文档库 最新最全的文档下载
当前位置:文档库 › 第二章 运动目标监测和跟踪

第二章 运动目标监测和跟踪

第二章   运动目标监测和跟踪
第二章   运动目标监测和跟踪

第二章 运动目标监测和跟踪

2.1运动目标检测

运动目标检测(Mot ion Detection )是指在输入视频图像中判断与背景图像相比是否存在相对运动的前景目标和物体,并根据灰度、边缘、纹理等二维图像特征将运动前景进一步分割为若干独立目标。

在实际应用中,一个好的运动目标检测算法,通常应该具有以下几个特征【12】:

◆不受环境的变化(如天气和光照变化等)而影响结果;

◆不受背景中个别物体的运动(如水波、风吹树动等)而影响结果; ◆不受目标及背景中的阴影而影响结果;

◆对复杂背景和复杂目标仍然有效;

◆检测的结果应满足后续处理(跟踪分析)的精度要求;

图2-1描述了检测算法的一般流程图。常见的运动目标检测算法有:帧间差分法、背景差分法及光流法等,以下将分别进行介绍。

Fig.2—1Flo w char t of detection algorithm

2.1.1帧间差分法

帧间差分法[23-241就是将视频序列中相邻的两帧或几帧做象素域上的减法运算,以得到帧间的不同图像的信息。在摄像头固定的情况下,对连续的图像序列中的相邻两帧图像采用基于像素的帧差法来提取图像中的运动区域,设k 帧和第k+l帧(或者看做21t t 和时刻)采集到同一背景下的两幅运动图像的灰度值为1),(+k k f y x f 和,则差分图像的定义为:

),(),(),(11y x f y x f y x D k k k -=++ (2.1)

对上式的差分结果进行阈值处理,就可以提取出运动物体。对差分图像),(y x f d 二值化,当某一像素的灰度值大于给定阈值T时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。这一步的目的就是为了区分背景像素和目标像素,得到:

T y x D T y x D k k k y x R >≤+++=),(),(1

0111{),( (2.2)

其中,l表示前景像素值,0表示背景像素值。

然后再对),(1y x R k +进行连通性分析,就可以得到连通区域的面积。当某一连通区域面积大于预定值时,则认为该区域属于同一个运动目标。

帧间差分法实验如图2-3,在实验时由于第100帧图像与101帧图像相差不大,因此改采用第102帧图像与100帧图像进行差分。

显而易见,在帧间差分法中阈值的选择非常关键,这是因为阈值过低则不能有效地抑制图像中的噪声,阈值过高将误判图像中有用的变化。阈值选择分为全局阈值和局部阂值,通常图像不同光照区域引起的噪声也不相同,因此采用局部阈值能更好的抑制噪声。

帧间差分法进行目标检测的主要优点是:算法实现简单;实现程序设计复杂度低;易于实现实时监视;基于相邻帧差方法,由于相邻帧的时间间隔一般比较短,因此该方法对场景光线的变化一般不太敏感。

最基本的帧间差分法可以检测到场景中的变化,并且能够提取出目标,但是在实际应用中,帧问差分法的结果精度不高,难以获得目标所在区域的精确描述。当运动目标的运动速度较快时,实际检测时可能会将一个运动目标误为两个运动目标:当运动目标速度较慢时,会在检测结果中造成空洞,这是由于运动目标的颜色或灰度在一定区域内较均匀。在实际应用中我们总希望下一步进行目标跟踪中,提取的目标尽量接近目标的真实形状,也就是说,我们提取的目标应是完整的,同时也应该是尽量少地包括背景像素点。但是~般情况下广泛应用该算法时对两帧间目标的重叠部分也是不容易被检测出来的,即只检测出目标的一部分或者出现了较大比例的空洞,这是由于我们直接用相邻的两帧相减后,保留下来的部分是两帧中相对变化的部分,所以两帧间重叠的部分就很难被检

测出来。

为了获得两帧重叠的部分图像,解决相邻帧差法存在的问题,人们在其基础上又提出了一种三帧差分法。该方法需要提取连续三帧图像来计算两个差分图像,再令这两个差分图像的对应像素相与,从而可以提取出运动目标。设连续三帧视频图像分别为),(),(),,(11y x f y x f y x f k k k +-和

则三帧差分法检测流程如图2—4所示。

2.1.2背景差分法

背景差分法【25】【26】是目前视频监控中最常用的一种方法,它的基本思想是将输入图像与背景模型进行比较,通过判定灰度特征的变化,或用直方图等统计信息的变化来判断异常情况的发生和分割运动目标。传统的背景差分算法包括三大步骤:首先,为背景中每个象素进行统计建模;然后将当前图象和背景模型进行比较,找出一定阈值限制下当前图像中出现的偏离背景模型值较大的那些象素,据此,再对图象进行二值化处理,从而得到前景象素集合(运动目标);此外,模型还要进行周期性的背景更新以适应动态场景变化。背景差分法算法具体如下:

计算视频序列中当前帧五与背景瓯的差值,得到差分后的图像k D : ),(),(y x b y x f D k k k -= (2.3) 对差分图像k D 进行二值化,当某一像素的灰度值大于给定阈值T时,认为该像素为目标像素,即该像素属于运动目标;反之,则属于背景。这一步的目的就是为了区分背景像素和目标像素,得到

T y x D T y x D k k k y x R >≤=),(),(1

0{),( (2.4)

其中,1表示前景像素值,0表示背景像素值。

对),(y x R k 进行连通性分析,就可以得到连通区域的面积。当某一连通

区域面积大于预定值时,则认为该区域属于同一个运动目标。

采用背景差分法的实验效果如图2-6所示。

背景差分法的优点是其原理和算法设计简单、检测速度快、能够得到

比较精确完整的运动目标信息,如位置、大小、形状,但是运算量大,且通常会遇到如下一些问题:

背景获取:背景图像的获取最简单的办法就是在场景没有任何运动目标的情况下进行拍摄,但是在实际应用中较难满足这种要求,如对公路和城市效能的监控等,所以需要一种方法就能够在场景存在运动目标的情况下获得真实“纯净”的背景图像。

背景的扰动:跟帧间差分法相同,当背景中含有轻微的扰动对象(如树枝、树叶摇动,水波等),扰动部分很容易就被误判为前景运动目标。

外界光照条件的变化:一天中不同时间段光线、天气等的变化对检测结果的影响。

背景中固定对象的移动:背景里固定对象可能移动,如:场景中的一辆车被开走等,对象移走后的区域在一段较短的时间内可能被误认为是运动目标,但不应该永远被看做是运动目标。

前景运动目标长久停留在背景中:前景运动目标可能长久停留在背景中,如:城市交通中的红灯时间,智能小区的车库监控中车辆入库等,当原来的运动转为静止之后的一段短时间内可能被误认为还是运动目标,但不应该永远被看着是运动目标。

背景更新:背景中固定对象的移动、前景运动目标成为背景中的长久停留物或者外界光照条件的变化等因素都会使背景图像发生变化,需要引入恰当的背景更新机制才能达到合理检测的目的。

由此可见,背景差分法的难点在于如何建立背景模型和维持背景,以适应实际环境中的变化。常用的背景估计方法有如下几种。

1.基于自适应的方法

即通过使用自适应方程,对图像序列加权平均,生成一个近似背景。这种方法通常在目标移动比较迅速的场景中十分有效。但是当场景中存在移动缓慢的物体时,检测效果较差。同时它不能检测双峰背景。当背景中有物体移入、移出时,背景恢复十分缓慢。常有的该类方法包括:

(1)均值背景法将最近捕获的N帧视频图像的平均值作为当前背景。这种方法在监控场景不是很复杂、且场景中存在的变化较少时检测效果较好。

(2)中值背景法即记录最近N个象素值,用这N个值的中值作为背景;

(3)自适应变化检测生成背景的方法首先使用帧差法检测场景中的变化区域,在确定变换区域后通过自适应算法更新背景;在VSAM系统中通过对图象序列中的当前背景和当前帧加权平均,自适应地生成背景。

(4)基于Kalman 滤波器理论的背景生成方法文献【36】提出了一种基于Kalman滤波理论的渐消记忆递归最小二乘的背景重建算法,它适用于背景变化较慢的视频场景。它将运动目标视为对背景的随机扰动,应用Kalman滤波器在零均值的退化公式,即渐消记忆递归最小二乘法来更新和重建背景。

2.基于分布模型的方法

(1)参数模型即根据数据找到一个与之匹配的已知概率模型。具体过程就是根据已知的一系列数据和参数为θ的分布)

η,找到参数θ的最优

估计

θ,这样就能得到估计概率密度函数∧f。这种方法的优点是,可以只用几个

参数就能描述出整个概率分布,将大量数据压缩成几个简单的参数,用参数代

替概率密度函数。但是参数概率估计信赖于模型形式,必须事先知道这一级数据服从何种概率模型,即必须知道这组数据的潜在概率模型的先验知识。如果概率模型假设不正确的话,概率估计将产生偏差。

由于视频监控场景在大多数情况下服从高斯分布,所以常用高斯模型的方法。这种方法基于这样的假设:场景中任一点在某一段时间内的观测值都服从正态分布,故可使用该点的均值μ和协方差矩阵∑来描述这个点的统计特性。如果x 点在t时刻的分布模型是T x t t t <∑),,(μη(T 为阈值概率),则该点可被判定为前景点;否则判定为背景点,同时可称),,(t t t t x x ∑μη和匹配。

模型的更新是在每一帧新图像捕获后,通过一定方法自适应的更新模型参数实现的。通常的更新公式是:

222)()1()1(t t t

t t x x -+-=+-=μασαδαμαμ )

6.2()5.2( 其中α是更新速率。α是0到1之间的常熟,其取值的大小体现了模型对背景适应的快慢。

(2)非参数模型 这种方法不需要假设先验的概率密度函数,也不需要设置参数,而是从数据点中直接得到概率密度的估计函数0∧

f 。所以这种方法就是依据数据本身的结构来得到概率密度函数。

非参数的方法不像参数的方法那样依赖于模型的选择和参数估计,它更加适用于概率分布未知的一般情况下的问题。常用的方法有直方图法,核估计法,具体就是基于核估计的统计模型法。

2.1.3光流法

光流【13】(Optica l Fl ow )是空间运动物体在被观测表面上的象素点运动的瞬时速度场。光流场是通过二维图像来表示物体点的三维运动的速度场。由Horn 和Schunk 在80年代早期建立的“光流分析法"是数字视频处理领域中二维运动估算的重要方法。其研究对象是二维运动(或者称为投影运动),即为真实世界中的三维运动以透视或正交的投影方式在图象平面上形成的“视觉运动",这一运动对应着图象中不同目标的相对位置改变,也就对应着图象前后帧相应位置灰度的改变,Horn 与Sc hu nk 将图像平面特定坐标点上的灰度瞬时变化率定义为“光流矢量"。这样就导致了光流法的一些根本性缺陷:在某些情形下,图像中视频目标的运动不能反映为灰度的变化,如单色圆球绕其直径自转;另外,图像中光源的运动而不是视频目标的运动也会导致灰度的变化,而这些都不是光流分析所能隔离或屏蔽的。但就大多数现实世界的投影运动而言,光流分析是有效的估算方法。而且,运动估算研的是“视觉运动”而非真实运动,所以可以对任何与图像亮度变化无关的运动不予考虑。因此,光流场是一个二维矢量场,它包含的信息即是各象素点的瞬时运动速度矢量的信息。从光流的定义可以看出,由于光流有如下三个要素:一是运动(速度场),这是光流形成的必要条件;二是带光学特性的部位(例如有灰度的象素点),它能携带信息;三是成像投影(从场影到成像平面),因而能被观察到。光流在视觉运动中的研究中有非常重要的作用。视觉运动分析就是研究如何从变化着场景的一系列不同时

刻的图像中,提取出有关场景中物体的结构、位置和运动信息。

Hor n的光流计算基于如下两个假设[21]:(1)图像上的任何一点在t 时刻所观测到的亮度在时间间隔出内是恒定不变的;(2)图像上任一点都不是独立的,光流在整个图像范围内平滑变化。

假设在时间t,图像中坐标为(x,y)的像素,其灰度为),,(t y x f ,经过时间t ?后,这一点运动到),(y y x x ?+?+,其灰度为),,(t t y y x x f ?+?+?+。因为这两个位置对应的实际上是两个不同时刻的同一个点,因此我们可以假设他们的灰度不变(既满足灰度守恒),则有:

),,(),,(t t y y x x f t y x f ?+?+?+= (2.7)

如果认为灰度随)

(t y x ,,的变化是平滑,连续的,则将上式的右边用泰勒级数展开,得

e dt t

f dy y f dx x f t y x f t t y y x x f +??+??+??+

=?+?+?+),,(),,( (2.8) 其中,e 包含dt dy dx ,,的二次和高次项。

经过化简和约去二次项,得

0=??+??+??t f dt dy y f dt dx x f (2.9) 记dt

dy v dt dx u ==,,可得光流场的基本方程:

0=??+??+??t f v y f u x f (2.10) 记光流场[]T v u

U =,其写成梯度形式: 0)(==?r T E U E (2.11)

由于光流场[]T

v u U =有两个变量,而基本等式只有一个方程,因此只能求出光流场沿梯度方面上的值,而不能同时间求出光流场的两个速度分量u 和v 。这就是说从基本等式求解光流场是一个不适定问题。为了解决光流场计算不适定问题的方法,还需要加入另外的一些约束条件,从而使方程有解。例如H orn 等人依据同一运动物体引起的光流场应该是连续的、平滑的,即同一物体上相邻点的速度是相似的,那么其投影到图像上的光流变化也应该是平滑的这一特点,提出了一种利用加在光流场上的附加约束,即整体平滑约束来将光流场的计算问题转化为一个变分问题。

光流法的优点[21]在于光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够在不知道场景任何信息的情况下,检测出运动对象。但是光流法需要较高的图像帧采样率,而且大多数光流的计算耗时,实时性和实用性都较差。另外,由于算法涉及偏微分,因此抗噪性能比较差。

2.2运动目标跟踪

运动目标跟踪(Motion tracking)主要是针对一段视频序列,实现对运动的实时跟踪,记录目标的运动轨迹,为后面的目标行为分析提供依据。如何对目标进行高效的模式匹配以及如何有效的适应目标自身的运动变化、排除场景干扰,是一个优秀的跟踪方法必须解决的两个关键问题。这两个问题反映到跟踪算法的性能上就是算法的实时性和稳健性。目前比较常用的运动目标跟踪方法包括以下几种,下面分别进行介绍。

2.2.1基于区域的跟踪

基于区域匹配的跟踪方法(Region—based tracking)就是把图像中运动目标的连通区域的共有特征信息作为跟踪检测的一种方法。在连续的图像中有很多种区域信息,如颜色特征、纹理特征等。这种方法不需要在视频序列的图像中找到完全相同的特征信息,通过计算区域的原始目标之间的相关性来确定跟踪目标的位置。基于区域的跟踪方法我们可以选取整个区域的单一特征来实现跟踪,但是实际跟踪过程中单一的特征不太好选择,所以一般采用运动目标的多个特征来进行跟踪。

例如:Wren用小区域特征进行室内单人的跟踪[9]。该方法将人体看作由头、躯干、四肢等身体部分所对应的小区域块的合体,利用高斯分布建立人体和场景的模型,属于人体的像素被归属于不同的身体部分,通过分别跟踪各个小区域块最终完成对整个人体的跟踪。

2.2.2基于轮廓的跟踪

基于轮廓的跟踪方法(Contour.based tracking)的思想就是利用运动目标的边界轮廓作为轮廓模板,因为运动目标边缘特征能提供与运动方式、物体形状无关的目标信息,在后继帧的二值边缘图像中跟踪目标轮廓,并且该轮廓能够自动连续地更新。近年来发展很快的两种轮廓匹配的跟踪算法是主动轮廓线跟踪算法(snake)和基于hausdorff距离的轮廓跟踪算法。

Peterfreund[10]则采用基于卡尔曼滤波的活动轮廓来跟踪非刚性的运动物体。相对于其它的跟踪算法,基于轮廓的跟踪方法具有计算复杂度低的优点,如果开始时能够合理地分开每个运动目标并实现轮廓初始化的话,即使在有部分遮挡存在的情况下也能连续地进行跟踪,然而实际中初始化通常是很困难的。

2.2.3基于模型的跟踪

基于模型的跟踪方法[11](Model.based tracking)是通过摄像机和监控场景的几何学知识,将一个有精确几何开关的三维模型投影成图像,根据图像中的位置变化来进行跟踪。目前主要涉及对人的跟踪应用,例如对人建立纸板模型(四肢、躯干等)进行匹配。以人为例,传统的人体表达方法有线图法、二维轮廓、立体模型等。基于运动模型跟踪方法的显著优点是即使在环境

复杂的情况下,利用模型知识的结果,就可以较好地得到跟踪结果。但是这种方法的最大缺点就是计算工作量太大,实时性差,不太实用。

2.2.4基于特征的跟踪

基于特征的跟踪方法[8](Feature.based tracking)不考虑运动目标的整体特征,即不关心目标物体是什么,只通过目标物体的一些特征如目标的形状、面积、颜色、位置等信息来进行跟踪。采用基于特征的跟踪方法时主要包括特征的提取和特征的匹配两个过程。在特征提取中要选择适当的匹配特征,并且在下一帧图像中提取特征;在特征匹配中将提取的当前帧图像中目标的特征与特征模板相比较,根据比较结果来确定目标,从而实现目标的跟踪。最常用的基于特征的跟踪方法就是计算目标的质心位置,将相邻两帧中质心距离最近的目标看作是同一目标,从而完成跟踪。基于特征的方法比较简单,不受目标整体的影响,可以解决部分遮挡问题,跟踪方便,特征的选择和特征的提取效果是影响算法性能的关键。缺点就是伴随着复杂运动,刚体运动目标的特征提取就会产生困难,特别是在运动初始化的时候。

2.2.5基于粒子滤波的跟踪

所谓滤波,就是从带有干扰的信号中得到有用的信号的准确估计值。滤波理论就是在对系统可观测信号进行测量的基础上,根据一定的滤波准则,采用某种统计最优的方法,对系统的状态进行估计的理论和方法。粒子滤波算法[37-38](Particle Filter)是一种蒙特卡罗(Monte Carlo)仿真求解贝叶斯概率的实用算法,主要解决非线性非高斯的问题。它的核心思想就是用一些离散的随机采样点(粒子)来近似表示目标状态变量的后验概率密度函数。所谓粒子,是描述目标状态的一种可能性(一个点),滤波就是要滤出目标最可能的状态,在估计理论也指由当前和以前的观测值来估计目标当前的状态。在目标跟踪问题中,可以将位置视为目标的状态,也可以将位置、速度、加速度等视为目标的状态。

粒子滤波原理的实质就是利用一系列随机抽取的样本(粒子),来代替状态的后验概率分布,当粒子的个数变得足够大时,通过这样的随机抽样方法就可以得到状态后验分布的很好近似,所以粒子滤波也是一种次优估计。在实际跟踪中的粒子滤波器的实现算法如图2-7。

粒子滤波器是一个框架,之所以称为框架是由于它并未指定目标的

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

视频运动跟踪技术

视频运动目标跟踪算法研究 摘要:视频图像中的运动物体跟踪技术是计算机视觉、计算机科学、视频监控等学术领域的一个重要课题。该技术将数字图像处理领域中对静态图像的分析扩展到动态图像中。运动物体识别和跟踪技术的研究成果不仅在社会日常生活和工作中有着广泛的应用前景,而且在军事、交通、医学和科研等领域发挥着日益重要的作用。运动物体识别与跟踪算法的设计将直接影响识别和跟踪效果的准确性及稳定性,对于精确度高、鲁棒性好的算法研究一直是计算机视觉和数字图像处理等领域的热点问题。 关键词:目标跟踪,Mean shift算法,目标检测,粒子滤波 1 研究现状 视频目标跟踪技术已经得到了广泛的应用,主要应用有以下几个方面:智能视频监控、人机交互、机器人视觉、自动驾驶。其背后存在的学术价值和蕴藏的经济价值更是得到了很多人员的青睐,很多学术机构、大型公司以及一些科研人员正在投入大量的人力和财力进行各种开发和科研。 Fukunaga等人早期就提出了Mean shift跟踪算法,他们提出了一种概率密度函数的估计方法。不过在后来相当长的时间里并未受到大家的关注,直到1995年,随着Cheng对其进行近一步的研究并成功将其推广到计算机视觉领域中,这才得到了许多专业人士和科研人员的重视。目前存在很多经改进的Mean shift 算法。另外,在算法融合方面,有许多学者也做了相应的研究,K. NuInmiaro提出了将Mean shift算法和粒子滤波算法相融合,从而提高了目标跟踪的鲁棒性和准确性。 标准卡尔曼算法是在线性系统下滤波的,对于非线性、非高斯的系统没有效果。为此,人们开发出各种非线性滤波算法。一种是扩展卡尔曼算法进行滤波与估算,只适用于滤波误差和预测误差很小的情况;另一种是粒子滤波器[1],它是近些年出现的解决非线性问题的有效算法。粒子滤波技术通过非参数化的蒙特卡罗模拟方法来实现递推贝叶斯滤波,适用于任何能用状态空间模型以及传统的卡尔曼滤波表示的非线性系统,精度可以逼近最优估计。 在目标模型选取上,也有一些专家进行了探索。1)通过对粒子滤波的研究,将颜色作为目标模型并用粒子滤波跟踪,结果表明该方法可以增加遮挡情况下的鲁棒性。但是这种方法有些欠缺,即如果目标和背景有一定的相似度,则跟踪精度容易下降。2)将目标的边缘特征提取出来来代表目标进行跟踪,结果显示这种方法直观地增强了跟踪的鲁棒性。鉴于颜色描述目标色彩信息,边缘代表目标的轮廓,因此将这两种互补信息结合来代表目标可以改善跟踪效果。3)用局部线性嵌入流形(LLE)将问题降为二维空间,然后进行解决。4)利用一定的判别准则来有效分离目标和背景,并建立有明显区别的目标模板,最后成功用于跟踪中。5)通过Adaboost方法练习得到若干弱分类器,然后用系统集成的方法将其形成强分类器,然后用它们来区别目标和背景,以此用特定的方法获得目标的状态,并跟踪出目标运动的轨迹。 视频目标跟踪的难点主要包括以下几个方面[2]:1)目标外观变化。目标运动过程中发生形状的变化,加上相对于摄像机的视角、尺寸变化,造成目标在图像平面上复杂的外观变化,增加了目标建模的难度。2)复杂背景。变化的光照、与目标颜色相似的背景以及杂乱的变化环境使得较难将目标从背景中区分开来。3)遮挡问题。遮挡包括背景的遮挡和目标之间的遮挡。部分遮挡造成目标部分外观特征检测不到,而且引入了遮挡物的干扰;完全遮挡需要跟踪算法要有重新恢复的机制,当目标再次出现时能重新定位。4)目标的复杂运动。非线性的目标运动使得跟踪算法难以预测目标的运动状态,增加了跟踪算法的搜索计算量。 2 视频运动跟踪概述 视频目标跟踪系统的基本框架如下图,

动态视频目标检测和跟踪技术(入门)

动态视频目标检测和跟踪技术 传统电视监控技术只能达到“千里眼”的作用,把远程的目标图像(原始数据)传送到监控中心,由监控人员根据目视到的视频图像对现场情况做出判断。智能化视频监控的目的是将视频原始数据转化为足够量的可供监控人员决策的“有用信息”,让监控人员及时全面地了解所发生的事件:“什么地方”,“什么时间”,“什么人”,“在做什么”。将“原始数据”转化为“有用信息”的技术中,目标检测与跟踪技术的目的是要解决“什么地方”和“什么时间”的问题。目标识别主要解决“什么人”或“什么东西”的问题。行为模式分析主要解决“在做什么”的问题。动态视频目标检测技术是智能化视频分析的基础。 本文将目前几种常用的动态视频目标检测方法简介如下: 背景减除背景减除(Background Subtraction)方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。实际上,背景的建模是背景减除方法的技术关键。最简单的背景模型是时间平均图像,即利用同一场景在一个时段的平均图像作为该场景的背景模型。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。大部分的研究人员目前都致力于开发更加实用的背景模型,以期减少动态场景变化对于运动目标检测效果的影响。 时间差分时间差分(Temporal Difference 又称相邻帧差)方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。让我们来考虑安装固定摄像头所获取的视频。我们介绍利用连续的图像序列中两个或三个相邻帧之间的时间差分,并且用阈值来提取出视频图像中的运动目标的方法。我们采用三帧差分的方法,即当某一个像素在连续三帧视频图像上均有相

基于opencV的动态背景下运动目标检测及跟踪(修改版)

基于openCV的动态背景下的运动目标检测 摘要:介绍在动态背景下对视频图像序列进行运动目标的检测,主要包括三个步骤,分别是运动估计,运动补偿和目标检测。在运动估计中采用的主要是基于特征点匹配算法。这种算法与传统的块匹配算法最大的好处在于它的数据量少,计算简单迅速而且图像的匹配可靠性更高。最后用计算机视觉类库openCV进行实现。 关键词:运动目标检测;openCV;特征点匹配 Moving Object Detection in the Dynamic Background Based on openCV Abstract:Introducing a moving object detection algorithm of the dynamic background in the video image sequence,which includes three steps. They are motion estimation, motion compensation and object detection. At the motion estimation, we take an algorithm based on the feature points matching. The advantages of this algorithm is that it needs fewer data and indicates faster calculating speed compared to the block matching algorithm. What’s more, the matching of the video image sequence is more reliable. Then used openCV realized the algorithm. Keywords: moving object detection; openCV; feature points matching 引言 在生活中摄像头可以说随处可见,我们经常需要对视频中的运动目标进行相关操作,这就设涉及到了对运动目标的检测及跟踪。作为视觉领域的一部分,它不仅对我们的生活,在军事,医学等各种领域里都有着广泛的影响。 所谓运动目标的检测就是在一段序列图像中检测出变化区域,并将运动目标从背景图像中提取出来[2],它是基础,能否正确的检测与分割出运动目标对后续的工作有着巨大的影响。常见的运动目标检测方法有:背景差分法,帧差法,累积差分法,光流法。本文主要介绍的是一种在动态背景下对运动目标进行检测的算法。 检测算法介绍 检测算法有很多种,不同的算法有他们各自的利与弊。背景差分法:是事先将背景图像存储下来,再与观测图像进行差分运算,实现对运动区域的检测。这种方法能得到较为完整的运动目标信息,但背景图像必须随着外部条件比如光照等的变化而不断更新,所以背景模型的获取和更新比较麻烦。帧差法:直接比较相邻两帧图像对应像点的灰度值的不同,然后通过阈值来提取序列图像中的运动区域[2]。这种方法更新速度快,算法简单易实现,适应性强,不需要获取背景图像。但是背景与运动目标间需要有一定程度的灰度差,否则可能在目标内部产生空洞,不能完整的提取出运动目标。为了改进相邻两帧间的差分效果,人们提出了累积差分法。累积差分法是利用三帧图像计算两个差分图像,再令其对应像素相乘的算法。它通过分析整个图像序列的变化来检测小位移或缓慢运动的物体。光流法是在时间上连续的两幅图想中,用向量来表示移动前后的对应点,在适当平滑性约束的条件下,根据图像序列的时空梯度估计运动场,通过分析运动场的变化对运动目标和场景进行检测和分割。 上面的几种算法都是基于静态背景下的方法,下面主要介绍动态背景下运动目标的检测。 因为生活中我们在很多情况下背景图像都不是静态的,有时摄像机都是安装在一个运动

目标检测、跟踪与识别技术与现代战争

目标检测、跟踪与识别技术与现代战争 【摘要】本文讨论目标检测、跟踪与识别技术在现代战争各个领域中的应用,总结目标识别技术的发展方向,提出目标识别技术工程化实现方法,同时本文介绍了国外目标识别的现状及发展趋势,提出了现代战争应采用综合识别系统解决目标识别问题的建议。 关键词目标检测;目标跟踪;目标识别;雷达;人工神经网络;精确制导 1.引言 随着现代科学技术的飞速发展及其在军事领域内日益广泛的应用,传统的作战思想、作战方式已发生根本性的变化。从第一次海湾战争到科索沃战争,特别是刚刚结束的海湾战争,空中精确打击和空地一体化作战已经成为最重要的作战形式。集指挥、控制、通信、计算机、情报、监视侦察于一体的C ISR 已成为取得战场主动权,赢得最后胜利的关键因素。目标识别技术是雷达智能化、信息化的重要技术支撑手段。在现代化战争中,目标识别技术在预警探测、精确制导、战场指挥和侦察、敌我识别等军事领域都有广泛的应用前景,已受到了世界各国的关注。 现代战争中取得战场制信息权的关键之一是目标属性识别。现代战争的作战环境十分复杂,作战双方都在采用相应的伪装、隐蔽、欺骗和干扰等手段和技术,进行识别和反识别斗争。因此仅仅依靠一种或少数几种识别手段很难准确地进行目标识别,必须利用多个和多类传感器所收集到的多种目标属性信息,综合出准确的目标属性,进行目标检测,跟踪后进行识别。 2.目标检测、跟踪与识别技术在现代战争中的应用 2.1 目标检测、跟踪与识别技术在预警探测上的应用 目标检测、跟踪与识别技术对于弹道导弹的预警工作有重要的作用。弹道导弹一般携带多个弹头,其中可能包含核弹头或大规模杀伤的弹头以及常规弹头,预警雷达必须具备对目标进行分类和识别真假弹头的能力,将核弹头或大规模杀伤的弹头分离出来,为弹道导弹防御(BMD)系统进行目标攻击和火力分配提供依据。早期的BMD系统假设只有一个核弹头,多弹头分导技术的出现,使问题转化为雷达的多目标识别问题,加上电子对抗技术的广泛使用,给目标识别技术带来很大困难。另外,预警雷达还要对空中目标或低空目标进行探测,对来袭目标群进行分类识别。利用星载雷达以及远程光学望远镜等观测设备,可以对外空目标进行探测,对外空来袭目标进行分类和识别,达到早期预警的工作。

智能机器人运动控制和目标跟踪

XXXX大学 《智能机器人》结课论文 移动机器人对运动目标的检测跟踪方法 学院(系): 专业班级: 学生学号: 学生姓名: 成绩:

目录 摘要 (1) 0、引言 (1) 1、运动目标检测方法 (1) 1.1 运动目标图像HSI差值模型 (1) 1.2 运动目标的自适应分割与提取 (2) 2 运动目标的预测跟踪控制 (3) 2.1 运动目标的定位 (3) 2.2 运动目标的运动轨迹估计 (4) 2.3 移动机器人运动控制策略 (6) 3 结束语 (6) 参考文献 (7)

一种移动机器人对运动目标的检测跟踪方法 摘要:从序列图像中有效地自动提取运动目标区域和跟踪运动目标是自主机器人运动控制的研究热点之一。给出了连续图像帧差分和二次帧差分改进的图像HIS 差分模型,采用自适应运动目标区域检测、自适应阴影部分分割和噪声消除算法,对无背景图像条件下自动提取运动目标区域。定义了一些运动目标的特征分析和计算 ,通过特征匹配识别所需跟踪目标的区域。采用 Kalrnan 预报器对运动目标状态的一步预测估计和两步增量式跟踪算法,能快速平滑地实现移动机器人对运动目标的跟踪驱动控制。实验结果表明该方法有效。 关键词:改进的HIS 差分模型;Kahnan 滤波器;增量式跟踪控制策略。 0、引言 运动目标检测和跟踪是机器人研究应用及智能视频监控中的重要关键技术 ,一直是备受关注的研究热点之一。在运动目标检测算法中常用方法有光流场法和图像差分法。由于光流场法的计算量大,不适合于实时性的要求。对背景图像的帧问差分法对环境变化有较强的适应性和运算简单方便的特点,但帧问差分不能提出完整的运动目标,且场景中会出现大量噪声,如光线的强弱、运动目标的阴影等。 为此文中对移动机器人的运动目标检测和跟踪中的一些关键技术进行了研究,通过对传统帧间差分的改进,引入 HSI 差值模型、图像序列的连续差分运算、自适应分割算法、自适应阴影部分分割算法和图像形态学方法消除噪声斑点,在无背景图像条件下自动提取运动 目标区域。采用 Kalman 滤波器对跟踪目标的运动轨迹进行预测,建立移动机器人跟踪运动 目标的两步增量式跟踪控制策略,实现对目标的准确检测和平滑跟踪控制。实验结果表明该算法有效。 1、运动目标检测方法 接近人跟对颜色感知的色调、饱和度和亮度属性 (H ,S ,I )模型更适合于图像识别处理。因此,文中引入改进 型 HSI 帧差模型。 1.1 运动目标图像HSI 差值模型 设移动机器人在某一位置采得的连续三帧图像序列 ()y x k ,f 1-,()y x f k ,,()y x f k ,1+

目标检测与跟踪

第九章图像目标探测与跟踪技术 主讲人:赵丹培 宇航学院图像处理中心 zhaodanpei@https://www.wendangku.net/doc/9311624340.html, 电话:82339972

目录 9.1 概论 9.2 目标检测与跟踪技术的发展现状9.3 目标检测与跟踪技术的典型应用9.4 图像的特征与描述 9.5 目标检测方法的基本概念与原理9.6 目标跟踪方法涉及的基本问题

9.1 概论 1、课程的学习目的 学习和掌握目标探测、跟踪与识别的基本概念和术语,了解一个完整信息处理系统的工作流程,了解目标探测、跟踪与识别在武器系统、航空航天、军事领域的典型应用。了解目标检测、跟踪与识别涉及的关键技术的发展现状,为今后从事相关的研究工作奠定基础。 2、主要参考书: 《目标探测与识别》,周立伟等编著,北京理工大学出版社; 《成像自动目标识别》,张天序著,湖北科学技术出版社; 《动态图像分析》,李智勇沈振康等著,国防工业出版社;

引言:学习目标检测与跟踪技术的意义 ?现代军事理论认为,掌握高科技将成为现代战争取胜的重要因素。以侦察监视技术、通信技术、成像跟踪技术、精确制导技术等为代表的军用高科技技术是夺取胜利的重要武器。 ?成像跟踪技术是为了在战争中更精确、及时地识别敌方目标,有效地跟踪目标,是高科技武器系统中的至关重要的核心技术。 ?例如:一个完整的军事战斗任务大致包括侦察、搜索、监视以及攻击目标和毁伤目标。那么快速的信息获取和处理能力就是战争胜利的关键,因此,目标的实时探测、跟踪与识别也成为必要的前提条件。

?随着现代高新技术的不断发展及其在军事应用领域中的日益推广,传统的作战形态正在发生着深刻的变化。 1973年的第四次中东战争,1982年的英阿马岛之战,1991年的海湾战争及1999年的科索沃战争,伊拉克战争等都说明了这一点。西方各军事强国都在积极探索对抗武器,特别是美国更是投入了巨大的物力、人力和财力积极研制弹道导弹防御系统。而图像检测、跟踪和识别算法作为现代战场信息环境作战成败的关键,具备抗遮挡、抗丢失和抗机动鲁棒性的智能跟踪器,将是现代战场作战必备品,具有广泛的应用前景。

运动目标图像的识别与跟踪

运动目标图像的识别与跟踪 本文主要目的是将视频摄像头中的运动目标从背景中提取出来,并加以跟踪。首先考虑的是常见的目标检测的算法,其次考虑对于噪声的滤除,最后是对运动目标的跟踪。 一、基本目标检测算法 我们主要考虑的目标检测的算法主要有三种,光流场法、背景模型法以及时域差分法。 1.1光流场法 光流主要是图像亮度模式的表现运动。而光流场则是指灰度模式的表面运动。一般条件下,我们可以根据图像的运动,进行估算相对运动。 光流场法的基本理论是光流场基本方程: 0=++t y x I vI uI (1.1) 式中我们根据亮度守恒,利用泰勒公式展开,忽略高阶项与二次项。其中x I 、y I 和t I 是图像在对数轴x 、y 两个方向和t 的的导数,()v u ,就是这个点的光流坐标。 光流场法的目标检测,在摄像机运动时候也可以做出判断,但是图像的噪声太过明显,使得计算数据庞杂,计算的公式更加复杂,这样并不适合我们的对于目标跟踪的高精度的摄像系统。 1.2背景模型法 背景模型法,也被称为背景差法,主要利用当前的图像和背景的图像的二值化做差,然后取阈值,分割运动目标。 首先根据: ()()()y x b y x f y x D t t t ,,,-= (1.2) 我们可以得到当前的图像帧数()y x f t ,和背景图像的帧数),(y x b t 做差,然后以公式对图像进行二值化的处理。 ???≤>=)(,0)(,1),(BackGround T D ForeGround T D y x P t t t (1.3) 上面),(y x P t 是二值化模板图。假设某一区域大于一个给定的面积的时候,该区域就是我们要找的目标区域。 背景模型法的算法简单,可以快速反应,并且可以提供运动目标的大略特征等数据。但是对于复杂背景下,比如人流较大的公共场所,或者有光照等干扰时,就需以其他的算法以不断更新背景信息来进行弥补。

基于opencv的运动目标检测和跟踪

本科毕业论文
(科研训练,毕业设计)

目: opencv 的运动目标检测
姓 学
名:汤超 院:信息科学与技术学院 系:电子工程系
专 年 学
业:电子信息工程 级:2005 号:22220055204057 职称:教授
指导教师(校内) :杨涛
2009 年
5 月
25 日

厦门大学电子工程系 2005 级本科毕业论文 -
基于 opencv 的运动目标检测和跟踪
摘要
Opencv(Open Source Computer Vision Library)是一种用于数字图像处理和计算机视 觉的函数库,由 Intel 微处理器研究实验室(Intel's MicroprocessorResearch Lab)的视 觉交互组(The Visual Interaetivity Group)开发.采用的开发语言是 C++,可以在 window: 系统及 Linux 系统下使用,该函数库是开放源代码的,能够从 Intel 公司的网站免费下载 得到.opencv 提供了针对各种形式的图像和视频源文件(如:bitmap 图像,video 文件和实 时摄像机)的帧提取函数和很多标准的图像处理算法,这些函数都可以直接用在具体的视频 程序开发项目中. 针对在背景中检测出运动目标并实施警戒等特定提示,本文利用 opencv 的运动物体 检测的数据结构,函数以及基本框架,建立了一个由人机交互界面模式.实施对物体的检 测.该方面在安防方面已经很受重视.相信在不久的将来将会成为一种监督秩序的方式.
关键字 视频,运动目标检测,帧差分

视频目标跟踪算法综述_蔡荣太

1引言 目标跟踪可分为主动跟踪和被动跟踪。视频目标跟踪属于被动跟踪。与无线电跟踪测量相比,视频目标跟踪测量具有精度高、隐蔽性好和直观性强的优点。这些优点使得视频目标跟踪测量在靶场光电测量、天文观测设备、武器控制系统、激光通信系统、交通监控、场景分析、人群分析、行人计数、步态识别、动作识别等领域得到了广泛的应用[1-2]。 根据被跟踪目标信息使用情况的不同,可将视觉跟踪算法分为基于对比度分析的目标跟踪、基于匹配的目标跟踪和基于运动检测的目标跟踪。基于对比度分析的跟踪算法主要利用目标和背景的对比度差异,实现目标的检测和跟踪。基于匹配的跟踪主要通过前后帧之间的特征匹配实现目标的定位。基于运动检测的跟踪主要根据目标运动和背景运动之间的差异实现目标的检测和跟踪。前两类方法都是对单帧图像进行处理,基于匹配的跟踪方法需要在帧与帧之间传递目标信息,对比度跟踪不需要在帧与帧之间传递目标信息。基于运动检测的跟踪需要对多帧图像进行处理。除此之外,还有一些算法不易归类到以上3类,如工程中的弹转机跟踪算法、多目标跟踪算法或其他一些综合算法。2基于对比度分析的目标跟踪算法基于对比度分析的目标跟踪算法利用目标与背景在对比度上的差异来提取、识别和跟踪目标。这类算法按照跟踪参考点的不同可以分为边缘跟踪、形心跟踪和质心跟踪等。这类算法不适合复杂背景中的目标跟踪,但在空中背景下的目标跟踪中非常有效。边缘跟踪的优点是脱靶量计算简单、响应快,在某些场合(如要求跟踪目标的左上角或右下角等)有其独到之处。缺点是跟踪点易受干扰,跟踪随机误差大。重心跟踪算法计算简便,精度较高,但容易受到目标的剧烈运动或目标被遮挡的影响。重心的计算不需要清楚的轮廓,在均匀背景下可以对整个跟踪窗口进行计算,不影响测量精度。重心跟踪特别适合背景均匀、对比度小的弱小目标跟踪等一些特殊场合。图像二值化之后,按重心公式计算出的是目标图像的形心。一般来说形心与重心略有差别[1-2]。 3基于匹配的目标跟踪算法 3.1特征匹配 特征是目标可区别与其他事物的属性,具有可区分性、可靠性、独立性和稀疏性。基于匹配的目标跟踪算法需要提取目标的特征,并在每一帧中寻找该特征。寻找的 文章编号:1002-8692(2010)12-0135-04 视频目标跟踪算法综述* 蔡荣太1,吴元昊2,王明佳2,吴庆祥1 (1.福建师范大学物理与光电信息科技学院,福建福州350108; 2.中国科学院长春光学精密机械与物理研究所,吉林长春130033) 【摘要】介绍了视频目标跟踪算法及其研究进展,包括基于对比度分析的目标跟踪算法、基于匹配的目标跟踪算法和基于运动检测的目标跟踪算法。重点分析了目标跟踪中特征匹配、贝叶斯滤波、概率图模型和核方法的主要内容及最新进展。此外,还介绍了多特征跟踪、利用上下文信息的目标跟踪和多目标跟踪算法及其进展。 【关键词】目标跟踪;特征匹配;贝叶斯滤波;概率图模型;均值漂移;粒子滤波 【中图分类号】TP391.41;TN911.73【文献标识码】A Survey of Visual Object Tracking Algorithms CAI Rong-tai1,WU Yuan-hao2,WANG Ming-jia2,WU Qing-xiang1 (1.School of Physics,Optics,Electronic Science and Technology,Fujian Normal University,Fuzhou350108,China; 2.Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Science,Changchun130033,China)【Abstract】The field of visual object tracking algorithms are introduced,including visual tracking based on contrast analysis,visual tracking based on feature matching and visual tracking based on moving detection.Feature matching,Bayesian filtering,probabilistic graphical models,kernel tracking and their recent developments are analyzed.The development of multiple cues based tracking,contexts based tracking and multi-target tracking are also discussed. 【Key words】visual tracking;feature matching;Bayesian filtering;probabilistic graphical models;mean shift;particle filter ·论文·*国家“863”计划项目(2006AA703405F);福建省自然科学基金项目(2009J05141);福建省教育厅科技计划项目(JA09040)

人形目标检测与跟踪

——人形目标检测与跟踪

一、 本组研究方案,算法系统框图 二、 检测算法、原理、程序实现方法、调试过程 【视频处理】 老师提供的两端视频两段视频并不能直接用来输入OpenCV 所编程序处理,需要将其转化为无压缩的avi 格式。利用软件WinAVI Video Converter ,转换为ZJMedia uncompressed RGB24格式。 【背景建模】 我们小组利用N 帧图像的平均来求取背景,并实时对背景进行更新。由于考虑到ExhibitionHall.avi 视频中运动物体所占场景比例少,运动轨迹为直线,为了处理的简单,所以在这不刻意区分物体和背景像素点。即(1)(1)()()A A A B k B k I k αα+=-+ ,这里的α 很小(0.003) 。 【前景提取】 灰度图像的处理比彩色图像的处理过程简单。我们小组将读入的彩色图像变成灰度图像,并二值化;同样,背景也进行二值化。两者做差值,得到一些离散的黑白点块。也就

是要识别的目标。但是,这样得到的块是分散开的,程序 并不能完整的把它们识别成一个人形,而是一个本来很完 整的人形被分块识别成多个目标。为此,我们做了一些简 单的后处理。先腐蚀元素,去除不必要的杂点,然后进行 膨胀块处理,自定义块的大小,使其膨胀成能被识别成一 个人形的目标。另外,我们还做个简单的高斯低通滤波, 是得到的结果光滑些。其流程图如右。 【目标检测】 根据前景处理的结果,得到一些连续的块目标。利用帧间差,可以提取出目标的轮廓。根据轮廓的位置分布,计算出检测目标的形心和大小。并予以标记。 【目标跟踪】 根据目标帧间的位移差值,可以计算出运动目标在x ,y 方向上的运动速度。可以利用这个关系判断下一帧目标的位置。设置一个合适的阈值,就可以实现目标的跟踪。在此,我们还引入了重叠判断机制。如果目标重叠,即通过遍历,发现块重叠大于一定阈值后,根据前面得到的位置预测判断当前物块位置;如果不重叠,则遍历这幅图像中的所有物块,寻找临近最优物块,以保持编号连续性。在目标跟踪过程中,还进行了Kalman 滤波,对目标轨迹进行滤波处理。 目标跟踪 …… 目标 (Id,Pos,Size) 目标 (Id,Pos,Size) 目标 1 目标 (Pos,Size) 目标 (Pos,Size) 目标N 目标 (Pos,Size) 目标 (Pos,Size)

本科毕业设计__基于视频的目标跟踪及人群密度估计方法研究开题报告

上海交通大学 2012 级硕士学位论文开题报告登记表 学号姓名导师李建勋学科控制科学与工程学院(系、所) 电子信息与电气工程学院 学位论文题目稳健对地目标跟踪方法研究 研究课题来源国家自然科学基金、航天创新基金、中航613横向项目 课题的意义以及研究的主要内容 运动目标跟踪是视觉图像处理中的一个非常热门的话题,在多个领域有着广泛的应用。运动目标跟踪的应用领域和环境主要有:对大型公共场所进行智能化视频监控、基于视频的人机交互、交通流量监测、医疗诊断等。 本文从计算机视觉角度研究对地目标跟踪方法。由于视觉跟踪系统能在比较复杂的背景下,提取与分离市场内的目标、确定目标位置、估计目标运动趋势、实现对目标的实时跟踪,且具有跟踪精度高、跟踪状态平稳、抗干扰能力强、分辨率高和成本低等特点,在军事上很受重视。在民用领域,对地目标跟踪也有着广泛的应用:对大型公共场所进行智能化视频监控。例如在机场、商场、地铁站等场所进行智能化监控,其主要目的都是为了保障公众财产和信息安全。在人群监测、交通管理上实现智能化有非比寻常的意义。 以以上应用为背景,本文的对地目标跟踪技术包含以下几个主要技术模块:单目标跟踪技术、多目标跟踪技术、密集目标跟踪技术。分出这几个模块是为了应对不同的应用场景,或是在同一场景需要各模块的协同合作。例如地铁站的人群流量具有明显时段特征,早晚上下班高峰人流极大,而其他时段人流量明显减少,这就需要对不同时段采用不同的跟踪方法以达到最好的效果。在上下班高峰期,采用密集目标跟踪技术,而在其他时段,采用多目标跟踪技术,而在有特殊需要的时候,例如跟踪特定犯罪嫌疑人时,可采用单目标跟踪技术。 本文研究的主要内容具体有: ①粒子滤波基本方法研究,这是单目标跟踪方法的框架。在图像跟踪应用中,目标状态的后验概率分布往往是非线性非高斯多模态的,粒子滤波方法对于系统模型没有特殊要求,且能够保持状态的多模态分布,在跟踪领域得到了很大的发展。但常规粒子滤波跟踪算法存在计算量大、采样效率低等问题。 ②粒子群最优化思想研究,改进常规粒子滤波采样效率低的问题,提高采样效率。针对常规粒子滤波跟踪算法存在计算量大、采样效率低等问题,引入粒子群优化思想对目标状态后验分布进行最优搜索,找到后验分布的高似然区,并依据此高似然区来进行重采样。 ③变结构多模型的设计,以更好的表征目标的运动模型。几乎所有的方法对目标的运动状态都假定为平滑的,或者将运动限制在恒速或恒加速运动状态。而实际情况并非如此,例如机动目标的运动状态就很难用单一模型来表征。本文引入变结构多模型方法为目标建立变结构多运动模型。变结构多模型方法能够很好的表征目标的运动模型却又不增加过多的计算量,因此相比单一运动模型能够更好的估计目标的运动。

(完整版)视频目标检测与跟踪算法综述

视频目标检测与跟踪算法综述 1、引言 运动目标的检测与跟踪是机器视觉领域的核心课题之一,目前被广泛应用在 视频编码、智能交通、监控、图像检测等众多领域中。本文针对视频监控图像的运动目标检测与跟踪方法,分析了近些年来国内外的研究工作及最新进展。 2、视频监控图像的运动目标检测方法 运动目标检测的目的是把运动目标从背景图像中分割出来。运动目标的有效分割对于目标分类、跟踪和行为理解等后期处理非常重要。目前运动目标检测算法的难点主要体现在背景的复杂性和目标的复杂性两方面。背景的复杂性主要体现在背景中一些噪声对目标的干扰,目标的复杂性主要体现在目标的运动性、突变性以及所提取目标的非单一性等等。所有这些特点使得运动目标的检测成为一项相当困难的事情。目前常用的运动目标检测算法主要有光流法、帧差法、背景相减法,其中背景减除法是目前最常用的方法。 2.1 帧差法 帧差法主要是利用视频序列中连续两帧间的变化来检测静态场景下的运动目标,假设(,)k f x y 和(1)(,)k f x y +分别为图像序列中的第k 帧和第k+1帧中象素点(x ,y)的象素值,则这两帧图像的差值图像就如公式2-1 所示: 1(1)(,)(,)k k k Diff f x y f x y ++=- (2-1) 2-1式中差值不为0的图像区域代表了由运动目标的运动所经过的区域(背景象素值不变),又因为相邻视频帧间时间间隔很小,目标位置变化也很小,所以运动目标的运动所经过的区域也就代表了当前帧中运动目标所在的区域。利用此原理便可以提取出目标。下图给出了帧差法的基本流程:1、首先利用2-1 式得到第k 帧和第k+1帧的差值图像1k Diff +;2、对所得到的差值图像1k Diff +二值化(如式子2-2 示)得到Qk+1;3、为消除微小噪声的干扰,使得到的运动目标更准确,对1k Q +进行必要的滤波和去噪处理,后处理结果为1k M +。 111255,,(,)0,,(,)k k k if Diff x y T Q if Diff x y T +++>?=?≤? (T 为阈值) (2-2)

基于视频监控的运动目标跟踪算法

第36卷第12期 2010年12月北京工业大学学报J OURNA L O F BE IJI NG UN I V ERS I TY OF TEC HNOLOGY V o.l 36N o .12D ec .2010基于视频监控的运动目标跟踪算法 胡宏宇1,2,王殿海1,3,李志慧1,杨希锐1,4,王庆年2 (1 吉林大学交通学院,长春 130022;2 吉林大学汽车工程学院,长春 130022; 3 浙江大学建筑工程学院,杭州 310058; 4 解放军汽车管理学院,安徽蚌埠 233011) 摘 要:利用K a l m an 滤波思想对运动目标的前时刻状态信息进行预测,获取重心位置与形态紧密度估计值;将 估计值与当前时刻观测值进行匹配,根据匹配误差修正运动目标的速度与紧密度变化值,通过递归算法实现常 态下运动目标的准确、快速跟踪.针对复杂场景下由于运动遮挡造成无法准确估计目标运动轨迹,采用灰色模 型GM (1,1)保证了跟踪过程的连续、稳定.最后,通过不同交通场景的视频序列对本文算法进行了验证,结果表 明本文方法具有较好的适应性、鲁棒性,可实现复杂遮挡情况下连续、稳定、实时的目标运动跟踪. 关键词:智能交通;视频监控;运动跟踪;特征匹配;K a l m an 滤波;灰色模型 中图分类号:TP 391;U 121文献标志码:A 文章编号:0254-0037(2010)12-1683-08 收稿日期:2008 11 03. 基金项目:国家 863 计划项目资助(2009AA 11Z210),国家自然科学基金青年科学基金项目(50808092),吉林省科技发 展计划项目(20080432).作者简介:胡宏宇(1982!),男,长春人,讲师. 交通流中运动物体的运动行为是研究交通流特性与交通流管制的基础.视频监控技术为研究混合交通运动物体的运动特性与交通行为提供了有力工具,运动目标跟踪技术是其重要组成部分.而目标的特征匹配与遮挡处理决定了目标跟踪的性能. 目前,运动目标跟踪算法是国内外研究的热点与重点内容之一.Ko ller [1]利用3D 模型跟踪运动车辆,但该方法依赖物体三维几何模型,计算复杂度较高,难以满足实时要求;Co if m an [2]提取车辆的角点,根据运动约束对物体进行跟踪,但是角点易受光照强度的变化及噪声等因素的干扰;Parag ios [3]采用自动更新的封闭主动轮廓曲线实现车辆的跟踪,但轮廓曲线初始化较为复杂且容易受到运动状态变化的影响;K ato [4]利用马尔科夫随机场模型提出了运动目标跟踪算法,而模型参数难以确定是其面临的主要问题;Rad [5]利用重心、速度对物体进行跟踪,但该方法仅考虑了物体的运动特性,匹配精度难以保证.另外,文献[6 9]对运动目标跟踪算法进行了一定研究,但跟踪过程中遮挡处理的局限性和实验场景的单一性限制了其应用的普适性.由于物体运动状态、周围环境的复杂多变以及可能发生的运动遮挡对跟踪造成严重影响,因此建立复杂交通场景下连续、快速、稳定的运动目标跟踪算法尤为重要. 作者结合运动物体的运动特征与形态特征,基于K al m an 滤波(KF)思想实现跟踪目标的运动特征与形态特征的快速匹配.针对跟踪过程中可能发生的运动遮挡现象,提出了基于灰色预测模型的遮挡处理方法,保证了跟踪算法的连续、稳定,同时对于运动目标进出检测区域边界时特征匹配的不稳定性给出了解决办法.跟踪实验表明,本文方法具有实时性好、鲁棒性强的特点,可实现复杂环境下的运动目标跟踪.1 运动检测 运动目标的检测与分割是实现运动跟踪的前提.本文采用文献[10]中基于聚类识别的背景初始化方法获取背景.该方法首先利用滑动可变窗口检测每个像素的时间训练序列所有不重叠平滑子序列,获取可能背景;然后选择每个平滑子序列的中值样本点构建分类序列集,根据未知类别的无监督聚类识别思想,获取背景子集实现背景初始化.该方法具有良好的鲁棒性,可满足车流较大条件下背景初始化的要

目标检测与跟踪方法在自动跟踪装置中的应用

第33卷增刊2007年11月 光学技术OPTICAL TECHN IQU E Vol.33Suppl. Nov. 2007 文章编号:100221582(2007)S 20069203 目标检测与跟踪方法在自动跟踪装置中的应用 Ξ 伍翔,霍炬,杨明,董红红 (哈尔滨工业大学控制与仿真中心,哈尔滨 150082) 摘 要:介绍了一种应用于自动跟踪装置上的运动背景下目标检测与跟踪的方法,采用仿射模型作背景运动估计进行检测以及mean 2shift 算法跟踪目标,并将该方法应用到一套自动跟踪系统实验平台上。 关 键 词:仿射模型;mean 2shift 算法;自动跟踪装置 中图分类号:TP751 文献标识码:A Application of a moving target detecting and tracking method in the automatic 2tracking equipment WU X iang ,H UO J u ,Y ANG Ming ,DONG H ong 2hong (Control and Simulation Center ,Harbin Institute of Technology ,Harbin 150082,China ) Abstract :This paper presents a moving target detecting and tracking method in moving background for the automatic 2tracking equipment.It uses affine model to estimate the moving character of the background for detecting ,and uses mean 2shift algorithm for tracking.An automatic 2tracking experimental system is realized by using this method. K ey w ords :affine model ;mean 2shift algorithm ;automatic 2tracking equipment 0 引 言 基于图像处理的运动目标检测与跟踪,作为图像处理技术的一个分支,由于其在民用和军用上的广泛应用 [1,2] ,也逐 渐成为研究的热点。本文主要针对自动跟踪装置,研究与设计一种图像处理的方法,实现运动背景下运动目标检测与跟踪,并应用到所搭建的自动跟踪仿真系统中。 1 自动跟踪系统实验平台 利用图像处理的方法实现自动跟踪功能的跟踪系统一般由摄像机、图像采集卡、计算机、伺服系统几部分组成。摄像机、图像采集卡以及计算机都装载在伺服系统上,当摄像机的视野中出现运动目标时,计算机对图像采集卡采集到的图像进行处理分析,得出运动目标的位置等信息,传递给伺服系统,伺服系统带动相机跟踪目标,使得目标始终保持在视野的中心 。 图1 自动跟踪系统实验平台结构框图 图1即为所搭建的自动跟踪系统实验平台的结构框图, 该平台是专门根据自动跟踪装置的结构和特点设计的,对自动跟踪装置进行模拟。由图1可知,在计算机上实现的图像处理部分,是整个系统的关键。它所要完成的功能是从采集图2 图像处理部分基本流程 到的每幅视频图像中找出运动目标的位置,即运动目标的检测与跟踪。它主要包括两方面:第一,运动目标的检测与提取;第二,目标跟踪。其处理流程图如图2所示。 2 运动目标检测 2.1 背景模型选取 根据摄像机相对于场景的运动情况可以将运动目标检测分为静止背景下运动目标检测和运动背景下运动目标检测两种。由自动跟踪装置的特性可知,在跟踪目标的过程中,摄像机随着伺服系统一起运动,所以应该考虑的是运动背景下运动目标的检测。 本文采用的是运用背景运动估计进行建模的思想,将两帧图像之间的背景运动关系用仿射变换表示,建立一个仿射运动参数模型。如 x k +1=a 1x k +a 2y k +d x y k +1=a 3x k +a 4y k +d y (1) 9 6Ξ收稿日期:2006212211 E 2m ail :wuxiang602@https://www.wendangku.net/doc/9311624340.html, 基金项目:国家自然科学基金资助(60434010) 作者简介:伍翔(19842),男,苗族,湖南省人,哈尔滨工业大学硕士研究生,从事图像处理研究。

相关文档
相关文档 最新文档