是——通过平时的“题海战术”,也许可以穷尽问题的各种可能。 显然如果我们要穷尽问题的各种可能,是不现实的。为了让学生能真正从题海战术中走出来,事实上,我们可以将以往大量的、零碎的、彼此之间也看似没有多少联系性的某些数学问题,却能通过高度一致的方法获得解决,本文以解析几何为例的一套与高考解析几何演绎体系相对应的“万能解题套路”,几乎把近几年贵州省高考解析几何问题基本上统一了起来!希望对同学有所启发。 一、解析几何万能解题套路 解析几何是法国数学家笛卡儿(1596年~1650年)创立的。笛卡儿在总结前人经验的基础上,创造性地提出了一个划时代的设想——把代数的演绎方法引入几何学,用代数方法来解决几何问题。正是在这一设想的指引下,笛卡儿创建了解析几何的演绎体系。 以高考解析几何为例: 1、很多高考问题都是以平面上的点、直线、曲线(如圆、椭圆、抛物线、双曲线)这三大类几何元素为基础构成的图形的问题; 2、演绎规则就是代数的演绎规则,或者说就是列方程、解方程的规则。 有了以上两点认识,我们可以毫不犹豫地下这么一个结论,那就是解决高考解析几何问题无外乎做两项工作: 1、几何问题代数化。 2、用代数规则对代数化后的问题进行处理。 至此,整理了近几年来贵州省高考解析几何试题后总结出一套统一的解题套路: 二、高考解析几何解题套路及各步骤操作规则 步骤一:(一化)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来; 口诀:见点化点、见直线化直线、见曲线化曲线。 1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化; 2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化; 3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化; 步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。 口诀:点代入直线、点代入曲线。 1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;

相关文档
相关文档 最新文档