文档库 最新最全的文档下载
当前位置:文档库 › hex转成c

hex转成c

hex转成c
hex转成c

HEX2C用法!!!!

开始—>运行—>输入CMD

这个是我试过的结果。如下面的(我放在C盘根目录)结果请看下图,必须打上每个文件的路径

文件hex2c.exe 和yyb.hex放在C:\

命令:(yyb.c随便取的名字)

输出的yyb.c文件,定义输出在C盘:

如果放在D盘,则:

必须打上每个文件的路径

开始-运行-输入CMD打开了DOS后,出现的界面应是怎样的?

一本书说出现的应该是c:\>_

但是我打开之后为什么出现的是c:\Documents and Settings\Administrator>

C:\>是什么

提问者采纳

热心网友

命令提示符,表示现在所在目录是C盘根目录,可以输入要执行命令。

也可以说是一个字符串,它由C,:,>三个字符组成,\>由于\的作用转义为>

如何用dos命令在开始-运行框中输入命令,显示d:\我的文档\ 文件夹中所有文件,

我想实现的功能是:显示当前目录下所有的文件,并把显示的信息写入到1.txt 中?

提问者采纳

显示文件到你需要的文件夹这边需要使用到一个追加符号> 或者>>

如你在C:\Documents and Settings\Administrator> 当前位置输入dir 后面加你的[我的文档]所在的位置的路径, 后面跟上> 1.txt 那么就可以在C:\Do cuments and Settings\Administrator 路径下找到1.txt 文件了

例子我的文档路径为D:\Documents 命令如下

C:\Documents and Settings\Administrator>dir /a D:\Documents >1.txt

另外> 表示的是新写入,就是说每次写到1.txt时,原本的内容会被清空,>>表示的追加.那就是在原有的内容后面增加相应的内容

(0)

回复c:\Documents and Settings\Administrator>

C:\表示你的系统在C盘(系统盘符)

Documents and Settings\Administrator 表示你当前的用户Administrator(管理员),以下所有的命令都在该用户(Administrator)的配置,权限下执行。

在里面可以做什么呢有哪位可以详细的说明一下的谢谢

回复

打开后出现是c:\Documents and Settings\Administrator>,是因为你以Administrator用户名登陆,登陆后系统默认c:\Documents and Settings\Administrator>为根目录,操作权限实质上和c:\是一样的,你要是看不惯可以输入cd\ 回车就行了。

在win95,98、2k的时候,由于开始支持长文件名(在dos时代文件名长度为8.3,即最多8个字符文件名加上最多3个字符扩展名),所以如果在windows状态的dos窗口进入各个目录是十分麻烦的,但只要在windows里用我的电脑打开你所要进去的目录,然后再打开cmd,你就会发现你能直接的进入到刚才你在我的电脑里打开的目录了。

在cmd窗口你用使用到的dos功能并不多,因为cmd窗口都是在windows状态下的兼容d os窗口,它对系统没有深层的控制权,所以只能实现一些基本的磁盘操作,例如文件、目录更名、复制、删除、移动,和一些网络配置功能,如ipconfig。

IntelHEX格式简介

什么是Intel HEX格式? Intel HEX文件是记录文本行的ASCII文本文件,在Intel HEX文件中,每一行是一个HEX记录 由十六进制数组成的机器码或者数据常量,Intel HEX文件经常被用于将程序或数据传输 存储到ROM.EPROM,大多数编程器和模拟器使用Intel HEX文件. 记录格式 一个Intel HEX文件可以包含任意多的十六进制记录,每条记录有五个域,下面是一个记录的格式. :llaaaatt[dd...]cc 每一组字母是独立的一域,每一个字母是一个十六进制数字,每一域至少由两个十六进制数字组成,下面是字节的描述. :冒号是每一条Intel HEX记录的开始 ll 是这条记录的长度域,他表示数据(dd)的字节数目. aaaa 是地址域,他表示数据的起始地址 <如果是数据记录,这表示将要烧录的这条记录中的数据在EPROM中的偏移地址, 对于不支持扩展段地址和扩展线性地址的,如89C51,这就是此条记录的起始地址> tt 这个域表示这条HEX记录的类型,他有可能是下面这几种类型 00 ----数据记录 01 ----文件结束记录 02 ----扩展段地址记录 04 ----扩展线性地址记录 dd 是数据域,表示一个字节的数据,一个记录可能有多个数据字节,字节数目可以 查看ll域的说明 cc 是效验和域,表示记录的效验和,计算方法是将本条记录冒号开始的所有字母对 <不包括本效验字和冒号> 所表示的十六进制数字 <一对字母表示一个十六进制数,这样的一个十六进制数为一个字节>

都加起来然后模除256得到的余数最后求出余数的补码即是本效验字节cc. <例如: :0300000002005E9D cc=0x01+NOT((0x03+0x00+0x00+0x00+0x02+0x00+0x5E)%0x100)=0x01+0x 9C=0x9D C语言描述: UCHAR cc; cc=(UCHAR)~(0x03+0x00+0x00+0x00+0x02+0x00+0x5E); cc++; > 数据记录 Intel HEX文件由若干个数据记录组成,一个数据记录以一个回车和一个换行结束 <回车为0x0d换行为0x0a> 比如下面的一条数据记录 :10246200464C5549442050524F46494C4500464C33 10 是此行记录数据的字节数目 2462 是数据在内存<将要烧写的eprom地址>中的起始地址 00 是记录类型00(是一个数据记录) 464C 到464C 是数据 33 是此行记录的效验和 扩展线性地址记录(HEX386) 扩展线性地址记录也可称为32位地址记录和HEX386记录,这个纪录包含高16(16-31位)位数据地址,这种扩展的线性记录总是有两个字节数据,像下面这样: :02000004FFFFFC 02 是记录的数据字节数目 0000 是地址域这在扩展地址记录中总是0000 04 是记录类型04(扩展地址记录) FFFF 是高16位地址 FC 是记录效验和,计算方法如下: 01h + NOT(02h + 00h + 00h + 04h + FFh + FFh) 当一个扩展线性地址记录被读到后,扩展线性地址记录的数据区域将被保存 并应用到后面从Intel HEX文件中读出的记录,这个扩展线性记录一直有效, 直到读到下一个扩展线性记录.

HEX格式

HEX文件格式学习笔记 为了编写一个可以按照自己的要求进行ISP的程序,大概学习了一下HEX文件格式。把学习笔记写出来,以为重新巩固所学习内容。 HEX文件以行为单位。每行以字符‘:’ (0x3a)开头,以回车换行符 0x0d, 0x0a为结束。每行开始和结束之间的所有内容,都是以字符形式 表现的。例如数据如果是 0x1A ,那么转换到HEX格式的行里面就是0x31 0x41。如果数据是16bit的,例如地址,则先显示高位,后显示底位。例如 0x1234,转换成HEX格式文件后变成 0x31 0x32 0x33 0x34,显示出来以后就是1234。将数据部分内容每2个字符看做一个HEX数据,例如: :020*********FA , 我把它看做 0x02 0x00 0x00 0x04 0x00 0x00 0xFA 第一个 0x02 为数据长度。 紧跟着后面的0x00 0x00 为地址。 再后面的0x04为数据类型,类型共分一下几类: '00' Data Record '01' End of File Record '02' Extended Segment Address Record '03' Start Segment Address Record '04' Extended Linear Address Record '05' Start Linear Address Record 然后,接着0x04后面的两个 0x00 0x00就是数据。最后一个0xFA 是校验码。 HEX文件的每一行都是这样的格式:

在例如: :1000000018F09FE518F09FE518F09FE518F09FE5C0 安装上面的数据行格式分析如下: 每行中的数据并不是一定有的,第二个直接的数据长度为0,那么这行就没有数据。 由于每行标识数据地址的只有2Byte,所以最大只能到64K,为了可以保存更大数据地址数据,就有了Extended Linear Address Record。如果这行的数据类型是0x04,那么,这行的数据就是随后数据的基地址。例如: :020*********F6 :1000000018F09FE518F09FE518F09FE518F09FE5C0 :1000100018F09FE5805F20B9F0FF1FE518F09FE51D 第一行,是Extended Linear Address Record,里面的基地址是0x0004,第二行是Data Record,里面的地址值是0x0000。那么数据18F09FE518F09FE518F09FE518F09FE5要写入FLASH中的地址为 (0x0004 << 16) | 0x0000,也就是写入FLASH的0x40000这个地址。同样,第三行的数据的写入地址为0x40010。当一个HEX文件的数据超过64k的时候,文件中就会出现多个Extended Linear Address Record。 End of File Record 行是每一个HEX文件的最后一行。例如: :00000001FF

C语言中的强制类型转换运算

C语言中的强制类型转换运算 C语言中的强制类型转换是通过类型转换运算来实现的。 其一般形式为: (类型说明符)(表达式) 其功能是把表达式的运算结果强制转换成类型说明符所表示的类型。 例如: (float)a 把a转换为实型 (int)(x+y)把x+y的结果转换为整形 在使用强制转换时应注意以下问题: 1)类型说明符和表达式都必须加括号(单个变量可以不加括号),如果把(int)(x+y)写成(int)x+y则成了把x转换成int型之后再与y相加了。 2)无论是强制转换或是自动转换,都只是为了本次运算的需要而对变量的数据长度进行的临时性的转换,而不改变数据说明时对该变量定义的类型。 【例1】 #include int main (void) { float f = 3.14; printf("(int)f = %d,f = %.2f\n",(int)f,f); return 0; } 本例表明,f虽强制转为int型,但只在运算中起作用,是临时的,而f本身的类型并不改变。因此,(int)f的值为5(删去了小数)而f的值仍为5.75. 1、求余运算符(模运算符)“%”:双目运算,具有左结合性。要求参与运算的量均为整型。求余运算的结果等于两数相除后的余数。 #include int main (void) { printf(" %d\n",110%3);

return 0; } 本例输出110除以3所得的余数2。 2、算数表达式和运算符的优先级和结合性 表达式是由常量、变量、函数和运算符组合起来的式子。一个表达式有一个值及其类型,他们等于计算表达式所得结果的值和类型。表达式求值按运算符的优先级和结合性规定的顺序进行。单个的常量、变量、函数可以看作是表达式的特例。 算数表达式是由算术运算符和括号连接起来的式子。 算数表达式:用算数运算符和括号将运算对象(也称操作数)连接起来的、符合C语法规则的式子。 以下是算数表达式的例子: a+b; (a*2)/c; (x+r)*8-(a+b)/7; ++I; Sin(x)+sin(y); (++i)-(j++)+(k--); 运算符的优先级:C语言中,运算符的运算优先级共分为15级。1级最高,15级最低。在表达式中,优先级较高的先于优先级较低的进行运算。而在一个运算量两侧的运算符优先级相同时,则按运算符的结合性所规定的结合方向处理。 运算符的结合性:C语言中各运算符的结合性分为两种,即左结合性(自左至右)和右结合性(自右至左)。例如算术运算符的结合性是自左至右,即先左后右。如有表达式x-y+z,则先执行x-y运算,然后再执行+z运算。这是左结合性。右结合性最典型的是赋值运算符。如x=y=z. 3、强制类型转换运算符 其一般形式为: (类型说明符)(表达式)

Hex文件格式说明文档

Hex File Reference The postlocator is responsible for generating the hex file needed for the ROM flow. It can also be used by emulator and simulator for testing purposes. Due to the data structure of Intel hex files, it is not possible to handle virtual and physical addresses as data structures within the same file nor virtual addresses for multiple levels. Therefore, SLE 79 specific information is provided within comment lines. Such information are comments to be is played in the ROM generator GUI, date and time of creation, segment descriptors, virtual addresses and so on. Note: The Intel hex file is an ASCII text file with lines of text that follow the Intel hex file format. Each data line in an Intel hex file contains one hex record. These records are made up of hexadecimal numbers that represent machine language code and/or constant data. Intel hex files are often used to transfer program and data to be stored in ROM or NVM. 1.1 Hex File Structure The SLE 70 hex file is divided into three parts which have to occur in the described order: ? Comment part containing the following information: –As first line “; TYPE=SLE70_MASK_IHEX” as identifier for the SLE 70 hex file format. – Five sections in arbitrary order - COMMENT (optional) - INFO - MEMORY_ADDRESSES - CONFIG - DESCRIPTOR – The keywords inside these sections may contain - Letters “a –z” and ”A –Z” (not case sensitive) - Digits “0 –9” but not as first character - “-” or “_” but not as the first character -Leading and trailing spaces are ignored ? Data part which data lines (records) start always with a colon “:”. The only comments allowed in this part are the definitions of the virtual addresses “V_ADDR = 0x...”. These comments are allowed at the beginning of a line and define the virtual address for the following data lines until another definition of the virtual address. The virtual address must contain the level information in the upper byte. The offset

Intel Hex文件格式说明

Intel HEX文件是记录文本行的ASCII文本文件,在Intel HEX文件中,每一行是一个HEX记录 由十六进制数组成的机器码或者数据常量,Intel HEX文件经常被用于将程序或数据传输 存储到ROM.EPROM,大多数编程器和模拟器使用Intel HEX文件. 记录格式 一个Intel HEX文件可以包含任意多的十六进制记录,每条记录有五个域,下面是一个记录的格式. :llaaaatt[dd...]cc 每一组字母是独立的一域,每一个字母是一个十六进制数字,每一域至少由两个十六进制数字组成,下面是字节的描述. :冒号是每一条Intel HEX记录的开始 ll 是这条记录的长度域,他表示数据(dd)的字节数目. aaaa 是地址域,他表示数据的起始地址 <如果是数据记录,这表示将要烧录的这条记录中的数据在EPROM中的偏移地址, 对于不支持扩展段地址和扩展线性地址的,如89C51,这就是此条记录的起始地址> tt 这个域表示这条HEX记录的类型,他有可能是下面这几种类型 00 ----数据记录 01 ----文件结束记录 02 ----扩展段地址记录 04 ----扩展线性地址记录 dd 是数据域,表示一个字节的数据,一个记录可能有多个数据字节,字节数目可以 查看ll域的说明 cc 是效验和域,表示记录的效验和,计算方法是将本条记录冒号开始的所有字母对 <不包括本效验字和冒号> 所表示的十六进制数字 <一对字母表示一个十六进制数,这样的一个十六进制数为一个字节> 都加起来然后模除256得到的余数最后求出余数的补码即是本效验字节cc. <例如: :0300000002005E9D cc=0x01+NOT((0x03+0x00+0x00+0x00+0x02+0x00+0x5E)%0x100)=0x01+0x9C=0x9D C语言描述: UCHAR cc;

生成HEX文件

生成HEX文件的MATLAB程序 ROM初始化文件既可以是*.mif也可以是*.hex文件,但是如果工程需要在Modelsim中进行仿真的话,则必须生成*.hex文件对ROM进行初始化。一般简单且有规律的初始化数据可以用Excel先生成mif文件再在综合软件中转化为hex文件,但如果所需信号要叠加各种各样的噪声时。Excel则不能胜任,此时我们用MATLAB生成所需初始化数据,在使用下述程序则很容易生成HEX初始化文件。程序先介绍hex文件的结构,后给出matlab程序,且我做了详细的注释,希望对大家有所帮助。 % __Created by He Yapeng.@School of Electronic Engineering and Photoelectricity Technology at Nanjing University of Science and Technology % --Email:lwkj0920@https://www.wendangku.net/doc/953566336.html,. '); % Intel HEX文件是由一行行符合Intel HEX文件格式的文本所构成的ASCII文本文件。在Intel HEX文件中, % 每一行包含一个HEX记录。这些记录由对应机器语言码和/或常量数据的十六进制编码数字组成。Intel HEX文件通常用于传输将被存于ROM或者EPROM中的程序和数据。大多数EPROM编程器或模拟器使用Intel HEX文件。 % 记录格式 % Intel HEX由任意数量的十六进制记录组成。每个记录包含5个域,它们按以下格式排列:% :llaaaatt[dd...]cc % 每一组字母对应一个不同的域,每一个字母对应一个十六进制编码的数字。每一个域由至少两个十六进制编码数字组成,它们构成一个字节,就像以下描述的那样: % : 每个Intel HEX记录都由冒号开头. % ll 是数据长度域,它代表记录当中数据字节(dd)的数量. % aaaa 是地址域,它代表记录当中数据的起始地址. % tt 是代表HEX记录类型的域,它可能是以下数据当中的一个: % 00 –数据记录 % 01 –文件结束记录 % 02 –扩展段地址记录 % 04 –扩展线性地址记录 % dd 是数据域,它代表一个字节的数据.一个记录可以有许多数据字节.记录当中数据字节的数量必须和数据长度域(ll)中指定的数字相符. % cc 是校验和域,它表示这个记录的校验和.校验和的计算是通过将记录当中所有十六进制编码数字对的值相加,以256为模进行以下补足. %

C语言中不同的结构体类型的指针间的强制转换详解

C语言中不同类型的结构体的指针间可以强制转换,很自由,也很危险。只要理解了其内部机制,你会发现C是非常灵活的。 一. 结构体声明如何内存的分布, 结构体指针声明结构体的首地址, 结构体成员声明该成员在结构体中的偏移地址。 变量的值是以二进制形式存储在内存中的,每个内存字节对应一个内存地址,而内存存储的值本身是没有整型,指针,字符等的区别的,区别的存在是因为我们对它们有不同的解读,param的值就是一个32位值,并且存储在某个内存单元中,通过这个32位值就能找到param所指向的结构的起始地址,通过这个起始地址和各个结构所包含变量离起始地址的偏移对这些变量进行引用, param->bIsDisable只是这种引用更易读的写法,只要param是指向 PAINT_PARAM的指针,那么param的值就肯定存在,param存在,偏移量已知,那么param->bIsDisable就肯定存在,只是要记住,param->bIsDisable只是代表了对param一定偏移地址的值。 不是说某个地址有那个结构体你才能引用,即使没有,你也能引用,因为你已经告诉了编译器param变量就是指向一个PAINT_PARAM结构体的变量并且指明了param的值,机器码的眼中是没有数据结构一说的,它只是机械的按照 指令的要求从内存地址取值,那刚才的例子来说,peg->x,peg->y的引用无论 0x30000000是否存在一个eg结构体都是合法的,如果0x30000000开始的8 个字节存在eg结构体,那么引用的就是这个结构体的值,如果这个位置是未定义的值,那么引用的结果就是这8个字节中的未定义值,内存位置总是存在的,而对内存中值的引用就是从这些内存位置对应的内存单元取值。 举个例子: typedefstruct_eg { int x; int y; }eg;

HEX文件的烧录

1. keil编译生成hex文件大小与单片机内的flash空间大小没有完全绝对的关系 2. HEX 文件的大小,不是最终的代码大小, 一般实际要更小一些. 如果有兴趣研究,可以下载一下叫做 hex2bin 的小程序,可以把hex转换为bin 3. Intel hex 文件格式: Intel hex 文件常用来保存单片机或其他处理器的目标程序代码。它保存物理程序存储区中的目标代码映象。一般的编程器都支持这种格式。 Intel hex 文件全部由可打印的ASCII字符组成(可以用记事本打开),如下例所示: :2000000012014c75a800e4f508f509780a7a78e4f608dafcd283fcfded240af9a705 0dbd81 :2000200000010ced2488ec34ff50edc283e4fcfded240af9e76d7013ed33e43c700d 0dbd2a :2000400000010ced2488ec34ff50e50509e50970020508e50924a8e50834fd50aee4 f50874 Intel hex 由一条或多条记录组成,每条记录都由一个冒号“:”打头,其格式如下: :CCAAAARR...ZZ 其中: CC 本条记录中的数据字节数 AAAA 本条记录中的数据在存储区中的起始地址 RR 记录类型: 00 数据记录 (data record) 01 结束记录 (end record) 02 段记录 (paragraph record) 03 转移地址记录 (transfer address record) ... 数据域 ZZ 数据域校验和 Intel hex文件记录中的数字都是16进制格式,两个16进制数字代表一个字节。CC域是数据域中的实际字节数,地址、记录类型和校验和域没有计算在内。校验和是取记录中从数据字节计数域(CC)到数据域(...)最后一个字节的所有字节

HEX格式说明

什么是Intel HEX文件格式? Intel HEX文件是由一行行符合Intel HEX文件格式的文本所构成的ASCII文本文件。在Intel HEX文件中,每一行包含一个HEX记录。这些记录由对应机器语言码和/或常量数据的十六进制编码数字组成。Intel HEX文件通常用于传输将被存于ROM或者EPROM中的程序和数据。大多数EPROM编程器或模拟器使用Intel HEX文件。记录格式 Intel HEX由任意数量的十六进制记录组成。每个记录包含5个域,它们按以下格式排列: :llaaaatt[dd...]cc 每一组字母对应一个不同的域,每一个字母对应一个十六进制编码的数字。每一个域由至少两个十六进制编码数字组成,它们构成一个字节,就像以下描述的那样: : 每个Intel HEX记录都由冒号开头. ll 是数据长度域,它代表记录当中数据字节(dd)的数量. aaaa 是地址域,它代表记录当中数据的起始地址. tt 是代表HEX记录类型的域,它可能是以下数据当中的一个: 00 –数据记录 01 –文件结束记录 02 –扩展段地址记录 04 –扩展线性地址记录 dd 是数据域,它代表一个字节的数据.一个记录可以有许多数据字节.记录当中数据字节的数量必须和数据长度域(ll)中指定的数字相符. cc 是校验和域,它表示这个记录的校验和.校验和的计算是通过将记录当中所有十六进制编码数字对的值相加,以256为模进行以下补足. 数据记录 Intel HEX文件由任意数量以回车换行符结束的数据记录组成.数据记录外观如下: :10246200464C5549442050524F46494C4500464C33 其中: 10 是这个记录当中数据字节的数量. 2462 是数据将被下载到存储器当中的地址. 00 是记录类型(数据记录) 464C…464C是数据. 33 是这个记录的校验和. 扩展线性地址记录(HEX386) 扩展线性地址记录也叫作32位地址记录或HEX386记录.这些记录包含数据地址的高16位.扩展线性地址记录总是有两个数据字节,外观如下: :02000004FFFFFC 其中: 02 是这个记录当中数据字节的数量. 0000 是地址域,对于扩展线性地址记录,这个域总是0000. 04 是记录类型04(扩展线性地址记录) FFFF 是地址的高16位. FC 是这个记录的校验和,计算方法如下: 01h + NOT(02h + 00h + 00h + 04h + FFh + FFh). 当一个扩展线性地址记录被读取,存储于数据域的扩展线性地址被保存,它被应用于从Intel HEX文件读取来的随后的记录.线性地址保持有效,直到它被另外一个扩展地址记录所改变. 通过把记录当中的地址域与被移位的来自扩展线性地址记录的地址数据相加获得数据记录的绝对存储器地址. 以下的例子演示了这个过程.. 来自数据记录地址域的地址 2462 扩展线性地址记录的数据域 + FFFF 绝对存储器地址FFFF2462 扩展段地址记录(HEX86) 扩展段地址记录也叫HEX86记录,它包括4-19位数据地址段.扩展段地址记录总是有两个数据字节,外观如下: :020*********EA 其中: 02 是记录当中数据字节的数量. 0000 是地址域.对于扩展段地址记录,这个域总是0000. 02 是记录类型02(扩展段地址记录) 1200 是地址段. EA 是这个记录的校验和,计算方法如下: 01h + NOT(02h + 00h + 00h + 02h + 12h + 00h). 当一个扩展段地址记录被读取,存储于数据域的扩展段地址被保存,它被应用于从Intel HEX文件读取来的随后的记录.段地址保持有效,直到它被另外一个扩展地址记录所改变. 通过把记录当中的地址域与被移位的来自扩展段地址记录的地址数据相加获得数据记录的绝对存储器地址. 以下的例子演示了这个过程.. 来自数据记录地址域的地址2462 扩展段地址记录数据域+ 1200 绝对存储器地址 00014462 文件结束(EOF)记录 Intel HEX文件必须以文件结束(EOF)记录结束.这个记录的记录类型域的值必须是01.EOF记录外观总是如下: :00000001FF 其中: 00 是记录当中数据字节的数量. 0000 是数据被下载到存储器当中的地址.在文件结束记录当中地址是没有意义被忽略的.0000h是典型的地址. 01 是记录类型01(文件结束记录) FF 是这个记录的校验和,计算方法如下: 01h + NOT(00h + 00h + 00h + 01h). Intel HEX文件例子: 下面是一个完整的Intel HEX文件的例子: :10001300AC12AD13AE10AF1112002F8E0E8F0F2244 :10000300E50B250DF509E50A350CF5081200132259 :03000000020023D8 :0C002300787FE4F6D8FD7581130200031D :10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016 :04003F00A42EFE22CB :00000001FF

C语言类型强制转换

C语言类型强制转换 本篇主要介绍 C语言类型强制转换。 强制类型转换是通过类型转换运算来实现的。其一般形式为:(类型说明符)(表达式)其功能是把表达式的运算结果强制转换成类型说明符所表示的类型。 自动转换是在源类型和目标类型兼容以及目标类型广于源类型时发生一个类型到另一类的转换。例如: (float) a 把a转换为实型(int)(x+y) 把x+y的结果转换为整型在使用强制转换时应注意以下问题: 1.类型说明符和表达式都必须加括号(单个变量可以不加括号),如把(int)(x+y) 写成(int)x+y则成了把x转换成int型之后再与y相加了。 2.无论是强制转换或是自动转换,都只是为了本次运算的需要而对变量的数据长度进 行的临时性转换,而不改变数据说明时对该变量定义的类型。 例1: main() { float f=5.75; printf("(int)f=%d,f=%f\n",(int)f,f); } f<--5.75 将float f强制转换成int f float f=5.75;printf("(int)f=%d,f=%f\n",(int)f,f); 本例表明,f虽强制转为int 型,但只在运算中起作用,是临时的,而f本身的类型并不改变。因此,(int)f 的值为 5(删去了小数)而f的值仍为5.75。 例2:比如我们可以(int)'A',这样转换后的结果为A的ASCII码数值,因为那块内存本来就存的那个数,只是换个形式使用而已。知道上面的原则,我们 可以对任何数据类型进行转换,但是转换的结果可能不是你想像的结果,举例 (int)'9'的结果为多少?不是9而是0x39。来个高深点的printf("%d",'12'); 的输出是什么?正确答案是12594,因为printf("%d",'12'),打印的是存储12 的内存地址上的内容,即ASCII码值2存储在低位,1储在高位地址,0x32就是2 的ASCII码,0x31就是1的ASCII码,所以是0x3132,转换成10进制就是12594!

c语言强制转换四舍五入

在C语言中,强制转换后的数是四舍五入还是去尾? 去尾 要想四舍五入的话 (int)(number+0.5) 都是直接去尾的。当为数太多时直接截断。所以在强制转换时要很注意 C语言有没有数据的四舍五入?什么情况下会用到四舍五入?数据类型转换?有四舍五入的情况,在你想要保留几位小数的时候,多余的紧接着的一位要四舍五入 不过C里面没有提供四舍五入的函数,不过你可以这样 a = (int)(a*100 + 0.5)/100 这只是一个小技巧,对a的第三位进行四舍五入 提问者评价 +0.5可以解决这个问题!谢谢你! C语言中的float和double类型数据是浮点数,所以小数部分就存在四舍五入问题,当指定输出位数在精度范围之内时,系统会自动舍入,无需人工干预,如果小数部分也在精度范围内,比如10.0/2.0 = 5.0,2位以上的输出位数时,后面的都是0,此时,当然不需要舍入了。 数据类型转换有两种方式,一种是默认强制转换,比如将char、short、Int、Long和float类型数据赋给double类型变量时,编译程序会自动实施转换,这是因为,在精度更高时,这样的转换是内有损失的。另一种是手动强制类型转换,比如dnum = (double)inum;,意思是将整形变量inum首先转换为双精度数据,然后再付给dnum。当将高精度类型变量赋给低精度类型变量时,除非手动强制转换,否则,编译程序会有提示的。 数据强制转换是用舍弃的方法,不会用四舍五入,什么时候用四舍五入是需要详细说明的,也就是你的业务需求而定,你可以把数字+0.5,然后进行强制转换 ouble强制转换成int型的时候保留整数部分的。。 比如double a=1.5; int b=a; a就是1。 C语言强制类型转换问题 2012-03-11 17:52匿名|分类:C/C++ |浏览2634次 int a,b; //keil c里的int,也就是16位。 a=0000; b=0x1234; a=(char)(b);

Intel HEX文件格式

什么是Intel HEX格式? 回答: Intel HEX文件是记录文本行的ASCII文本文件,在Intel HEX文件中,每一行是一个HEX记录 由十六进制数组成的机器码或者数据常量,Intel HEX文件经常被用于将程序或数据传输 存储到ROM.EPROM,大多数编程器和模拟器使用Intel HEX文件. 记录格式 一个Intel HEX文件可以包含任意多的十六进制记录,每条记录有五个域,下面是一个记录的格式. :llaaaatt[dd...]cc 每一组字母是独立的一域,每一个字母是一个十六进制数字,每一域至少由两个十六进制数字组成,下面是字节的描述. :冒号是每一条Intel HEX记录的开始 ll 是这条记录的长度域,他表示数据(dd)的字节数目. aaaa 是地址域,他表示数据的起始地址 <如果是数据记录,这表示将要烧录的这条记录中的数据在EPROM中的偏移地址, 对于不支持扩展段地址和扩展线性地址的,如89C51,这就是此条记录的起始地址> tt 这个域表示这条HEX记录的类型,他有可能是下面这几种类型 00 ----数据记录 01 ----文件结束记录 02 ----扩展段地址记录 04 ----扩展线性地址记录 dd 是数据域,表示一个字节的数据,一个记录可能有多个数据字节,字节数目可以 查看ll域的说明 cc 是效验和域,表示记录的效验和,计算方法是将本条记录冒号开始的所有字母对 <不包括本效验字和冒号> 所表示的十六进制数字 <一对字母表示一个十六进制数,这样的一个十六进制数为一个字节> 都加起来然后模除256得到的余数最后求出余数的补码即是本效验字节cc.

C语言数据类型及转换

C语言的数据类型 C语言提供的数据结构,是以数据类型形式出现的。具体分类如下: 1.基本类型 分为整型、实型(又称浮点型)、字符型和枚举型四种。 2.构造类型 分为数组类型、结构类型和共用类型三种。 3.指针类型。在第9章中介绍。 4.空类型 C语言中的数据,有常量和变量之分,它们分别属于上述这些类型。 本章将介绍基本类型中的整型、实型和字符型三种数据。 2.3 常量和变量 2.3.1 常量 1.常量的概念 在程序运行过程中,其值不能被改变的量称为常量。 2.常量的分类 (1)整型常量 (2)实型常量 (3)字符常量。 (4)符号常量。 常量的类型,可通过书写形式来判别。 2.3.2 变量 1.变量的概念 在程序运行过程中,其值可以被改变的量称为变量。 2.变量的两个要素 (1)变量名。每个变量都必须有一个名字──变量名,变量命名遵循标识符命名规则。(2)变量值。在程序运行过程中,变量值存储在内存中。在程序中,通过变量名来引用变量的值。 3.标识符命名规则 (1)有效字符:只能由字母、数字和下划线组成,且以字母或下划线开头。 (2)有效长度:随系统而异,但至少前8个字符有效。如果超长,则超长部分被舍弃。 例如,由于student_name和student_number的前8个字符相同,有的系统认为这两个变量,是一回事而不加区别。 在TC V2.0中,变量名(标识符)的有效长度为1~32个字符,缺省值为32。 (3)C语言的关键字不能用作变量名。 注意:C语言对英文字母的大小敏感,即同一字母的大小写,被认为是两个不同的字符。 习惯上,变量名和函数名中的英文字母用小写,以增加可读性。 思考题:在C语言中,变量名total与变量名TOTAL、ToTaL、tOtAl等是同一个变量吗?标识符命名的良好习惯──见名知意: 所谓“见名知意”是指,通过变量名就知道变量值的含义。通常应选择能表示数据含义的英文单词(或缩写)作变量名,或汉语拼音字头作变量名。 例如,name/xm(姓名)、sex/xb(性别)、age/nl(年龄)、salary/gz(工资)。 4.变量的定义与初始化 在C语言中,要求对所有用到的变量,必须先定义、后使用;且称在定义变量的同时进行赋初值的操作为变量初始化。

HEX文件格式分析

阿龙整理 Intel HEX文件是用来保存单片机或其他处理器的目标程序代码的文件,它保存物理程序存储器中的目标代码的映像,以便编程器和仿真器调用.绝大多数编程器都支持Intel HEX格式。 下面是一个Intel HEX文件用记事本打开后看到的内容: :020*********FA :1000000018F09FE518F09FE518F09FE518F09FE5C0 :1000100018F09FE5805F20B9F0FF1FE518F09FE51D :10002000C000000040000000440000004800000044 :100030004C00000000000000000000005000000024 ...... :103020005C300000A8E60040000000005C300000BA :1030300000000140000000004830000000000000D7 :103040001400004094E6000032FFF0FFE8030000A7 :0C30500064000000FFFFFFFF010******* :00000001FF Intel HEX文件是文本行的ASCII文本文件,文件内容全部由可打印的ASCII字符组成,可以用记事本打开. Intel HEX由一条或多条记录组成,每行一个记录,每条记录都以冒号":"开始,以回车(0DH)和换行(0AH)结束. 除":"外,每条记录有五个域,每一域由2N(N>=1)个HEX字符组成,格式如下 :[LL][ZZZZ][TT][SS....SS][RR] 其中: [LL]:表示该记录的实际数据的长度; [ZZZZ]:表示该记录所包含的数据在实际的存储区中的起始地址; [TT]:为该记录的类型; [SS....SS]:为该记录的实际数据,由2N(N>=1)个HEX字符组成,该域的长度应当与[LL]域所指出长度一致. [RR]:为该记录的数据校验和. 例如对上面例子中的第一行: :020*********FA 用"["和"]"分开后如下: :[02][0000][04][0000][FA] [02]:该记录的实际数据的长度[LL]为2个字节(4个HEX字符); [0000]:该记录所包含的数据在实际的存储区中的起始地址[ZZZZ]为0000H;

c语言强制类型转换相关内容

c语言强制类型转换 首先定义一个结构体: struct Node{ int num1; int num2; } 一、如果在函数中申明了一个指向结构体的指针:一下为两种情况 1)Node * node1; 这时候在这个指针指向的地方已经申请了struct node大小的空间,但是其中的num1 和num2的值是一个不确定的随机值。 2)Node * node1 = NULL; 在这种情况下这个指针没有指向任何地方,也没有申请任何空间,所以num1和num2是不存在的。如果要显示node1的值,有些编译器在这 种情况下是报错的,gcc不会报错,但是在显示的时候会显示段错误 二、下面说一下在子函数调用的时候的结构体指针的类型转换 main() { unsigned long add; … fun ((struct Node *)addr); } void fun(struct Node *node2) { } 其中addr是已经在一个地址,只不过是以unsigned long的形式存在 情况一、如果addr这个地址指向的是一个已经被数据填充的区域,在这种调用关系中就会产生段错误,可能会覆盖已有的数据。一般运行过程中会发生内存错误而中断程序的执行。 情况二、如果addr 这个地址指向的是一个没有被数据填充的区域,在这种情况下,调用子函数会建立相应的struct Node数据结构,这个数据结构式在当前地址下开始建立的。这种情况用于嵌入式体统中,程序员对内存的区域非常熟悉,知道下一个地址肯定是未被使用的区域,否则后果不堪设想。 常规做法是在main函数中申请struct node空间,然后把地址传递给子函数进行操作,这样操作的结果是会被返回到主函数中,这是非常安全的做法。而申请这样的空间可以用动态内存分配的方法。上述情况一二之所以会出错或者非常危险,是因为它不符合内存动态非配的原理,没有动态申请内存,而把当前已有的空间(非struct node类型的空间)强制转换为了struct node 类型的空间进行了使用,这当然是危险的,也是不允许的。上述的两种情况只有在pc机重启或者嵌入式系统设计的时候会出现。

C语言各种数值类型转换

C语言数据类型转换1 CString,int,string,char*之间的转换 string 转CString CString.format("%s", string.c_str()); char 转CString CString.format("%s", char*); char 转string string s(char *); string 转char * const char *p = string.c_str(); CString 转string string s(CString.GetBuffer()); 1,string -> CString CString.format("%s", string.c_str()); 用c_str()确实比data()要好. 2,char -> string string s(char *); 你的只能初始化,在不是初始化的地方最好还是用assign(). 3,CString -> string string s(CString.GetBuffer()); GetBuffer()后一定要ReleaseBuffer(),否则就没有释放缓冲区所占的空间. 《C++标准函数库》中说的 有三个函数可以将字符串的内容转换为字符数组和C—string 1.data(),返回没有”\0“的字符串数组 2,c_str(),返回有”\0“的字符串数组 3,copy() CString互转int 将字符转换为整数,可以使用atoi、_atoi64或atol。 而将数字转换为CString变量,可以使用CString的Format函数。如 CString s; int i = 64; s.Format("%d", i) Format函数的功能很强,值得你研究一下。

STM32的hex文件格式的分析

STM32的hex文件格式的分析 日常开发工作中hex文件是经常要接触到的一种文件格式,就算平时你的开发是各种link直接下载,但如果你的项目批量量产了,那么一种生成文件(.bin或hex...)交给生产部门或是你的终端产品需要支持远程升级交给平台工程师那么是不可避免要接触到的。所以还是要必须了解的。 下面开始结合stm32分析hex的文件格式: 官方定义: <0x3a>[数据长度1Byte][数据地址2Byte][数据类型1Byte][数据nByte][校验1Byte]<0x0d><0x0a> 打开一个stm32生成的hex文件: 1)结合格式分析第一行(指定基地址) :020*********F2 断句 : 02 0000 04 0800 F2 我们已经按格式说明分割开 “:”对应格式中的<0x3a>,0x3a就是冒号的ASCII码 “02”对应的就是长度,这里就如所见,就是长度为2 “0000”对应数据地址,长度为2个字节。Stm32一个32位的芯片两个字节肯定不足以表示地址(要四个),所以这里地址的具体用法要结合后面的数据类型分析。这里为4指定基地址,所以这两个字节并没有什么用。 “04”对应的数据类型,具体的含义见【注释1】,这里的4是指定基地址。 “0800”对应的是数据,长度是浮动的,这里是2个字节,和前面的长度相呼应。这里指定的是基地址。当然指定的是高16的地址,如常见的0x0800 0000 ,所以这个基地址<<16使用。

“F2”对应的是校验结果,result = 256 - (date[0] + ... +date[n])% 256 ,这一行数据比较少,我就给大家带入一下0xF2 = 0x100 - (0x02 +0x00 + 0x00 + 0x04 + 0x08 + 0x00)%0x100。校验范围大家都看见了,是从长度到数据结束字节的这么一个范围,不少同学以为只是校验数据段,那是错误的,你的意思是长度和类型不重要可以存储出错吗? “”对应<0x0d><0x0a>,就是回车和换行,这个东西大家应该很熟悉,因为stm32串口发送例程中,串口数据的结束用的就是这两个符号做标识。 2)结合格式分析第二行(数据) 第二行开始到文件快结束的绝大部分内容都是对应的数据,我个人认为就相当于bin文件中所携带的内容,其他例如基地址,文件起始,文件结束等内容是hex 文件才有的附加信息。这里我只是试着分析一下其特殊部分,和第一行中相同且没变化的部分就不再赘述了。 :10000000600700200D0C0008050400080704000824 断句: :10 0000 00 60 07 00 20 0D 0C 00 08 05 04 00 08 07 04 00 08 24 “10”对应数据长度16,即60 07 00 20 0D 0C 00 08 05 04 00 08 07 04 00 08这16个字节。 “0000”对应地址,这里类型是数据,准确的说是低16位,高十六位由第一行的04基地址类型指定,上面指定的是0800 这里指定的是0000,那么后面的16个字节的目标位置就是addr = 0x800 << 16 + 0x0000, 就是0x0800 0000,是不是很熟悉?不熟悉的看下图,帮助回忆一下 我修改一下给大家看一看。 修改为0x0800 1000:

相关文档