文档库 最新最全的文档下载
当前位置:文档库 › 非均相Fenton试剂处理维生素B12废水 实验设计

非均相Fenton试剂处理维生素B12废水 实验设计

非均相Fenton试剂处理维生素B12废水 实验设计
非均相Fenton试剂处理维生素B12废水 实验设计

非均相Fenton试剂处理维生素B12废水实验设计

41113010 何欢祺

(北京科技大学土环学院环境工程系,北京 100083)

摘要Fenton氧化法是一种高级的氧化技术,具有较高去除难降解有机污染物的能力。本文概述了Fenton 试剂的作用机理和传统均相Fenton法的弊端,并详细阐明利用活性炭负载Fe2+的非均相Fenton试剂制备方法及其处理维生素B12废水的实验设计。

关键字Fenton氧化非均相Fenton试剂废水处理正交试验

一、Fenton试剂的作用机理

Fenton试剂具有强氧化性在于其中含有Fe2+和H2O2,对有机物的氧化作用是指H2O2 与Fe2+作用,生成具有极强氧化能力的羟基自由基·OH而进行的游离基反应;另一方面,反应生成的Fe(OH)3 胶体具有絮凝、吸附功能,也可以去除水中部分有机物。链式反应如下:

Fenton反应中对H2O2的消耗很快,产生的·OH具有很高的电负性或亲电性,具有很强的加成反应特性,因此Fenton法可以氧化水中大部分有机物,适合处理难生物降解和一般物化方法难以处理的废水[1]。均相Fenton法存在 pH 值适用范围窄(PH范围3~5),催化剂难回收,产生大量铁泥造成二次污染等缺点,限制了其在废水处理中的应用。

二、非均相Fenton试剂的制备

为了解决均相Fenton试剂的弊端,我们将延续前人思路继续把铁离子、铁的氧化物或者具有催化能力的过渡金属元素等固定在载体上,制备出不溶于水的非均相催化剂,其仍留有均相催化剂的优点,而且拓宽了 pH值适用范围,避免了铁离子产生铁泥,消除了离子本身所具有的颜色对水体视觉效果的影响。

通过查阅文献,确定了一种以活性炭负载Fe2+的非均相Fenton试剂制备方法,具体过程如下:将100mL一定体积分数的酸与12.5g颗粒活性炭浸渍24h,清洗后真空烘干。向经酸预处理后的活性炭中加入80mL一定质量数的硫酸亚铁溶液,在恒温振荡器中于常温下以150r/min的转速震荡浸泡24h,再用质量分数为10%的氢氧化钠溶液滴定至中性,清洗后真空烘干,用以制备Fe2+/活性炭非均相Fenton试剂。[2]

三、实验设计

(一)、影响因素的确定

近些年来有很多学者致力于研究实验因素对Fenton反应的影响,并建立了不同的动力学模型。Kwon通过研究Fenton试剂对酚氯的氧化特性,发现Fe2+浓度、H2O2浓度、pH直接决定了·OH的产量,[3]而·OH正是Fenton反应氧化有机污染物的主要活性氧物种。

在研究中发现,如果酸性太强,溶液中的 H+浓度过高,过氧化氢以 H3O2+稳定存在,而且有机物在强酸性环境中不易分解,Fe3+不能被顺利地还原成 Fe2+,催化反应受阻。实验证明,反应受到自由 Fe2+浓度的影响,Fe2+是产生·OH 的关键因素。被Fenton试剂分解的小分子有机物,有一部分会加速分解,而另外一部分会和Fe2+形成稳定的化合物,很难被进一步降解,只要有H2O2存在,有机物的降解反应便会继续下去。由实验结果得出 pH=2~4时,有机物的降解速率最高。[4]

邓小晖等人对Fenton试剂处理印染废水的实验发现,当pH一定,Fe2SO4·H2O投加量为150mg/L时,30%的H2O2最适宜的投加量为1mL/L。继续取30%的H2O2的投加量为1mL/L,试验Fe2SO4·H2O投加量对处理效果的影响,发现投加量为150mg/L时,处理效果很好,但质量浓度超过350mg/L,水样COD去除率降低,因此Fe2SO4·H2O最适宜的投加量为150~350mg/L[4]。

(二)、废水处理效果测定指标的确定

在本实验中确定废水的可生化性(B/C)作为衡量处理效果的重要指标。

COD,即化学需氧量,是指在一定严格条件下,水中的还原性物质在外加的强氧化剂作用下所消耗的氧化剂数量,能够反应水中受还原性物质污染的程度。因维生素B12废水中无机还原性物质的数量相对不大,因此COD可以作为有机污染物相对含量的一项综合指标。BOD 指水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总数量。废水的可生化性,即BOD与COD的比值(B/C),反映废水中有机物能被生物降解的难易程度,可以表征废水的处理效果。目前普遍认为, B/C<0.3的废水属于难生物降解废水, 在进行必要的预处理之前不易采用好氧生物处理; 而B/C>0.3的废水属于可生物降解废水。该比值越高, 表明废水经非均相Fenton试剂的处理效果越好。[5]

(三)、正交试验

本实验中需要研究三个因素,即Fe2+浓度、H2O2浓度、pH对实验结果的影响,因此需要挑选出有代表性的试验点来进行试验, 通过对代表性的试验的结果分析, 了解全面试验的情况, 即采用正交实验的方法。挑选有代表性的试验点成为正交试验的关键,最终达到减少实验次数,缩短实验周期的目的。[6]

本实验运用SPSS软件进行正交试验表设计,pH水平:2,2.5,3,3.5,4;Fe2SO4·H2O最适宜的投加量为150,200,250.300,350mg/L;H2O2投加量取1,2,3,4,5mL。生成的正交试验设计表如下:[7]

(四)、实验操作

4.1、实验仪器和试剂

试剂:H2O2(质量分数30%,分析纯),Fe2SO4·H2O固体,需要处理的废水,实验室现有的H2SO4溶液和NaOH溶液等

仪器:烧杯,玻璃棒,pH试纸,滴管等

4.2、实验步骤

首先在烧杯中加入一定量维生素B12废水,利用H2SO4或NaOH溶液调节pH到所确定的实验值,搅拌,按照实验数据表确定的量加入H2O2和Fe2SO4·H2O,记录时间,反应40min之后静置沉淀2min,取处理后的废水上清液测定COD和BOD。

4.3、分析方法

COD采用重铬酸钾法,BOD采用稀释培养法[9]。

4.4、结果分析

通过计算B/C,确定处理后废水的可生化性。若B/C>0.3,处理后的废水属于可生物降解废水。该比值越高, 表明废水经非均相Fenton试剂的处理效果越好。

四、可行性分析

1、经济可行性:催化剂硫酸亚铁晶体由于载体的作用以固态的形式参与反应,可以回收并重复利用,降低成本。

2、技术可行性:原料易得,操作流程简便,条件温和。在现有实验室条件下可以完成。

3、政策可行性:目前尚无法律法规禁止此实验方法。

五、结语

Fenton反应是当今最重要的AOP之一,Fenton反应在有毒有机污染物处理中有较好的降解效率及较大的应用范围,不管在实验室研究还是在实际的工业运用中,都有良好的效果。但是由于均相Fenton试剂存在pH 值适用范围窄,催化剂难回收,产生大量铁泥造成二次污染等缺点,限制了Fenton法在处理难降解废水中的运用。非均相Fenton法由于催化剂Fe2+在反应中以固态形式存在,有利于催化剂的回收利用,用这种处理方法再配合其他处理技以达到中水回用,能实现循环利用的目标。

六、参考文献

[1]林红岩,王春财,杨鸿伟.Fenton试剂在废水处理中的应用[A].大庆石油学院,中国知网,2009,32(10)

[2]李建旭,韩永忠,吴晓根,许垚艺.Fe2+/H活性炭非均相Fenton试剂氧化法降解苯酚[A].南京大学环境学院污染控制与资源化研究国家重点实验室,2011,31(4)

[3]Bum Gun Kwon, Dong Soo Lee, Namgoo Kang, etal. Characterstics of P- Chlorophenol oxidation by fenton’s reagent. Wat, Res.1999,33(9):2110- 2118

[4]邓小晖,张海涛,曹国民.Fenton试剂处理废水的研究与应用进展[J]上海化工,2007,32(8):40

[5]郭文成,吴群河.BOD5 /CODCr值价污废水可生化性的可行性分析[J]. 环境科学技术, 1998, 8( 3): 39, 41.

[6]徐仲安,王天保,李常英,暴丽艳,马青梅,苗玉宁.正交试验设计法简介[J].山西大学商务学院,2002,12(5):149

[7]刘瑞江,张业旺,闻崇炜,汤建.正交试验设计和分析方法研究[A].江苏大学药学院,2010,27(9):53

[8]陈文松,韦朝海.Fenton氧化-混凝法处理印染废水的研究[A].华南理工大学化工学院,2004,24(4):40

Fenton试剂法降解废水中的芳香类化合物

华东理工大学学报(自然科学版) Journal of East China University of Science and Technology (Natural Science Edition )Vol.34No.62008212 收稿日期:2007211213 基金项目:上海市重点学科建设项目资助(B506) 作者简介:曹国民(19632),男,江苏南通人,副教授,博士,主要从事水污染控制理论与技术研究。E 2mail :gmcao @https://www.wendangku.net/doc/9b3573917.html, 文章编号:100623080(2008)0620830204 Fenton 试剂法降解废水中的芳香类化合物 曹国民, 丁 伟, 杨国平, 张大年(华东理工大学环境工程研究所,上海200237) 摘要:芳香化合物的Fenton 氧化性能与其结构密切相关,芳环上取代基位置、数量和种类的不同会对其降解速率产生显著影响。单氯酚3种异构体降解速率大小依次为:32氯酚>42氯酚>22氯 酚;氯酚的反应活性随芳环上Cl 取代基数目的增加而下降,22氯酚、2,42二氯酚和2,4,62三氯酚的反应活性遵循下列顺序:22氯酚>2,42二氯酚>2,4,62三氯酚;芳环上的取代基对芳香化合物的Fenton 氧化性能有很大影响,苯胺、氯苯和硝基苯降解速率依次为:苯胺>氯苯>硝基苯。 关键词:Fenton 试剂;芳香化合物;结构;废水 中图分类号:X703.1 文献标识码:A Aqueous Phase Degradation of Arom atic Compounds by Fenton Oxidation CA O Guo 2mi n , D I N G W ei , YA N G Guo 2pi ng , Z H A N G D a 2ni an (Research I nstit ute of Envi ronment al Engi neeri n g ,East Chi na Uni versit y of S cience and Technolog y ,S hang hai 200237,Chi na ) Abstract :The rates of degradation of aromatic compounds by Fenton oxidation are affected by po sition ,number and type of t he substit ute group.The degradation rate of 32chlorop henol is fastest ,followed by 42chlorop henol and t hen 22chlorop henol.The reactivity of chlorop henols decreases wit h more chlorine on t he aromatic ring ;t he oxidation rate of chlorop henols in declining order is 22chlorop henol >2,42dichlorop henol >2,4,62t richlorop henol.The Fenton reactivity of t he t hree single substit uted aro 2matic compo unds in declining order is aniline >chlorobenzene >nit robenzene. K ey w ords :Fenton oxidation ;aromatic compounds ;st ruct ure ;wastewater 芳香化合物广泛存在于化工、染料、农药和制药等工业部门排放的废水中,许多芳香化合物(如氯酚、硝基苯、苯胺等)已被美国EPA 列为优先控制污染物[1]。含芳香化合物的有机废水具有毒性大、可生化性差、结构稳定、不易被氧化等特点,属工业废水中难以处理的一类污染物。自1964年Eisenhauer 等[2]首先用Fenton 试剂处理苯酚废水和烷基苯废水以来,Fenton 氧化技术以其处理效率高、操作简便、易实现自动化、环境兼容性好等优点逐渐引起研 究者的关注,出现了大量用Fenton 试剂处理难降解 有机废水的研究报道[3~8],但所有这些研究大多集中于Fenton 氧化条件的优化、Fenton 氧化的效率和废水可生性的改善等方面,很少涉及有机污染物结构与Fento n 氧化的关系。若能通过研究揭示有机物结构与Fenton 氧化降解关系的规律,就能有效地预测有机物的Fenton 氧化降解可行性,因而对于Fenton 氧化技术在环境污染治理中的应用具有十分现实的意义。 38

印染废水处理工艺流程

某印染厂 印染污水处理工程 设 计 方 案 方案设计人:蒋平 学号:0706203037

目录 一、摘要 二、水量、水质及排放标准 三、设计原则及标准 四、工艺方案的选择 五、设计工艺流程图 六、工艺设计参数 七、主要构筑物及主要设备 八、技术参数 九、主概算及总投入 十、主要功率 十一、运转成本核算 十二、经营管理 十三、结论 十四、致谢 十五、参考文献 附图01 平面布置图 附图02 高程和流程图 附图03 水酸化池剖面图 一、摘要

印染废水是指印染加工过程中各工序所排放的废水混合成的混合废水,印染废水水质随原材料、生产品种、生产工艺、管理水平的不同而有所差异。近年来,新型助剂、染料、整理剂等在印染行业中被大量使用,难降解有毒有机成分的含量也越来越多,有些甚至是致癌、致突变、致畸变的有机物,这在一定程度上增加了废水的处理难度,对环境尤其是对水环境的威胁和危害越来越大。废水如果不经处理或处理未达标的话,不仅直接危害人们的身体健康,而且严重破坏水体、土壤及生态,将造成不可想象的后果。 印染加工包括预处理(退浆、煮炼、漂白、丝光等一系列操作)、染色、印花、整理四道工序,预处理工序分别排除退浆、煮炼、漂白、丝光等四股废水,而染色、印花、整理等工序分别排除染色废水、印花废水和整理废水。以上的混合废水称之为印染废水印染废水随着采用的纤维种类、染料和浆料的不同而水质变化很大。在印染加工过程中常采用的浆料有天然淀粉浆料和化学合成浆料PVA(聚乙烯醇),而PVA是一种难以降解的合成有机物,随着合成浆料逐步代替天然浆料,印染废水的可生化性变差。 常用的染料有直接染料、酸性染料、活性染料、还原染料、硫化染料等,助剂(化学药剂)通常有表面活性剂(洗涤剂)和整理剂。表面活性剂不会在环境中积累,在低浓度时,对生物无明显影响,但会导致起泡,对废水处理带来不良的影响。整理剂用以改善织物机械物理性能,整理剂一般有硬挺整理剂、柔软整理剂、增白剂、催化剂、添加剂等。 该厂属印染大型专业生产厂,由于生产工艺的需要,印染车间要排放一定量的废水。这些废水中含有大量的有机物,色度、硫化物、染料及部分助剂、碱等。因生产的间断运行,故存在着水量水质的波动,该厂旺季时最大水量1500m3/d。按国家环保要求,该厂的印染废水应达标排放。文中主要对处理厂单元组成包括各个构筑物、设备进行了选取和计算,对厂址的选择、平面布置、高程布置等作了简要概述,最后评估了建设该处理厂的基建和运行费用。 二、水量、水质及排放标准 根据该印染厂提供的现场实测污水水质资料,再结合我们所掌握的印染废水资料,确定本方案的原水设计水质如下: 三、设计原则及标准 1、按照国家给排水设计标准设计 2、按照国家城市污水处理标准设计 3、按照国家污水排放标准设计 4、按照类同企业污水工程处理达标设计 5、选用技术成熟,处理效果稳定、适应性强的生物处理与物化处理相结合的处理工

印染废水处理设计方案

印染废水处理设计方案 更新时间:10-26 12:09来源:作者: 阅读:1526网友评论0条 福建省某某印染有限公司印染废水处理方案设计 1 工程概况 PU革是近几年迅速发展的一种产品,它种类繁多,物美价廉,广泛应用于汽车、鞋革、箱包、沙发、装饰及服装生产工业,是皮革的优良代用品,而革基布则是PU革的基础材料,市场需求量极大,某县县现有织布厂20多家,织布机1500多台,年产革基布9000万米,以往某县县各织布厂生产的革基坯布未经漂染加工直接销往外地,产品附加值较低。福建省某某印染有限公司在某县县埔头工业区建设年产PU革基布3000万米这一项目,可成为某县县当地的漂染基地,既可增加某县县税费收入,又可解决部分剩余劳动力。 纺织印染行业是工业废水排放大户,据估算,全国每天排放的废水量约(3-4)×106m3,且废水中有机物浓度高,成分复杂,色度深,pH变化大,水质水量变化大,属较难处理工业废水。据福建省某某印染有限公司提供的数据,该项目的建成排放废水量800吨/日。 根据《建设项目管理条例》和《环境保护法》之规定,环保设施的建设应与主体工程“三同时”。受福建省某某印染有限公司委托,我们提出了该项目的废水处理方案,按本方案进行建设后,可确保废水的达标排放,能极大地减轻该项目外排废水对某县的不利影响。 2 方案设计依据 2.1 福建省某某印染有限公司提供的水质参数 2.2 《纺织染整工业水污染物排放标准》GB4287-92 2.3 《室外排水设计规范》GBJ14-87 2.4 《建筑给排水设计规范》GBJ15-87 2.5 《福建省环境保护条例》

2.6 其它同类企业废水处理设施竣工验收监测数据 3 方案设计原则 3.1 可行性原则。在工程设计中,在确保工艺可行的同时,兼顾经济上许可的能力(总投资费用省、运行费用低等),考虑工艺上的可行性与经济上的可行性协调统一。 3.2 可靠性原则。通过对印染行业目前废水处理情况的调研,结合多年从事废水处理的经验,同时借鉴目前印染废水处理的成功个例,并与当前先进的废水处理设备相融合,制定合理、成熟、可靠的废水处理工艺,确保废水处理系统能长期、稳定、可靠地运行。 3.3 先进性原则,采用当前废水处理的先进工艺和设备。 3.4 操作管理方便,技术简单实用,提高操作管理水平,实现科学现代化的管理。 3.5 避免二次污染,在治理废水的同时,避免污泥和噪音产生二次污染。 4 废水的水质水量 福建省某某印染有限公司采用的原料为纯棉或涤棉坯布,染料有直接和分散染料,助剂有烧碱、碳酸钠、双氧水、表面活性剂、工业食盐、起毛剂等。 废水为连续排放,但水量、水质变化大,无固定规律,根据福建省某某印染有限公司提供并结合同类型企业的资料,其废水水质参数如下:

实验四 Fenton试剂氧化法处理废水(1)

实验七Fenton试剂氧化法处理废水 一、实验目的 1、理解Fenton试剂催化氧化的机理及运行因素 2、掌握运用正交方法进行多因素多水平实验的设计 3、对实验结果进行直观分析,确定因素的主次关系及各因素的最佳水平。 二、实验原理 过氧化氢与催化剂Fe2+构成的氧化体系通常称为fenton试剂。Fenton试剂法是一种均相催化氧化法。在含有亚铁离子的酸性溶液中投加过氧化氢时,在Fe2+催化剂作用下,H2O2能产生活泼的羟基自由基,从而引发和传播自由基链反应,加快有机物和还原性物质的氧化。其一般历程为: 所以羟基自由基可与废水中的有机物发生反应,使其分解或改变其电子云密度和结构,有利于凝聚和吸附过程的进行。 Fenton试剂的影响因素有:pH值、H2O2投加量、Fe2+投加量和反应温度。 pH值:Fenton试剂是在酸性条件下发生作用的,在中性和碱性的环境中Fe2+ 不能催化H 2O 2 产生羟基自由基,pH值在3-5附近时去除率最大。 H2O2投加量:H2O2的浓度较低时,H2O2的浓度增加产生羟基自由基量的增 加;H 2O 2 的浓度过高时,过量的H 2 O 2 不但不能通过分解产生更多的羟基自由基, 反而在反应一开始就把Fe2+迅速氧化成Fe3+,使氧化在Fe3+的催化下进行, 这样既消耗了H 2O 2 又抑制羟基自由基的产生。

Fe2+投加量:Fe2+浓度过低,反应速度极慢;Fe2+过量,它还原H2O2且自身氧化为Fe3+,消耗药剂的同时增加出水色度。 反应温度也会对其氧化效果有影响。根据反应动力学原理,随着温度的增加,反应速度加快。但是对于Fenton试剂这样复杂的反映体系,温度升高,不仅加速正反应的进行,也加速副反应。因此,温度对于Fenton试剂处理废水的影响复杂,适当的温度可以击活羟基自由基,温度过高会使双氧水分解成水和氧气,但在工业废水处理中,提高温度耗能较大,一般采用室温下操作,故本实验不考虑该因素的影响。 三、实验用品及装置 1.实验仪器: 搅拌器或振荡器 分析天平 烧杯、移液管、量筒等有关玻璃器皿 COD测定回流装置 2.实验试剂: 30%过氧化氢。 1 mol/L硫酸亚铁溶液:临用前配制,称取2.78g硫酸亚铁溶于10mL水中。 0.1 mol/L高锰酸钾溶液:称取1.58g高锰酸钾溶于100mL水中,存放于棕色瓶内。 0.5 mol/L硫酸。 1 mol/L氢氧化钠。 0.2500 mol/L重铬酸钾标准溶液。 试亚铁灵指示剂。 0.1 mol/L硫酸亚铁铵溶液。

印染废水处理

印染废水处理方法研究 纺织工业发展主要阻碍之一是环保节能问题,环保的主要问题是废水处理,而约80%纺 织废水来自于印染行业。作为工业废水主要来源之一的纺织印染废水,其处理难度较大,不易处理,本文简要介绍四种印染废水处理方法,详见下文。 物理法 (1)栅栏法:用于去除废水中纱头、布块等漂物和悬浮物。主要有格栅和格网、筛网等。 (2)调节池:由于纺织印染废水水质水量变化大,必须设调节池,一般当废水量5000ffd 时,调节池停留时间为4h;废水量2000t/d时,调节池停留时间为5h~6h;废水量小于1000ffd时,调节池停留时间为7h~8h。 (3)沉淀池:印染废水的悬浮粒小,故不经其它(如化学)预处理时,不宜直接进行沉淀处理,沉淀池又分平流式、竖流式和辐流式,其中前者应用最多。 (4)过滤法:在印染废水中采用的过滤多是快滤池,即在重力作用下,水以6m/h12m/h 的速度通过滤池完成过滤过程。 化学处理法 (1)中和法:在印染废水中,该法只能调节废水pH值,不能去除废水中污染物,在用生物处理法时,应控制其进入生物处理设备前pH值在6-9之间。 (2)混凝法:用化学药剂使废水中大量染料、洗涤剂等微粒子结合成大粒子去除,印染废水处理中需用的混凝剂有碱式氯化铝、聚丙烯酰胺、硫酸铝、明矾、三氯化铁等。 (3)气浮法:印染废水中含大量有机胶体微粒、呈乳状的各种油脂等,这些杂质经混凝形成的絮体颗粒小、重量轻、沉淀性能差,可采用气浮法将其分离;目前在印染废水治理中,气浮法有取代沉淀法的趋势,是印染废水的一种主要处理方法。在印染废水中气浮处理主要采用加压溶气气浮法。 (4)电解法:该法脱色效果好,对直接染料、媒体染料、硫化染料、分散染料等印染废水,脱色率在90%以上,对酸性染料废水,脱色率在70%以上。该法缺点:电耗及电极材料耗量大,需直流电源,适宜于小量废水处理。 (5)吸附法:吸附法对印染废水的COD、BOB色去除十分有效,由于活性炭吸附投资较大,一般不优先考虑,近年来有泥煤、硅藻土、高岭土等活性多孔材料代替活性炭进行吸附的,对印染废水宜选用过滤孔发达的活性吸附材料。 (6)氧化脱色效率低,仅40%~50%,混凝脱色效率较高,达50%~90%之间,但用这些方法处理后,出水仍有较深的色度,必须进一步脱色处理,目前用于印染废水脱水的方法主要有光氧化、臭氧氧化和氯氧化法,由于价格等原因,应用最多的是氯氧化法,其常用的氧化剂有液氯、漂白粉和次氯酸钠,此种方法由于处理成本高和操作运行条件较高,而较少适应。 生化法 (1)厌氧发酵法:纺织印染废水如单独采用好氧生化处理或附加混凝处理动力消耗大,且许多废水基质难以被分解和脱色,实践证明,辅以厌氧技术处理该类废水,效果良好,厌氧发酵工艺又分为常规厌氧发酵、高效厌氧发酵、厌氧接触法、厌氧过滤法、上流式厌氧污

印染废水的膜法回用技术

印染废水的膜法回用技术 2008年9月4日慧聪网 在全国各工业行业中,废水排放量居前5位的行业为造纸业、化工制造业、电力业、黑色金属冶炼业和纺织印染业,其中纺织印染业废水排放量占全国工业废水统计排放量的7.5%,其废水排放总量居全国工业行业第五位,总量为14.13亿吨每年,其中印染废水约为11.3亿吨(占纺织印染业废水的80%),约占全国工业废水排放量的6%,每天排放量在300-400万吨。 印染污染物大多是难降解的染料、助剂和有毒有害的重金属、甲醛、卤化物等。每排放1吨印染废水,就能污染20吨水体。加入WTO后,纺织印染近几年均以两位数增长,但污染物处理设施难以同步,污染物排放总量有增加趋势。目前全国印染废水处理设施总投资超过百亿元人民币。 在我国工业行业的四大重点COD排放行业中,纺织印染业的CO D排放量位居第四位。造纸、食品行业的COD排放比重逐年下降,而纺织印染和化工行业的COD排放比重逐年上升,其中纺织印染业的比重从4.7%上升到5.6%。 能够看出,纺织印染行业的废水存在“水量大、COD排放总量大、废水处理困难”等诸多特点。 2.印染废水进行再利用的必要性 印染废水是以有机污染为主的成分复杂的有机废水,处理的要紧对象是BOD5、不易生物降解或生物降解速度缓慢的有机物、碱度、染料色素以及少量有毒物质。尽管印染废水的可生化性普遍较差,但除个不专门的印染废水(如纯化纤织物染色)外,仍属可生物降解的有机废水。其处理方法以生物处理法为主,同时需辅以必要的预处理和物理化学深度处理。

预处理工艺要紧包括调剂、中和、废铬液处理与染料浓脚水预处理等;而生物处理工艺要紧为好氧法,目前采纳的有活性污泥法、生物接触氧化法、生物转盘和塔式生物滤池等。为提升废水的可生化性,缺氧、厌氧工艺也已应用于印染废水处理中。常用的物化处理工艺要紧是混凝沉淀法与混凝气浮法。此外,电解法、生物活性炭法和化学氧化法等有时也用于印染废水处理中。 但通过此类工艺处理的纺织印染废水,最多只能达标排放,不可能达到回用水水质标准作为纺织印染的工艺用水。 而作为回用的工艺用水,对水质指标专门是有机物、色度、硬度等指标有更为严格的要求. 2)原水硬度在150-325mg/L之间,大部分可用于生产,但溶解性染料应使用小于或等于17.5mg/L的软水,皂洗或碱液用水硬度最高为150mg /L; 3)喷射冷凝器冷却水一样采纳总硬度小于或等于17.5mg/L的软水。 对大部分企业进行实际水质检测的分析结果表明,经处理后达到排放标准的染色废水,由于含有染料、表面活性剂、胶质、软水剂、退浆废水、碱减量废水等的各类无机、有机残余物,水中含盐量往往达到1000 mg/L以上,总硬度也远高于150mg/L,而且硬度组成成分均是用一般的石灰法等难以去除的永久硬度。 因此,即使生化后通过常规加药能将色度去除大部分,该类水如未经脱盐处理,也不可能满足现印染工艺用水的质量要求。

膜法染料废水处理工艺研究

世界上的水资源本就十分有限,染料废水的排放除了对环境造成污染,对于水资源的影响也是十分严重的。为了保护国家水资源和保护人类生存的环境,染料废水的治理刻不容缓。近几年来,我国在染料废水的处理上取得了不少突破,出现了不少新的染料废水处理技术,如何根据废水特点选择最恰当的处理技术并发挥其最强效果成为废水治理的关键。其中膜法染料废水处理技术受到了不少机构的青睐,其应用也愈加广泛,本文正是针对此技术展开详细研究。 一、染料废水相关概论 (一)染料废水的特点 纤维种类、加工工艺、染化料种类等是影响染料废水水质的重要因素,不同情况下的染料废水的污染物组成不同。通常来讲,染料废水具有水量大、有机污染物含量高、色度深、碱性大、水质变化大等特点,处理起来比较困难。传统废水处理技术根本不能完全去除水中污染物,例如化学沉淀和气浮法等方法对这些染料废水的 COD 去除率也仅仅在 30%左右。 一般染料废水pH值为6~13,色度可高达1000倍,CODC r为400~4000mg/L,BOD5 为100~1000mg/L,染料废水一般具有污染物浓度高、种类多、含有毒害成份及色度高的特点。根据染料废水的处理难度可以将其分三类: 第一类是高浓度染料废水,这一类废水主要指的是机织布的褪煮漂废水、牛仔线的浆染废水、印花废水、蜡染废水、碱减量废水和绣花废水等。第二类是中等浓度染料废水,主要包括毛织物染色、针织染色、丝绸染整、缝纫线染色及拉链染色等。第三类是低浓度染料废水,比如牛仔服饰洗漂等产生的废水。 (二)染料废水的具体来源 染料废水的具体来源主要有:染料中的化学元素的沉积、染料中有毒元素的积累、放射性元素辐射等方面。工业企业在进行染料压滤作业时,或者清洗板框压滤机的时候,容易产生一定的染料废水。这些染料废水中的染料色素、悬浮物、氨氮元素等的含量较高,长期积累之后容易导致整体需氧量增加,会对周围水质造成辐射性污染,从而加剧环境污染问题。 二、膜法染料废水处理工艺的重要性 (一)染料废水处理的必要性 染料废水未经处理排放至天然水体之后,由于染料废水的整体温度偏高,其内部所含的有机物会迅速消耗自然水体中的氧气,在缺氧条件下,自然水体容易发生厌氧分解进而生成

Fenton 试剂

Fenton 试剂 2010-11-18 14:03:46 作者:来源:互联网浏览次数:4 文字大小:【大】【中】【小】 Fenton 试剂是指在天然或人为添加的亚铁离子(Fe2+),与过氧化氢发生作用,能够产生高反应活性的羟基自由基(?OH)的试剂。过氧化氢还可以在其它催化剂(如Fe,UV25 4nm 等)以及其它氧化剂(O3)的作用下,产生氧化性极强的羟基自由基(?OH),使水中有机物得以氧化而降解。 Fenton 氧化修复技术具有以下特点: ①Fenton 试剂反应中能产生大量的羟基自由基,具有很强的氧化能力,和污染物反应时具有快速、无选择性的特点; ②Fenton 氧化是一种物理-化学处理过程,很容易加以控制,以满足处理需要,对操作设备要求不是太高; ③它既可作为单独处理单元,又可与其他处理过程相匹配,如作为生化处理的前预处理; ④但是由于典型的Fenton 氧化反应需要在酸性条件下才能顺利进行,这样会对环境带来一定的危害; ⑤实际处理污染土壤时,由于Fenton 反应是放热反应会产生大量的热,操作时要注意安全; ⑥Fenton 氧化对生物难降解的污染物具有极强的氧化能力,而对于一些生物易降解的小分子反而不具备优势。 Fenton 试剂反应需在酸性条件下才能进行,因此对环境条件的要求比较苛刻。下面是影响Fenton 反应主要条件: ①pH值的影响 Fenton 试剂是在酸性条件下发生作用的,在中性和碱性的环境中,Fe2+不能催化H2O2产生·OH,因为Fe2+在溶液中的存在形式受制于溶液的pH 值的影响。 按照经典的Fenton 试剂反应理论,pH 值升高不仅抑制了·OH 的产生,而且使溶液中的Fe2+以氢氧化物的形式沉淀而失去催化能力。当pH 值低于3 时,溶液中的H+浓度过高,Fe3+不能顺利地被还原为Fe2+,催化反应受阻。 ②H2O2浓度的影响 随着H2O2 用量的增加,COD 的去除首先增大,而后出现下降。这种现象被理解为在H 2O2 的浓度较低时,H2O2 的浓度增加,产生的·OH 量增加;当H2O2的浓度过高时,过量的H2O2 不但不能通过分解产生更多的自由基,反而在反应一开始就把Fe2+迅速氧化为Fe3 +,并且过量的H2O2 自身会分解。

Fenton实验步骤

芬顿(Fenton)试剂对有机污染物的化学降解是前景广阔的高级氧化技术,具有反应快、降解完全等优点: 1、了解芬顿试剂氧化降解水中有机污染物(如亚甲基蓝、农药)的原理; 2、熟悉芬顿试剂的制备、操作过程和影响因素。 实验原理 过氧化氢与亚铁离子结合形成的芬顿(Fenton)试剂,具有极强的氧化能力,其氧化机理主要是在酸性条件下,利用亚铁离子作为过氧化氢分解的催化剂,反应过程可以生成反应活性极高的羟基自由基,其具有很强的氧化能力。羟基自由基可进一步引发自由基链反应,从而降解大部分有机物,甚至使部分有机质达到矿化。 过氧自由基反应的一般过程为: Fe2+ + H2O2 →Fe3+ + HO? + OH- (1) Fe3+ + H2O2 →Fe2+ + HOO? + H+ (2) Fe2+ + HO? →Fe3+ + OH- (3) Fe3+ + HOO? →Fe2+ + O2 + H+ (4) Fe2+ + H OO? →Fe3+ + HO2- (5) HO? + H2O2 →HOO?+ H2O (6) HOO? + H2O2 →HO?+ H2O + O2 (7) 反应体系十分复杂,其关键是通过Fe2+在反应中起激发和传递电子的作用,使链反应可以持续进行直至H2O2耗尽。芬顿试剂降解有机物一般在酸性条件下进行,pH对降解影响大。 pH过高时,一是随着pH的升高,H2O2的稳定性降低,高pH会造成H2O2的分解;二是较高的pH对反应(1)的抑制作用,不利于HO?的产生,式(1)是产生HO?的主要反应;三是Fe2+易形成Fe(OH)3胶体或Fe2O3?nH2O无定形沉淀,导致体系的催化活性下降或消失。 pH过低时,H+是HO?的清除剂:H+ + HO? + Fe2+ = H2O + Fe3+,这也不利于HO?的产生。 另外,FeSO4和H2O2的量和配比也会影响芬顿试剂的氧化降解性能。 试剂与仪器 1、亚甲基蓝固体 2、亚甲基蓝操作液(50 mg/L)1500mL 3、30% (w/w) H2O2溶液,密度1.11g/mL 4、七水硫酸亚铁固体FeSO4. .7H2O 5、NaOH 溶液(1 mol/L) 6、H2SO4溶液(1 mol/L) ?分光光度计每组一台 ?pH计一台 ?比色管9根每组 ?烧杯250ml,5个每组;100ml,1个每组 ?容量瓶1000ml一个每组,500ml二个每组 ?玻棒每组3根;计时器1个每组 ?电子天平每组一台

印染废水的膜法回用技术

印染废水的膜法回用技术 2008年 9月 4日慧聪网 在全国各工业行业中,废水排放量居前5 位的行业为造纸业、化工制造业、电力业、黑色金属冶炼业和纺织印染业,其中纺织印染业废水排放量占全国工业废水统计排放量的7.5%,其废水排放总量居全国工 业行业第五位,总量为14.13 亿吨每年,其中印染废水约为11.3 亿吨(占纺织印染业废水的80%),约占全国工业废水排放量的6%,每天排放量在300-400 万吨。 印染污染物大多是难降解的染料、助剂和有毒有害的重金属、甲醛、卤化物等。每排放1 吨印染废水, 就能污染20吨水体。加入WTC后,纺织印染近几年均以两位数增长,但污染物处理设施难以同步,污染物排放总量有增加趋势。目前全国印染废水处理设施总投资超过百亿元人民币。 在我国工业行业的四大重点COD非放行业中,纺织印染业的COD非放量位居第四位。造纸、食品行业 的COD非放比重逐年下降,而纺织印染和化工行业的COD非放比重逐年上升,其中纺织印染业的比重从4.7% 上升到5.6%。 可以看出,纺织印染行业的废水存在“水量大、COD非放总量大、废水处理困难”等诸多特点。 2.印染废水进行再利用的必要性 印染废水是以有机污染为主的成分复杂的有机废水,处理的主要对象是BOD5不易生物降解或生物降 解速度缓慢的有机物、碱度、染料色素以及少量有毒物质。虽然印染废水的可生化性普遍较差,但除个别特殊的印染废水( 如纯化纤织物染色)外,仍属可生物降解的有机废水。其处理方法以生物处理法为主,同

时需辅以必要的预处理和物理化学深度处理。 预处理工艺主要包括调节、中和、废铬液处理与染料浓脚水预处理等;而生物处理工艺主要为好氧法,目前采用的有活性污泥法、生物接触氧化法、生物转盘和塔式生物滤池等。为提高废水的可生化性,缺氧、厌氧工艺也已应用于印染废水处理中。常用的物化处理工艺主要是混凝沉淀法与混凝气浮法。此外,电解法、生物活性炭法和化学氧化法等有时也用于印染废水处理中。 但通过此类工艺处理的纺织印染废水,最多只能达标排放,不可能达到回用水水质标准作为纺织印染的工艺用水。 而作为回用的工艺用水,对水质指标特别是有机物、色度、硬度等指标有更为严格的要求. 2) 原水硬度在150-325mg/L 之间,大部分可用于生产,但溶解性染料应使用小于或等于17.5mg/L 的软水,皂洗或碱液用水硬度最高为150mg/L; 3) 喷射冷凝器冷却水一般采用总硬度小于或等于17.5mg/L 的软水。 对大部分企业进行实际水质检测的分析结果表明,经处理后达到排放标准的染色废水,由于含有染料、表面活性剂、胶质、软水剂、退浆废水、碱减量废水等的各类无机、有机残余物,水中含盐量往往达到1000mg/L 以上,总硬度也远高于150mg/L,而且硬度组成成分均是用普通的石灰法等难以去除的永久硬度。 因此,即使生化后通过常规加药能将色度去除大部分,该类水如未经脱盐处理,也不可能满足现印染工艺用水的质量要求。

有机废水 Fenton试剂法详解

有机废水Fenton试剂法详解 【格林大讲堂】 1964年,H.R.Eisen Houser才首次使用Fenton试剂处理苯酚及烷基苯废水,开创了Fenton试剂应用于工业废水处理领域的先例。1894年,法国科学家H.J.H.Fenton发现H2O2在Fe2+催化作用下具有氧化多种有机物的能力,后人为纪念他将亚铁盐和H2O2的组合称为Fenton试剂。Fenton试剂中Fe2+作为同质催化剂,而H2O2 具有强烈的氧化能力。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 Fenton试剂之所以具有非常高的氧化能力,是因为H2O2 在Fe2+的催化作用下,产生羟基自由基HO˙,HO˙与其他氧化剂相比具有更强的氧化电极电位,具有很强的氧化性能。氧化还原电位以电极电位为测定值,HO˙与其他强氧化剂电极电位见下表。 由此表可以看出,HO˙的氧化还原电位远高于其他氧化剂,具有很高的氧化能力,故能使许多难生物降解及一般化学氧化法难以氧化的有机物有效分解,HO˙具有较高的电负性或电子亲和能。

对于多元醇(乙二醇、甘油)以及淀粉、蔗糖、葡萄糖之类的碳水化合物在HO˙作用下,分子结构中各处发生脱H(原子)反应,随后发生C=C键的开裂最后被完全氧化为CO2。对于饱和脂肪族一元醇(乙醇、异丙醇)饱和脂肪族羧基化合物(乙酸、乙酸乙基丙酮、乙醛),主链为稳定的化合物,HO˙只能将其氧化为羧酸,由复杂大分子结构物质氧化分解成直碳链小分子化合物。 催化机理,对于Fenton试剂催化机理,目前公认的是Fenton试剂能通过催化分解产生羟基自由基(HO˙)进攻有机物分子,并使其氧化为CO2、H2O 等无机物质。这是由Harber Weiss于1943年提出的。在此体系中HO˙实际上是氧化剂反应,反应式为: Fe2+ +H2O2+H+—— Fe3+ +H2O+HO˙ 由于Fenton试剂在许多体系中确有羟基化作用,所以Harber Weiss机理得到普遍承认,有时人们把上式称为Fenton反应。 后来人们发现这种混合体系所表现出的强震化性是因为Fe2+的存在有利于H2O2分解产生出HO˙的缘故,特别适用于处理高浓度、难降解、毒性大的有机废水。为进一步提高对有机物的去除效果,以标准Fenton试剂为基础,能够改变和偶合反应条件,可以得到一系列机理相似的类Fenton试剂。 对于水溶性高分子物(聚乙烯醇、聚丙烯醇钠、聚丙烯酰胺)和水溶性丙烯衍生物(丙烯腈、丙烯酸、丙烯醇、丙烯酸甲酯等)HO˙加成到C=C键,使双键断裂,然后将其氧化成CO2。 氧化性能,对于酚类有机物,低剂量的Fenton试剂可使其发生偶合反应生成酚的聚合物大剂量的Fenton试剂可使酚的聚合物进一步转化成CO2。对于

Fenton试剂法的氧化机理和影响因素

Fenton试剂法的氧化机理和影响因素 简介: Fenton试剂法是目前应用较多的一种催化氧化法。能氧化许 多有机分子且系统不需要高温高压,对大数醇类、酮类、酯类等有较 好的氧化效果,苯酚、氯酚、氯苯等也能被氧化。 1894年,化学家Fenton首次发现有机物在(H202)与Fe2+组成的混 合溶液中能被迅速氧化,并把这种体系称为标准Fenton试剂。在催 化剂作用下,过氧化氢能产生两种活泼的氢氧自由基,从而引发和传 播自由基链反应,加快有机物和还原性物质的氧化。可以将当时很多 已知的有机化合物如羧酸、醇、酯类氧化为无机态,氧化效果十分明 显。接下来我们将从Fenton试剂法的氧化机理和影响因素两个方面 做具体阐述,以便于更好的运用到今后的学习和工作当中去。 1.Fenton试剂法的氧化的机理为: Fe2+ + H2O2→Fe3+ + OH- + ?OH (1) Fe2+ + ?OH→Fe3+ + OH- (2) Fe3+ + H2O2→Fe2+ +HO2?+ H+ (3) HO2?+ H2O2→O2 + H2O + ?OH (4) RH + ?OH→R?+ H2O (5) R?+ Fe3+→R+ + Fe2+ (6) R?+ O2→ROO+??→CO2 + H2O (7) Fe2+与H2O2反应很快,生成?OH,其氧化能力仅次于氟,另外·OH 自由基具有很高的电负性或亲电性,其电子亲和能力具有很强的加成 反应特性。在反应过程中同时有Fe3+生成,Fe3+可以与H2O2反应生成

Fe2+,生成的Fe2+再与H2O2反应生成?OH,可见在反应过程中Fe2+是很好的催化剂。生成的?OH 可以进一步与有机物RH 反应生成有机自由基R?,R?进一步氧化,使有机物结构发生碳链断裂,最终氧化成为CO2和H2O。 2.Fenton试剂法的影响因素: 根据Fenton试剂反应的机理可知,OH·是氧化有机物的有效因子,而[Fe2+]、[H2O2]、[OH-]决定了OH·的产量,因而决定了与有机物反应的程度。影响该系统的因素包括溶液pH值、Fenton试剂的配比、反应温度、H2O2投加量及投加方式、催化剂种类、催化剂与H2O2投加量之比等。 (1)溶液的pH值 Fe2+在溶液中的存在形式受制于溶液的pH值,在中性和碱性环境中,Fe2+不能催化H2O2产生·OH 。普遍认为,当pH值在2一4时,处理效果较好。 (2)Fenton试剂的配比(Fe2+:H202) 在 Fenton反应中,Fe2+起到催化H202产生自由基的作用,在无Fe2+条件下,H2O2难于分解产生自由基,当Fe2+浓度很低时,反应速度很慢,自由基的产生量小,使整个过程受到限制;当Fe2+浓度过高时,会被氧化成Fe3+,造成色度增加。 (3)反应温度 温度对Fenton试剂处理废水的影响较为复杂。适当的温度可以激活·OH自由基,温度升高·OH自由基的活性增大,COD去除率提高,

印染废水的处理方法及工艺流程

印染废水的处理方法及工艺流程 目前,国内的印染废水处理手段以生物法为主,辅以物理法与化学法。由于近年来化纤织物的发展和印染后整理技术的进步,使新型染料、PAV浆料、新型助剂等难生化降解有机物大量进入印染废水,给处理增加了难度。原有的生物处理系统COD去除率大都由原来的70%F降到50%E右,甚至更低。色度的去除是印染废水处理的一大难题,旧的生化法在脱色方面一直不能令人满意。此外,PAV等化学浆料造成的COD占印染废水总COD勺比例相当大,但由于它们很难被普通微生物所利用而使其去除率只有20%~30%针对上述问题,国内外都开展了一些研究工作,主要是新的生物处理工艺和高效专门细菌以及新型化学药剂的探索和应用研究。其中具有代表性的有:厌氧-好氧生物处理工艺、高效脱色菌和PVA降解菌的筛选与应用研究、光降解技术研究、高效脱色混凝剂的研制等。 1、印染废水常用处理技术 印染废水的常用处理方法可分为物理法、化学法与生物法三类。物理法主要有格栅与筛网、调节、沉淀、气浮、过滤、膜技术等,化学法有中和、混凝、电解、氧化、吸附、消毒等,生物法有厌氧生物法、好氧生物法、兼氧生物法。 2、印染废水处理单元的选择系列 (1 )调节:对水质水量变化大的废水,调节池应考虑停留时间长些。一般情况下后续处理单元为水解酸化或厌氧处理时,调节时不应采用曝气方式搅拌混合。

(2 )混凝反应:废水中含疏水性染料较多时,混凝反应工艺放在生化前面,以去除不溶性染料物质,减轻后续生物处理的负荷。混凝药剂可根据染料性质选用碱式氯化铝(PAC、硫酸亚铁(FeS04等,混凝反应方式采用机械搅拌易于调整水力条件,保证反应充分,反应时间应在25~30min 之间。考虑脱色效应时,应把反应时间再适当延长。 (3 )中和:原水pH值高时通常用H2S04或HCI中和,为节省药剂用量,可在调节以后。如采用烟道气中和,应考虑脱硫及除灰。 (4 )沉淀(气浮):分离物化投药反应由于污泥量大,应优先考虑沉淀〔斜管沉淀易堵不宜采用),通常的辐流沉淀池适用于大水量、竖流沉淀池适用于小水量,当有地皮可利用时,平流沉淀池采用吸泥方式时也可采用。投药量大时泥量也大,辐流池可能会引起异重流,新颖的周边进出水沉淀池可克服这一缺点。如废水中表面活性剂含量高,应选择气浮法,气浮法中压力溶气气浮技术成熟,可考虑选用。 (5 )过滤:当出水要求澄清或回用时,应采用砂滤或煤砂两层过滤。 (6 )电解法:钛镀钌惰性电极电解法处理酸性染料印染废水脱色效果 好,去除COD寸,对硫化染料、还原染料、酸性染料、活性染料等均有很高的去除率。金属阳极电解法因泥量较多采用较少。 (7 )厌氧水解:印染废水有机物含量CO{高,且B/C低,应考虑水解 酸化,并增加填料挂膜,池底应设水力搅拌机,保证悬浮活性污泥与水中有机物广泛接触。池体较大时,应设串联系统,以免短路。印染废水较少采用纯厌氧技

Fenton

Fenton试剂在废水处理中的研究应用 摘要:Fenton试剂氧化法是近几年来备受关注的一种废水处理高级氧化技术,本文介绍了Fenton试剂的氧化机理,概述了Fenton 试剂氧化的影响因素和演变,并对各种类型的Fenton氧化法在废水处理中的应用做了阐述。 关键词:Fenton试剂,废水处理,反应机理 前言 随着我国工农业的迅猛发展,水中有毒或难降解的有机物成分越来越多,而如何处理这类物质并提高其处理效果成为水处理行业较为关注的课题。近年来人们广泛采用高级氧化技术,即通过催化分解某些氧化剂产生氧化性极强的自由基,这种氧化性极强的自由基使水中许多有机污染物完全狂化或部分分解,且降解效果显著[1]。 Fenton试剂是一种常用的高级氧化技术,在废水处理中的应用可分为两个方面,一是单独作为一种处理方法氧化有机废水;二是与其它方法联用,比如与混凝法、活性碳法、生物法等。利用Fenton试剂处理难降解的废水,可以使有机物分子氧化降解,形成完全的或部分的氧化产物。其产物如乙醇、酸等,同最初的有机基质相比,毒性降低且更有利于生物降解。 近年来,国内外学者在过氧化氢氧化处理工业废水方面有较多研究,一致认为Fenton 氧化是处理工业废水较为有效的方法,该法具有很多优点:①氧化剂过氧化氢参加反应后的剩余物可以自行分解,不留残余;②同湿式空气氧化法相比,反应压力和温度都较低,能耗小,节约运行费用;③反应采用的催化剂用量少、价格便宜,催化剂残余污染极小;④该法处理工业废水适应性强。利用过氧化氢分解产生的羟基自由基能氧化绝大多数有机物,且反应迅速,氧化后出水沉降性能良好,可生化性提高。⑤对工业废水来说过氧化氢氧化脱色效果明显,废水中的氯离子不会影响有机物去除。因此,Fenton试剂已被逐渐应用于染料、防腐剂、显相剂、农药、制药、焦化等废水处理工程中,具有很好的前景。 1 废水的来源 工业废水是指工业生产过程中产生的废水、污水和废液,其中含有随水流失的工业生产用料、中间产物和产品以及生产过程中产生的污染物。工业废水是水体的一大污染源,占我国废水总排放量的70%以上。由于工业生产的多样性、产生的排水污染性质也纷呈复杂,如有机污染、无机污染热污染、色度污染等等。随着工业的迅速发展,废水的种类和数量迅猛增加,对水体的污染也日趋广泛和严重,威胁人类的健康和安全。对于保护环境来说,工业废水的处理比城市污水的处理更为重要。工业废水的处理虽然早在19世纪末已经开始,并且在随后的半个世纪进行了大量的试验研究和生产实践,但是由于许多工业废水成分复杂,性质多变,至今仍有一些技术问题没有完全解决。 2 Fenton试剂 2.1 Fenton 试剂的来源 1894年法国科学家H.J.H.Fenton 在一项科学研究中发现酸性水溶液中在H2O2与Fe2+共存的条件下可以有效的将酒石酸氧化,这项研究发现为人们分析还原性有机物和有机物的选择性氧化提供了一种新的方法。人们为了纪念这位伟大的科学家,将H2O2/Fe2+命名为Fenton试剂,即为标准Fenton试剂。标准Fenton试剂自出现以后就得到了广泛的研究和应

染料废水处理的基本方法

1. 染料废水处理现状及国内外研究进展 染料不但具有特定的颜色,而且结构复杂,以高分子络合物为多,结构很难被打破,生物降解性较低,大多都具有潜在毒性,在环境中的归趋依赖于很多未知因子。加之染料生产具有品种多、批量少、更新快的特点,致使染料废水难找到行之有效的处理方法。染料废水的处理方法很多,下面分别对其作简要介绍。 1.1膜分离法 膜分离法是利用特殊的薄膜对液体中的某些成分进行选择性透过的方法的统称,常用的膜分离方法有渗析、电渗析、超滤和反渗透。膜分离技术用于染料废水处理始于上个世纪 70 年代初,膜分离技术有澄清、浓缩作用,最主要的是具有从连续流动系统中分离染料的功能。膜技术处理染料废水可将废水分离为浓缩液和透过液。其中浓缩液可用于染料回收,透过液也可回用,用于染料的生产。这样做既可以实现废水的有效处理也使得染料不随排水流失,又不会造成水质污染.Ismail Koyuncu 用DS5-DK型纳滤膜处理染槽废水(废水中含活性黑 5、活性蓝9、活性橙 16、和NaCl),结果表明,该纳滤膜对染料的截留率在 99%以上,透过液几乎无色,该膜的通量受染料浓度的影响较大,在染料浓度恒定时,通量随染料浓度的增加而减小。蔡惠如等通过采用纳滤技术分别对配制染料废水和实际染料废水的染料截留和脱色进行实验,发现纳滤对染料废水的脱色率很高,对染料含量 1000mg/L的进水,脱色率大于99%。膜分离法具有能耗低、工艺简单、不污染环境等特点。但是膜分离技术由于浓差极化、膜污染及膜的价格较贵,更换频率较快,使处理成本较高,从而严重阻碍了膜分离技术的更大规模的工业应用。 1.2萃取法 萃取实质是采用与水不互溶但能很好溶解污染物的萃取剂,使其与废水充分混合触后,利用污染物在水和溶剂中不同的分配比分离和提取污染物,从而净化废水。萃取法处理染料废水是利用不溶或难溶于水的溶剂将染料分子从水中萃取出来。常用的萃取法有溶液萃取、电泳萃取、液膜法等。Pandit等采用可逆胶囊液-液萃取方法,通过把有机染料(有机相)与水相分离而使废水得到处理。他们的研究表明,在阳离子十六烷基三甲基溴胺表面活性剂存在下,阴离子甲基橙从水中得到有效地分离;在阴离子十二烷基苯硫酸盐表面活性剂存在下,戊基乙醇作为萃取溶剂,阳离子亚甲基蓝也得到有效分离。陈敬润等以天然植物油为膜液,含聚四氟乙烯涂层的聚丙烯平板膜(PPsT)作为支撑膜,研究了支撑液膜(SLM)系统去除和回收水溶液中分散染料阳离子红4G的性能及影响因素,在最佳条件下,100 mg/L的染料溶液其去除率达到94.1%。近年来液膜技术发展较快,利用液膜技术萃取含染料废水中的染料物质,具有明显的经济效益和环境效益。

相关文档
相关文档 最新文档