文档库 最新最全的文档下载
当前位置:文档库 › 各种金属元素对材料性能影响

各种金属元素对材料性能影响

各种金属元素对材料性能影响
各种金属元素对材料性能影响

钢中常见元素对钢的各种性能影响

1、Si

Si的熔点1410℃,是缩小γ相区、形成γ相圈的元素,在α铁和γ铁中的溶解度分别为18.5%及2.15%。

Si是钢中常见元素之一,Si和氧的亲和力仅次于铝和钛,而强于Mn、Cr、V。所以在炼钢中为常用的还原剂和脱氧剂。

为保证质量,除沸腾钢的半镇静钢外,Si在钢中含量应不小于0.10%,作为合金元素一般不低于0.4%

Si在钢中不形成碳化物,而是以固溶体的形态存在于铁素体或奥氏体中。Si固溶于铁素体和奥氏体中可起到提高它们的硬度和强度的作用,在常见元素中仅次于P,而较Mn、Ni、Cr、W、Mo、V等为强。但Si量超过3%,将显著降低钢的塑性、韧性和延展性。

低Si含量对钢的抗腐蚀性能有显著增强作用。Si含量为15~20%的Si铁是很好的耐酸材料,对不同温度和浓度的硫酸、硝酸都很稳定。但在盐酸和王水的作用下稳定性很小,在HF酸中则不稳定。高Si铸铁之所以抗腐蚀,是由于当开始腐蚀时,在其表面形成致密的SiO2薄层,阻碍着酸的进一步向内侵蚀。

含Si的钢在氧化气氛中加热时,表面也形成SiO2薄层,从而提高钢在高温时的抗氧化性。

在Cr、Cr-Al、Cr-Ni、Cr-W等钢中加Si,都将提高它们的高温抗氧化性能。各种奥氏体不锈钢中加入约2%的Si,可以增强它们的高温不起皮性。Mn钢加Si也可以提高它的抗氧化性。但Si含量高时,钢的表面脱碳倾向加剧。

Si提高钢中固熔体的硬度和强度,从而提高钢的屈服强度和抗拉强度。在普通低合金钢中,Si还可以增强钢在自然条件下的耐腐蚀性,特别时增高局部腐蚀的抗力。Si含量较高时,对焊接性不利,并易导致冷脆,还降低钢的被切削性;对中高碳钢回火时易产生石墨化。

2、Mn

Mn的熔点1244℃,扩大γ相区,形成无限固熔体。

Mn与硫形成MnS,是良好的脱氧剂和脱硫剂,可防止因硫而导致的热脆现象,从而改善钢的热加工性能。在工业用钢中一般都含有一定数量的Mn。

Mn与Fe形成固溶体,提高钢中铁素体和奥氏体的硬度和强度;同时又是碳化物的形成元素,进入渗碳体中取代一部分铁原子。Mn在钢中由于降低临界转变温度,起到细化珠光体的作用,也间接起到提高珠光体钢强度的作用。

Mn还强烈增加钢的沾透性。Mn含量较高时,有使钢晶粒粗化并增加钢的回火脆性的不利倾向。Mn在钢中部分与铁互溶,形成固溶体(铁素体或奥氏体)部分和铁碳化合,形成渗碳体。

Mn对提高低碳和中碳珠光体钢的强度有显著的作用。但使钢的延展性有所降低。

Mn对钢的焊接性有不利影响。为改善钢的焊接性,应在许可的范围内适当降低钢的碳含量。焊接时也需采用优质低氢焊条和相应的焊接工艺。

在普通低合金钢中,利用Mn可起到强化铁素体和细化珠光体的作用,以提高钢的强度,其含量一般在1~2%,含Mn的普通低合金钢发展十分迅速。

3、AL在钢中的作用

Al的熔点660℃,是强烈缩小γ相区、形成γ相圈的元素,在α铁和γ铁中的最大溶解度分别为36%及0.6%,它与氮及氧的亲和力很强。

铝在钢中的作用,一是作炼钢时的脱氧定氮剂,并细化晶粒,阻抑碳钢的时效,提高钢在低温下的韧性;二是作为合金元首加入钢中提高钢的抗氧化性、改善钢的电、磁性能,提高渗氮钢的耐磨性和疲劳强度等。因此,铝在不起皮钢、电热合金、磁钢和渗氮钢中,得到了广泛应用。在铁锰铝系合金中,铝作为主要合金加入耐热钢、低温钢和无磁钢中。铝可提高钢在氧化性酸中的耐蚀性。

铝在铁素体及珠光体钢中,当铝含量较高时,其高温强度和韧性较低。

铝和碳虽然可以化合成Al4C3和Al3C,但它和碳的亲和力小于铁和碳的亲和力,因此,在钢中一般不存在铝的碳化物。铝细化钢的本质晶粒,提高钢晶粒粗化的温度。

由于铝细化钢的晶粒,固定钢中的氧和氮,因此可以减轻钢对缺口的敏感性,减少或消除刚的时效现象,并提高钢的冲击韧性,特别是降低钢的脆性转变温度。

当铝含量达到一定量时,可使钢产生钝化现象,使钢在氧化性酸中具有抗蚀性。

铝还提高钢对硫化氢的抗蚀作用。铝含量在4%左右的钢在温度不超过600℃时有较好的抗H2S侵蚀作用。

铝对于钢在水蒸汽、氮气、特别是在氯气及其化合物气氛中的抗蚀作用是不利的。

在钢铁材料表面渡铝或渗铝,可提高其抗氧化性和在工业性和海洋性气份中的抗蚀性。

铝作为合金元素加入钢中,显著提高钢的抗氧化性,当铝与铬配合并用时,其抗氧化性可得到更大的提高。但使钢的焊接性变坏。

含铝的钢渗氮后,在钢件表面牢固地形成一层薄而硬的弥散分布的氮化铝层,从而提高其硬度和疲劳强度,并改善其耐磨性。铝在高温合金中,与镍形成γˊ相(Ni3AL),从而提高其热强性。在磁性材料中,改善钢的电磁性能。对沾透性影响不显著,有促进石墨化倾向。

近年来我国研究成功的15Al3MoWTi钢,铝含量为2.2~2.8%,是一中无镍铬的低合金耐蚀钢,曾用于炼油厂的裂化、焦化分馏塔低、常压蒸馏塔顶等典型部位代替碳素钢和0Cr13不锈钢使用,在含硫及H2S的腐蚀条件下,其耐蚀性优于0Cr13而比碳素钢提高数十倍。可作加热炉炉管以及工作在550~650℃各种耐蚀不起皮钢构件,性能优于Cr5Mo钢。

铝是高锰低温钢的主要合金元素,一定含量的铝,有提高铁锰奥氏体稳定性,抑制β-Mn相变的作用,从而使铝在低温钢中得到了应用。

4、钼(MO)在钢中的作用

钼:熔点2610℃,是使γ相区缩小、形成γ相圈的元素,在α铁和γ铁中的最大溶解度分别为4%及37.5%。钼在钢中存在于固溶体相和碳化物中。钼属于强碳化物形成元素,当其含量较低时,与铁及碳形成复合的渗碳体;当含量较高时,则形成特殊碳化物,在较高回火温度下,由于弥散分布,有二次硬化作用。

钼对铁素体有固溶强化作用,同时也提高碳化物的稳定性,因此对钢的强度产生有利作用。钼是提高钢热强性最有效的合金元素,主要在于强烈地提高钢中铁素体对蠕变的抗力。此外,还可有效地抑制渗碳体在工作温度450~650℃下的聚集,促进弥散的特使碳化物的析出,从而进一步地起到了强化作用。

钼在钢中,由于形成特殊碳化物,可以改善在高温高压下抗氢侵蚀的作用。

钼加入钢中,也能使钢表面钝化,但作用不如铬显著,钼与铬相反,它既能在还原性酸(HCl、H2SO4、H2SO3)中又能在强氧化性盐溶液(特别是含有氯离子时)中,使钢表面钝化,因此,钼可以普遍提高钢的抗蚀性能。

钼通常与其它元素如锰、铬等配合使用,可显著提高钢的沾透性;钼含量约0.5%时,能抑止或减低其它合金元素导致的回火脆性。它还提高耐热钢的热强性和蠕变强度;含量2~3%时能增加不锈钢的抗有机酸及还原性介质腐蚀的能力。

钼加入铁素体耐酸钢中,也显著地提高钢对醋酸及含氯离子溶液的抗蚀性。

在含有氯化物的溶液中,常会引起材料的点腐蚀。钢中加入钼后,在很大程度上这种倾向被减缓或抑止。

钼是提高珠光体钢热强性最有效的合金元素。自含钼0.5%的低碳钢用于锅炉管后,一系列二元和多元的含钼珠光体钢被广泛应用于动力、石油和化学工业中。如15CrMo、12CrMoV、Cr5Mo 等。钼同样也能提高马氏体钢和奥氏体钢的热强性。

5、钨在钢中的作用

钨:熔点3380℃,缩小γ相区、形成γ相圈的元素,在α铁和γ铁中的最大溶解度分别为3。3%及3.2%。它是强碳化物形成元素,常形成特殊碳化物。钢中钨含量高时有二次硬化作用,

有红硬性,以及增加耐磨性。钨对钢的沾透性、回火稳定性、机械性能等的影响均与钼相似。但以重量计,其作用效果不如钼显著。钨提高钢在高温下的蠕变抗力与热强性,当与钼复合使用时,效果更佳。

钨能提高钢的抗氢作用的稳定性。钨通常加入低碳和中碳的高级优质合金结构钢中,钨能阻止热处理时晶粒的长大和粗化,降低其回火脆化倾向,并显著提高钢的强度和韧性。

6、钒在钢中的作用

钒:熔点1730℃,缩小γ相区、形成γ相圈,在α铁中无限固溶,在γ铁中的最大溶解度约为1.35%。它和碳、氧、氮都有较强的亲和力,为强碳化物及氮化物形成元素。钒对钢的沾透性影响和钛相似。

它在钢中的作用主要是细化钢的组织和晶粒,提高晶粒粗化温度,从而降低钢的过热敏感性,并提高钢的强度和韧性等。少量的钒是钢晶粒细化,韧性增加,这对低温用钢是很重要的一项特性。

钒能有效地固定钢中的碳和氮,因此钢中加入微量的钒可消除低碳钢甚至沸腾钢的时效现象。

钒细化钢的晶粒,提高钢正火后的强度和屈服比及低温韧性,改善钢的焊接性能,因此成为普通低合金钢的一种比较理想的合金元素,含钒钢用于制造低温结构或低温设备等。

钒在钢中,如形成高度弥散分布的碳化物和氮化物微粒,即使在高温下,聚合长大也极缓慢,因而可以增加钢的热强性和对蠕变的抗力。一系列的CrMoV钢已成为制造锅炉、汽轮机的主要钢种。如12CrMoV及12Cr1MoV用于过热器钢管、导管及相应的锻件等。由于钒对碳的固定作用,在高温下,对抗氢腐蚀(脱碳和脆化)是有益的,在抗氢钢中,钒和碳含量之比应在5.7左右,过低不足以固定所有的碳,因而不足以有效地抗氢腐蚀作用;过高则有部分的钒溶入铁素体中降低其塑性。如20Cr3MoWVA钢,钒含量为0.75~0.85%,为一种高压抗氢用钢,用于10MPa和520℃以下工作的高压加氢设备的零件。

7、钛在钢中的作用

钛:熔点1812℃,缩小γ相区、形成γ相圈,在α铁及γ铁中的最大溶解度为7%和0.75%。钛是最强的碳化物形成元素,与氧、氮的亲和力也极强,是良好的脱气剂和固定碳氮的有效元素。在低碳钢中加入足够钛,可消除应变时效现象,由于钛可促进渗碳层的形成,二创制了含钛的“快速渗氮钢”。在不锈钢中,由于钛固定碳,有防止和减轻钢的晶间腐蚀和应力腐蚀的作用。钛固溶状态时,固溶强化作用极强,但同时降低韧性。钛固溶于奥氏体中,提高钢的沾透性很显著,而以碳化钛微粒存在时,由于它细化钢的晶粒,并成为奥氏体分解时的有效晶核,反使钢的沾透性降低。钛含量高时析出弥散分布的拉氏相,而产生时效强化作用。钛还提高耐热钢的抗氧化性和热强性。在高镍含铝合金中形成γˊ相{Ni3(Al,Ti)},弥散析出,亦提高热强性。目前,钛越来越多地被用作航空、宇航工业材料。

在碳素钢、低合金铬钼钢中加入钛,能提高它们的持久强度和蠕变强度。钛作为强碳化物形成元素。可以提高钢在高温高压氢气中的稳定性。为防止氢对碳素钢的侵蚀,通常在钢中加入强碳化物形成元素,如铬、钼、钨、钒等,使其产生比较稳定的复合或特殊的碳化物以抵抗氢的破坏作用。当钢中的钛含量达到碳含量4倍时,可使钢在高压下对氢的稳定性几乎高达600℃以上。

在不锈耐酸钢中加入钛,能提高抗蚀性,特别是对晶间腐蚀。低碳碳素钢和低合金钢,如其中钛、碳含量比超过4.5时,由于钢中的氧、氮和碳可以全部被固定住,对应力腐蚀和碱脆也有很好的抗力。

8、铬在钢中作用

铬:熔点1920℃,缩小γ相区、形成γ相圈元素,在α铁中无限固溶,在γ铁中的最大溶解度约

为12.5%。铬属于中等碳化物形成元素,随铬含量的增加,可形成(Fe,Cr)

3C,(Cr,Te)

7

C

3

(Cr,Te)

23C

6

等碳化物,对钢的性能有显著影响。铬增加钢的沾透性并有二次硬化作用。在不锈

耐热钢中,当铬含量超过12%时,具有良好的高温抗氧化性和耐氧化性介质腐蚀作用,并增加钢的热强性。但含量高时或处理不当,易发生σ相和475℃脆相。在单一的铬钢中,焊接性能随铬含量增加而恶化。

铬是显著提高钢的脆性转变温度的元素,随着铬含量的增加,钢的脆性转变温度也逐步提高,对钢有不利影响,冲击值随铬含量的增加而下降。

9、镍在钢中的作用

镍:熔点1453℃,扩大γ相区,形成无限固溶体,在α铁中的最大溶解度约为10%。

镍和碳不形成碳化物,它是形成和稳定奥氏体的主要合金元素。镍与铁以互溶的形式存在于钢中的α相和γ相中,使之强化。

镍细化铁素体晶粒,改善钢的低温性能,特别是韧性,因此在很低温度下工作的材料,可采用纯镍钢种。但镍大多与铬、钼等配合使用。由于镍可降低临界转变温度和降低钢中各元素的扩散速度,因而提高钢的沾透性。目前镍在全世界范围内都是一种稀缺的元素。作为钢的一种元素,应该只在不能用其它元素来获得所需要的性能时,才考虑使用它。

镍可降低钢低温脆化转变温度,含镍3.5%的钢可以在-100℃时使用,含镍9%的钢可在-196℃时使用。镍不增加钢对蠕变的抗力,因此不作为热强钢的强化元素。在奥氏体热强钢中,镍的作用只是使钢奥氏体化,钢的强化必需靠其它元素,如钼、钨、钒、钛、铝来提高。

镍是有一定抗腐蚀能力的元素,对酸碱盐以及大气均有一定抗腐蚀能力。含镍的低合金钢还有较高的抗腐蚀疲劳的性能。

镍钢不宜在含硫或含一氧化碳的气氛中加热。因为镍易与硫结合,在晶界上形成熔点低的NiS网状组织而发生热脆,在高温时镍将与一氧化碳化合形成Ni(CO)

气体而由合金中逸出而下

4

孔洞将进一步向合金内部发展。

10、磷、砷、锑在钢中的作用

磷、砷、锑是元素表中同一族的元素,因此三个元素在钢中有一些类似的作用。它们加入钢中都有不同程度的抗腐蚀能力,磷对提高钢的抗拉强度具有显著作用。它们又都增加钢的脆性,尤其是低温脆性,磷和砷又都是造成钢较严重偏析的有害元素。磷对钢的焊接性不利,它能增加焊接的敏感性。磷在硅钢中能增加冷脆性。

1、Al

(1)Al当钢中其含量小于3~5%时,是一有益的元素。其作用是:高的抗氧化性和电阻。

①作为强烈脱氧剂加进的Al,可生成高度细碎的、超显微的氧化物,分散于钢体积中。因而可阻止钢加热时的晶粒长大(含Al<10%,在加热<1200℃才有细化作用,否则其作用甚小)和改善钢的淬透性。所以这些氧化物成为结晶的中心,而在钢冷却时又对A体分解起促进作用。

作为合金元素,有助于钢的氮化,因而可提高钢的热稳定性。所以AlN本身在加热时具有高稳定性,①与②都有利于减弱钢的过热倾向。

③可改善钢的抗氧化性,考虑②和③,

④能提高钢的电阻,与Cr共同用于制造高电阻铬铝合金:如Cr13Al4、1Cr17Al5、1Cr25Al5。Al 使电阻增高的程度比Cr还高的多。在Cr钢中加Al,会粗晶易脆,所以其量一般不超过5%,个别才有8~9%。

⑤对硅钢而言,Al可减少α铁心损失,降低磁感强度,与氧结合可减弱磁时效现象,但Al的氧化物会使磁性变坏。Al(>0.5%)也会使硅钢变脆。

(2)Al的不良影响

①促进钢的石墨化,减少合金相中的碳溶浓度,所以硬度、强度降低。

②加速脱碳

当Al含量增加至3~5%时,8~9%将会大大地促进钢锭的柱状结晶过程。因此而大大增加钢的机械热加工的困难,也使钢极易脱碳。(其热加工之所以困难是因为该合金钢锭具有粗晶结构,且其晶体的解理极弱,所以导热性低,加热时容易出现大的温度差而锻裂,甚至钢锭的去皮加工

都会使其晶界氧化而破坏。此外,它在800℃以上的高温长时间停置也极易变脆。

一般合金钢中含Al量:

合金结构钢:Al=0.4~1.1% (38CrAlA、38CrMoAlA、38CrWVAlA等)

耐热不起皮钢:Al=1.1~4.5% (Cr13SiAl、Cr24Al2Si、Cr17Al4Si等)

电热合金: Al=3.5~6.5% (Cr13Al4、1Cr17Al5、Cr8Al5、0Cr17Al5等)

甚至Al=8% Cr7Al7:考虑电热合金受荷不大,虽有脆性,仍可使用。

2、Si

(1)一般合金钢中的Si含量不会高于3.5%,更多时(4.8~6.5%)将使钢具有很高的脆性。

Si的有益作用:高的热强性和弹性极限,高的导磁率,涡流损失少。

①象Al、Cr一样,其氧化物均是尖晶石类型的组织。其晶格常数与α-Fe、γ-Fe区别小。因为其氧化物与金属分界处的晶胞之间就紧密而强固地结合在一起,氧化皮紧密地被贴在金属上,甚至在高温下也不剥落。所以它具有很强的抗氧化性和耐热性能,而被加入耐热钢。

②有利于提高钢的弹性极限,在中碳钢中加入1~2%的Si,调质中σb将增15~20%,而Aku也提高了,还提高了σs和δ。

③利于促进钢中石墨化而用于炼制石墨钢。此钢可制轴承,甚至作为工具钢代替,制冲头,拉模、弯曲模等。

④脱氧能力较强,是炼钢常用的脱氧剂,故一般钢中均含Si,其量≤0.5%。

⑤硅可减小晶体的各向异性,使磁化容易,使磁阻减小,它还可减轻钢中其他杂质对磁场磁感的危害(使%C石墨化,脱氧,与N形成氢化硅等)。所以可大大减少涡流损失。由于硅的脆性,目前高硅钢片硅含量规定为低于4.5%,最多只为4.8%,正在研究提高至6.5%。

⑥硅可显著地减慢回火马氏体在低温(200℃)时的分解速度。(在较高温度即400~500℃则作用并不显著)Si是铁素体形成元素,多加Si会使A-α转化。

(2)Si的不良影响

①促使石墨化,促进脱碳(它是阻止碳化物形成的一种元素),含Si钢一般不作渗碳。

②促进回火脆性的发展,使塑性降低。

Si对冲击韧性和韧性的温度储量的影响不是等值的。

当Si=1~1.5%时作用尚良好。Si=2.5~3%时则影响不良,含Si=2~2.5%,则难以锻造。

当Si≤2.3%时,矽铬钢对回火脆性的敏感性还很低,但对当Si=2.5~3.5%时,对回火脆性和敏感性就高。用这种钢必须采取韧性处理(回火后在水中浸渍,锻时用少韧处理),而当Si>3.5%时,甚至持用韧性处理也已不能消除矽铬钢的脆性。(不过,Mo的加入可使其脆性稍许改善),SI=4%时,室温下即可能脆裂。

③对碳素工具钢,Si含量上升时,将降低其淬透性等级。一般结构钢中均不宜加Si,对于高速钢,不大于0.4%。

④由于硅的存在,使钢中增碳困难,并使渗碳速度降低,所以此类钢多不作渗碳处理。

⑤硅锰结合,Mn可下降,因为Si引起的脱碳,Si有微弱的抑制晶粒长大的作用,可稍下降,Mn 引起的调质粗晶,有相互改善作用,但易生白点,应注意冶炼时原材料的干燥烘烤。

⑥硅在钢中还常以Fe、Mn的硅酸盐类夹杂物而存在,均会降低钢的各种性能,塑性比硫化物低。这类夹杂物透光度很高,而反光度则低,故显微镜下常呈灰黑色。

(3)一般合金钢中Si含量:

一般碳钢:Si<0.5%

合金结构钢: Si =0.9~1.6% (27SiMn、40CrSi、20CrMnSi、35CrMnSiA等)

弹簧钢:Si =1.5~2% (55Si2Mn、60Cr2Mn等)

轴承钢:Si =0.4~0.7% (GCr9SiMn、GCr15SiMn、GCr6SiMn等)

工具钢:Si =0.65~1.8% (SiMn、9SiCr、5SiMnMoV、6SiMoV等)

耐热钢:Si =1~4.3% (Cr17Al4Si、Cr20Si3、4Cr9Si2、4Cr3Si4等)

电机硅钢片: Si =0.8~1.8% 、1.8~2.8%、2.8~3.8%、3.8~4.8%为低、中、较高、高级硅钢片

3、Mn

(1)锰的有益作用是高的强度和耐磨性),淬透、渗碳、冷工硬化。

14%(高耐磨钢),17~19%(护环钢)

①作为炼钢的脱氧剂用,因为一般钢中均含Mn,其量≤0.7%。

② Mn和S作用抵消S对铁的红脆影响。

③ Mn对各类钢的作用是:

珠光体Mn钢:可提高其强度和耐磨性,塑性亦不错。所以它能细化珠光体组织。(对含碳量较高的钢,Mn↑,塑性稍有降低。对低碳钢则含Mn↑,而韧性↑。

奥氏体Mn钢:有足够高的塑性和很高的耐磨性。所以Mn能增加奥氏体的稳定性,扩大γ相区得奥氏体。降低淬火时的临界冷却速度。降低钢的临界点(A1和 A3)同碳量碳素钢低25~30℃,所以可提高钢的淬透性,淬火时的变形也比较小,因此适于制大截面和复杂的零件。Mn=5%时,Mn 降至0℃。

马氏体Mn钢:易使之发脆、淬裂。Mn易溶于铁素体内,形成弱碳化物其稳定性不强。所以加热过程中极易完全溶入奥氏休中,加之其临界点又低,所以晶粒极易粗化、极易淬裂,为此应严格控制淬火加热温度和保温时间,一般均以油淬或流动空气中冷却为宜,只有形状简单件才好用水淬。

调质钢:将降低其塑性(回火脆性影响)。

渗碳钢:Mn的存在能促进渗碳作用,所以能大大提高钢的表面硬度与耐磨性,尤其可贵的是在渗碳时表面软点较少,也不改变过分增碳的倾向。(渗碳后的锰钢,在最后淬火前,应进行一次正火或退火处理,以消除因长时间渗碳造成的心部过热)。

结构钢:将促使其回火脆性增强。

工具钢:加入约1%Mn,可减少淬火时的体积变形,这对于精密工具和长形工具来说有重要的意义。(如CrMn、CrWMn钢等)。

④ Mn可改善钢的焊接性和低温性能,还可减慢钢的脱碳作用。

⑤ Mn量中还可适当改善钢的切削性能。

⑥对某些钢,Mn的作用可代Ni,能扩大γ相区得奥氏体,如模具钢(增强淬透性)、奥氏体钢等。

⑦高锰钢对冷工硬化敏感,可提高钢的强度和耐磨性。(Mn=10~14%,而C=1~1.4%)

⑧铬锰奥氏体钢的热强性很好,甚至可超过Cr、Ni钢,加4%Cr、Ni红热耐磨性更好。Mn价廉。

(2)锰的不良影响是:

①增加钢的过热敏感性(粗晶):这是由于含Mn渗碳体的稳定性不强,在加热过程中很容易完全溶于奥氏体中。加之,Mn钢的临界点亦较低,所以就易粗晶了。为此锻造和热处理加热都要严格控制加热温度和保温时间。所有合金元素中,Mn是不能减低奥氏体晶粒长大倾向的元素,相反引起粗晶。

②增强钢对白点的敏感性,故要缓冷。(含C>0.3%时影响即较大)

③增强回火脆性,且易形成带状和纤维组织。故纵、横向性能差较大(Mn>2.4% 延伸率↓↓)

④高锰钢熔点低(Mn13~14%,T熔1350~1400℃)平均线膨胀系数大(相当于钢类矽钢的1.9倍),导热系数小(约为同类矽钢的1/3~1/4),热加工稍难。

⑤高锰钢在冷速不够时,易生成块状碳化物沿晶界析出,使钢变脆,采用水淬速冷时,可使碳化物来不及析出,得到均匀奥氏体组织,性能改善。但因为含Mn量高,导热性差,速冷则温差应力大而易淬裂,所以淬火次数不宜多。

(3)含Mn钢的分类

①碳钢:a、正常含Mn量碳钢

Mn=0.25~0.8%

B、较高含Mn量碳钢

Mn=0.7~1.0%

及0.9~1.2%

②锰钢:

Mn=1.1~1.8%

少数~2.4%

③高锰钢:

Mn=13~14%

(C=1.0~1.3%)

注:Mn<1.2%为炼钢脱氧及稍许改变钢性能,作一般矽钢。Mn=1.1~1.8%或2.4%为具高塑性、耐磨性,强度而被采用。Mn=2.4~13%为粗晶极脆而不可用。Mn=13~14%为冷工硬化而成为高耐磨钢。

4、Ni

(1)镍的有益作用是:高的强度、高的韧性和良好的淬透性、高电阻、高的耐腐蚀性。

①一方面既强烈提高钢的强度,另方面又始终使铁的韧性保持极高的水平。其变脆温度则极低。(当镍<0.3%时,其变脆温度即达-100℃以下,当Ni量增高时,约4~5%,其变脆温度竞可降至-180℃。所以能同时提高淬火结构钢的强度和塑性。含Ni=3.5%,无Cr钢可空淬,含Ni=8%的Cr 钢在很小冷速下也可转变为M体。

② Ni的晶格常数与γ-铁相近,所以可成连续固溶体。这就有利于提高钢的淬硬性,Ni可降低临界点并增加奥氏体的稳定性,所以其淬火温度可降低,淬透性好。一般大断面的厚重伯都用加Ni 钢。当它同Cr、W或Cr、Mo结合的时候,淬透性尤可增高。镍钼钢还具有很高的疲劳极限。(Ni 钢有良好的耐热疲劳性,工作在冷热反复。σ、αk高)

③在不锈钢中用Ni,是为了使钢具有均匀的A体组织,以改善耐蚀性。

④有Ni钢一般不易过热,所以它可阻止高温时晶粒的增长,仍可保持细晶粒组织。

⑤含Ni量相当高的钢,其热膨胀系数很小而用作不变钢(Ni36%)和代用白金(Ni42%)。

⑥含Ni更高时,与Cr结合作高电阻合金(Cr15Ni60、Cr20Ni80)。

⑦ Ni和V一样,对脱碳过程没有影响。

Ni本身不是有效的抗氧化学元素,所以很少单独用作不锈钢的合金元素,但对浓苛性碱有好的作用。

⑨ Ni可提高A体钢的蠕变抗力,但还一定值作用则减弱,须加入别的合金元素,通过固溶强化或沉淀硬化的途径来解决。

⑩ Cr、Ni钢的焊接性能和低温性能也不错。

(2)Ni的不良作用:

① Ni不能提高铁素体的蠕变抗力,相反会使珠光体M体钢热脆性增大。所以珠光体、马氏体钢不加镍。

②含硫气氛中的Ni钢耐蚀性也不及无Ni钢,因硫化镍会引起钢的赤热脆性。

③铬镍钢容易感受回火脆性和易形成白点(前者可在回火后采用速冷防止,后者应采用正确的熔炼规范和锻造、冷却规范防止。)

④对高速钢,因为它降低了它的硬度而被视为有害杂质,当Ni≈2%时或更高时,由于其抗600~660℃回火稳定性降低而热硬性变坏(使A体稳定不分解),所以硬度降低。

⑤同样,因为Ni降低钢之淬火层的硬度,在轴承钢中也不希望有它,Ni不大于0.30%,且

Ni+Cu不大于0.50%(Cu不大于0.25%)。

⑥ Ni虽可提高电阻,促使矽石墨化,但会降低磁感和最大磁导率。所以硅钢片也不希望有Ni。

⑦ Ni在我国早,价钱高。

⑧ Ni钢氧化容易起鳞,所镍钢的氧化铁皮粘在钢表面上不易脱落。

(3)一般合金钢中的Ni含量:

渗碳钢:含C=0.15~0.25%

Ni=1~4.5%

调质钢:含C=0.35~0.55%

Ni=1~1.75%

不锈钢:含Ni≤2% M体不锈钢,含Ni=8~18% A体不锈钢。含Ni=2~8% M-P体类不锈钢。

耐热不起皮钢:含Ni达9~36%,属A 体钢。

磁钢:含Ni<25%的(Ni25、Ni9Mn9等)为弱磁性钢,用930~1000℃淬火能很好不被磁化,可用于制机器,仪表等不应被磁化零件(电机环、指南针盒、电阻等)。

含Ni=25~30%的是陈化磁性钢,它具有非常高的磁性,当残余磁感应为5000~7500高斯时,矫顽磁力可达500~700奥斯特甚至1000,但它具有高的脆性(和硬度),所以多做铸造磁铁。

含Ni=35~37%的是恒范合金(不变合金)

Ni=42~44%的是类铂合金。

含Ni=50~80%的是高导磁率的合金,(但要很纯,才能发挥作用)

5、Cr

(1)铬的有益作用:具有许多有价值的性能:高硬度、高强度、屈服点、高的耐磨性而对塑性、韧性影响又不大,高的抗氧化性,耐蚀性,还能提高电阻和导磁率等等。

1)Cr是中等碳化物形成元素,在所有各种碳化物中,铬碳化物是最细小的一种,它可均匀地分布在钢体积中,所以具有高的强度、硬度、屈服点和高的耐磨性。由于它能使组织细化而又均分布,所以塑性、韧性也好,这对工具钢尤有价值。

2)Cr的碳化物也较难溶解,在短时间加热下有阻碍晶粒长大作用,长时间渗碳还会粗晶。所以可减小过热敏感效应。

3)Cr可使A 体分解速度减缓,降低淬火时的临界冷却速度,因而有助于M体形成和提高M体的稳定性,所以Cr钢均有优良的淬透性,且淬火变形较小。注意:Cr是铁素体形成元素,缩小γ区,所以在没A体化元素存在时,高Cr钢将呈铁素体组织。

4)Cr与W或Mo结合,能使淬火钢中残余奥氏体增加,而有助于获得需要粉碎程度的碳化物相。5)Cr能大大提高结构钢的强度和塑性,这种影响在Cr与Ni结合的钢中尤其显著。如12CrNi3N 等。

6)Cr≥12%时,有好的耐蚀性,再加8~9%的Ni,耐蚀性更会大大提高。Cr提高耐蚀能力的作用随含碳量增加而会有所降低,因为Cr与C结合后不起作用。

7) Cr≥25~30%时,有好抗氧化性。如Cr=27~28%即可作1300℃的热电偶温度计的防护罩,当Cr 与Si、Al结合时,甚至Cr相当少而抗氧化性也很高。如Cr 6~10%+Si 2~3%就有高的耐热性和抗氧性。

8)Cr、Al结合(1Cr17AL5、Cr13AL4等)及Cr、Ni结合(如Cr15Ni60、Cr20Ni80等)均有很高的电阻。

9)Cr能提高钢的矫顽力和阻止钢的组织时效,所以Cr钢用于制造永久磁铁。

10)Cr价较低。

11)因为Cr可形成稳定的碳化物,减缓碳的扩散和生成紧固的氧化皮膜,所以可降低脱碳作用。12)含Cr>2.5%的多元素合金钢。(18Cr3MoWVA、20Cr3MoWVA等)是良好的抗氢蚀钢。

含Cr<0.08% 这是石墨钢的要求,所以Cr是阻止石墨化的一种元素。

含Cr≯1.2%

低合金高强度钢(一般Mn钢和SiMn钢)

含Cr=0.5~1.65% 作轴承钢(C≈1%)——其合金含量低,价廉,而又具有高强度、高耐磨性、良

好的耐疲劳性和淬透性,且热处理也简便。

含Cr=3~10%的钢——Cr对钢强度和韧性的影响是Cr<2%时逐渐增强到2%时,强化作用最为显著。但超过此限则会损害其热强性。3~10%时最为明显,当含Cr>12%时,则强度又复升高。但

是当含Cr量增至3%时,由于其马氏体回火稳定性显著增高。所以有较高的硬度和耐磨性而用于

模具。当含Cr 量增至3%时,其与含C1%的磁性配合也最好。所以又用作磁钢。含Cr4%而与18%W 及1%V结合可得到很好的红硬性(620℃ HRC=60),所以广泛用于高速工具钢中,含Cr5%的钢(含C1%)即可空气中淬火。含Cr5~6%及含Cr6~10%且含Si2~3%的矽铬钢,尽管强度不是很高,但亦具有足够的耐热性和抗氧化性而用于气阀中及石油、化学工业(氨合成设备等)。

含Cr=12~14%的钢是最典型的不锈钢(1Cr13~4Cr13)它们都有较高的抗蚀力,强度也不错,面Cr12、Cr12Mo等则是典型的具有高淬透性和高耐磨性的模具钢。(此类多属马氏体钢)

含Cr=16~18%的钢有的只具单相(铁素体),有的双相(M体—铁素体),此类具单相的Cr钢耐蚀力比含Cr=12~14%的钢还高。如Cr17、 9Cr18等,如再加8~9%的Ni其耐蚀力又将大大增

高。如1Cr18Ni9、1Cr18Ni9Ti等都是典型的不锈钢、耐酸性较好,CrNi钢的缺点是有晶间腐

蚀,加Ti、Nb可改善。

含Cr=23~32%的钢具有很好的抗蚀稳定性,极高的抗氧化性,甚至在普通温度下能抵抗浓硝酸、浓磷酸、浓硫酸的浸蚀。含Cr 27~28%的钢可作1300℃的热电偶温度计的防护罩。这类钢是纯铁素体钢,所以不能通过热处理改变其组织及性能。且再结晶温度较低,粗晶作用较强,有高的脆性,所以不能作受振及打击零件。加入Mo、W、V可适当改变性能。减少Cr含量,加Si量可提高其热强度如Cr9Si2、Cr10Si2Mo等。加 Ni也成,如Cr20Ni14Si、Cr25Ni20、Cr18Ni25Si、

Cr14Mn14W、Cr18Ni6Mn5等等。

Cr不同于Mn、Ni,它是缩小γ区的合金元素。(它同α-Fe都具有体心立方晶格,且自熔点1849℃至绝对0oK,纯铬均为这一晶格不变),所以随含 Cr量增加Ac3虽也从910℃开始降低,但其速很慢,而Ac4却从1400℃迅速降低,至含铬达8%时Ac3为850℃已为最低。含Cr再增加,Ac3 即迅速上升。当含Cr量达13%时,Ac3与Ac4会合为一点,γ区被封闭,所以含Cr>13%时变为纯铁素体相,不再发生转变,用热处理也不能再改变其晶粒尺寸。——即为铁素体钢。当Cr量继续增加,约在25~60%特别是45~48%区域,当温度低于950℃时(多在820℃)慢冷,将会析出一种无磁

性脆性组分——σ相。这些在进行二次加热后将会游离析出,致使得在固溶体中产生巨大体积改

变造成颇大应力,故极脆。但在950℃以下急冷时,σ相可由于固溶体内不析出,影响则较小。δ

相问题:有人指出,当Cr和C含量搭配时,特别在含左右时,将极易生成游离态的铁素体即δ相,它将使钢的工艺性能和耐热性降低,所以要很好注意在含Cr=0.11%时,含Cr=10.9%可使δ相量减至最少。

Cr对抗腐性的改善上很有利的,但对抗蠕变的影响则较复杂。因为作耐热钢应注意,当含Cr=1%

抗蠕变强度最高。含Cr↑则出现,Cr>C3三方晶格,至 Cr=7%抗蠕强降至最低点,当含Cr增至12%时,Cr23C6将取代Cr7C3,抗蠕强(耐热性)可有少许提高,添加V、Nb、Ti可得极细弥散相,对抗蠕强(耐热性)改善极为有利。

6、W

(1)W的良好作用是:

1)细化晶粒,(其作用比Cr还强,所以可降低钢的过热倾向性,提高强度、韧性和热稳定性。2)提高M体稳定性,大大提高淬透性,18CrNiWN任何冷却速度都能完全淬透,得M体,用W18%

与Cr4%配合,M体稳定性可达600℃,保持红硬性。

3)阻止回火脆性发展,所以可提高强度同时不降低塑性,提高韧性。

4)提高淬火钢的矫顽磁力,阻止钢的组织时效。

5)其碳化物极其稳定,高温也难溶进固溶体,所以可作高速工具钢。

6)W钢一般硬度、耐磨性较好,热处理变形小,不易淬裂,回火稳定性也较好。

7)W因能提高A体的稳定性,而用于阀门钢中,缩小γ区,同Cr。

8)可提高珠光体耐热钢的热强性,提高再结晶温度。

9)在高合金Cr、Ni钢中加入2~4%W便可提高钢的屈服点,疲劳强度和热稳定性,并因为形成碳化物而减小晶向腐蚀倾向(Fe3W2和Fe2W都是极稳定的化合物,高度弥散,所以可提高强度、热稳定性。)

(2)W的不良影响:

1)增加脱碳(碳化物稳定)阻止石墨化。

2)W是强碳化物元素,应防止碳化物不均影响性能而成废品(可增加镦拔数及正火处理纠正)。3)含W>9%时硬度显著提高,而δ、ψ显著降低。

4)W使钢导热率降低,含W>10%其导热率只有纯铁的0.7倍。

5)含W增加,可锻温度范围降低。

(3)一般合金钢中的W的含量:

合金结构钢:W=0.3~1.0% (例20Cr3MoWVA、18Cr3MoWVA等)

耐热不起皮钢:W=0.3~3.2% (上二种为抗氢钢亦属此类,又如Cr15Ni36W3Ti等)

合金工具钢:W=1~18%(CrWMn、W、W2、3Cr2W8V、P9、P18等)

向钢中加入多于20~22%的W,是不合适的。所以超过此值W对钢的性能的改善并没更好的作用,所以多加是不经济的。

一般提到的降低回火脆性的方法有如下几种:

1)在钢中加入0.3~1.0%的Mo或1~1.5%的W。

2)回火时采用快速冷却,用水冷或油冷。

3)提高回火温度,此法因为使性能(强度)下降,得不到充分发挥,所以少用。

4)延长回火时间,或增加重复高温回火的次数。

5)降低淬火温度,或采用二次淬火①AC3以上正常淬火②AC1~AC3之间不完全淬火以消除回火脆性。

6)在钢中加入V(约是钼含量%+0.1%可等效),以提高钢的回火稳定性,抑制回火脆性,不过此作用甚微。

7)采用形变热处理,即加热至AC3以上进行形变(变形度15~20%最佳)后立即淬火回火,韧性提高3倍。

8)高速度(1000℃/秒)加热和冷却,最后二种方法因为生产上很难实现而未被采用。

注:常说的回火脆性是第二类回火脆性(即450~570℃可650~700℃出现的),而第一类回火脆性(250~400℃),所有钢都不可避免的存在,而可用重复回火即能消除,故多不再讨论。

7、Mo

(1)钼的良好作用是:

1)细化晶粒的作用比W更强,所以可降低钢的过热倾向性,提高强度、硬度、热稳定性。

2)Mo在钢中会使锻件σb、σs、HB↑,而使δ、ψ、αk↓。提高M体回火稳定性,与Cr、Ni结合可大大提高淬透性,可细化晶粒,提高韧性,使锻造加工容易。

3)降低回火脆性,对某些结构钢可消灭回火脆性(如24CrMoV5),所以可提高强度而塑性并不降低,钼可提高钢的冲击韧性。①又一说是合金元素(包括 Mo在内)均只有抑制回火脆性的作用而不能达到消除回火脆性。Mo的影响是:含量达0.2%即有良好作用。所以普通合金结构钢含Mo0.25~0.4%对放置回火脆性温度范围550~600℃长期工作的钢才规定含Mo为0.5~0.6%,当含Mo量超过一定值时(对低碳钢此限为1.0%),则反而会使高温回火水冷钢变脆。Mo钢长时间回火易变脆。②当含P和Mo较高时,即使有Mo或W等也仍不能避免回火脆性产生。③附带说说降低回火脆性的方法(见上段)。

4)提高钢的的矫顽力,改善磁性。

5)其碳化物也很稳定,它并阻止其它碳化物析出。高温也很难向固溶体转移。

6)钼可代钨(因为原子量成半关系,所以可用1%Mo代替2%W)。

7)同样Mo亦可提高奥氏体稳定性而用于阀门钢。

8)可提高Cr、Ni不锈钢的抗晶间腐蚀能力。

9)在某些还原性介质中易使耐酸不锈钢钝化,从而提高耐腐蚀能力。(如亚硫酸、沸磷酸及醋酸、草酸、蚁酸等)。

10)可提高珠光体耐热钢的热强性,并可单一加进耐热钢,其量约0.5~1%(并独作合金元素时会使钢有石墨化倾向)。

(2)钼的不良影响:

1)有挥发性,在加热时,会生成褐色烟气(氧化钼)发生蒸发。

2)促进脱碳,所以为防止脱碳其淬火温度应较一般降低10~20℃,阻碍石墨化。

3)Mo是铁素体形成元素,所以为了得到奥氏体,应相应多加Ni、Mn等奥氏体形成元素。否则当Mo含量较多时就易出现铁素体δ相或其它脆性相而使韧性降低。

4)Mo降低钢导热率的作用同W,但Mo可防止过热。

5)Mo钢比碳钢变形抗力高。

(3)一般合金钢中的钼含量:

合金结构钢和工具钢:Mo=0.15~0.30% (例5CrNiMo、35CrMo、40CrMnMo、38CrMoAlA等)

不锈耐酸钢:Mo =1~2.6% (如Cr17Mo2Ti、Cr25MoTi、Cr18Ni18Mo2Cu2Ti等)

耐热不起皮钢:Mo =0.4~1%(16Mo、20CrMo、Cr5Mo、25Cr2Mo1VA、15Cr11MoV等)

航空用高温合金:Mo =0.35~7% (如901合金=Cr12Ni43Mo6Ti3BMo2Ti)

8、V

(1)钒的良好作用是:

1)细化晶粒作用强,可提高钢的强度和韧性,减小过热敏感性,提高热稳定性。

2)提高M体的回火稳定性。它对淬火钢硬度的影响,与温度有关:在正常淬火温度下(稍高于AC3点时)。因为V与C化合成VC而降低了固溶体的合金度,所以硬度降低,当淬火温度提高至超过AC3点很多时(且有较长保温时间),则VC都转进固溶体,所以硬度可提高。一般地说V对淬透性有不利的影响,但韧性较好,加了V不易淬裂。中碳钢加V强度↑,韧性不变低。

3)V与O、N都有很大的亲和力,亦是强碳化物元素。一般VC的弥散度很高,且极稳定。所以它既利脱氧、脱气得到致密细晶组织,提高塑性、韧性及高强度,其冲击性能和疲劳强度都较无V 钢高,在高温及低温(<0℃)均有高强度、韧性。由于碳化钒的高度分散阻止焊缝晶粒粗大,所以可改善钢的可焊性能,但加热到 VC溶解温度后即会引起钢晶强烈长大。

4)由于V可提高钢的高温蠕变能,所以是热强钢合金元素之一。

5)由于V钢表面内部均有细晶组织,所以对渗碳有利,可延长渗碳进行时间,无须进行二次淬火,一次即可直接淬至要求性能。

6)V对结构钢机械性能的影响尚无定论。

(2)钒的不良影响:

1)V无减低回火脆性的作用,因为V可提高回火稳定性,可细化晶粒,所以当V量不高时,也可适当提高韧性,而降低回火脆性。

2)有阻碍钢的脱碳及石墨化的作用。

3)含量达0.05%时将使硅钢矫顽力降低,这可能由于脱氧的作用。

4)含碳一定时,V↑会使HB↓,所以一般含V≯1%(因为不溶入固溶体)。

(3)一般钢中的含V量:

合金结构钢:V=0.07~0.35

(例20MnV、10CrV、45CrV、12CrMoV、25Cr2Mo1VA等)

在合金结构钢中,由于含V>0.3%时将使回火脆性倾向急,则增大而少用。

耐热钢:V=0.1~1 (例20Cr3MoVA等)V可提高高温蠕变性能,有脱氧能力。氮化钒的弥散硬化作用可使其有耐蚀和高的热强性,但V的时效脆性使含其量不宜过高。

高速钢:V=0.1~2.6 最近在研究增至5%,主要因为它能提高工具的热强度,特别是可提高它的切削性能(对切削高硬度材料亦很有利)所以加得多,但其量达一定值后,性能再增就不显著了。

9、Co

(1)Co良好作用是:

1)能细化晶粒,可降低钢的过热倾向性,向高速钢中加Co,可提高其耐用度。

2)能提高钢的热强性(热硬性),它给高速钢增加了合金化的强度和促进回火碳化物形成。

3)能提高磁钢的矫顽力又同时提高它对磁碱留感应值,所以对磁钢有良好的影响(它本身即为磁性物质)。

4)含碳量很高时会促进钢中碳石墨化。

(2)Co的不良影响:

1)含量过高,难以锻造。因为易析出硬而脆的金属化合物。

2)有相当高的脱碳倾向性。

3)价格昂贵,所以下列各种钴钢都很少使用。

4)钴的一个特性是:降低奥氏体的稳定性,促使钢中奥氏体等温转变曲线(C-曲线)左移。

5)因为易析出硬而脆的金属间化合物使机性变坏。

(3)一般合金钢的钴含量:

1)热强钢:含Co=2~4%

(主要是铬钴钼钢组)

2)高速钢:含Co=4.5~10.5%

(BCo5、BCo10等超过10%作用已无显著增加)。

3)磁钢:含Co=2.5~16.5%

(Cr6Co3、Cr6Co5、Cr7Co10Mo、Cr9Co15Mo等)。

10、Ti

(1)钛的有益作用是:

1)能形成很强固的TiC,可稳定到1300℃,有此稳定到高温的高度分散的TiC质点,所以可细化晶粒,降低钢的过热倾向性。

2)能防止产生晶间腐蚀现象,实践知:当Ti:C=5(一般C=0.03)时,效果最佳。当Ti:C=3,抗蠕变强度最高。满足上条件时的钢,因为所有的游离碳都被结合成了强固TiC,所以在加热过程中就不会再沿奥氏体晶界析出碳化铬。否则,晶界碳化铬的生成就将出现晶界固溶体的贫铬区,其电位就相对地降低了,而与固溶体基体和碳化物形成微温差电偶,晶间固溶体本身即为阳极而被腐蚀。晶间腐蚀的程度将随含碳量增加而加强。(粗晶亦易蚀)

3)钛钢易产生时效硬化,含钛量超过2%的低碳合金,其时效硬化就尤其明显。

4)钛可改善不锈钢的焊接性能。

5)Ti是强烈的铁素体形成元素。0.65%Ti就能使γ区完全封闭。它又是强碳化物形成元素。

6)Ti能与S作用,降低硫的热脆作用,这与Mn相似。

(2)钛的不良影响:

1)含Ti钢,特别是低碳之Ti钢,往往因其钢液粘度较大,而使其中非金属加杂,不易分离浮出应一致,在防止造成缺陷应注意。可在冶炼时注意高温操作和钢液的脱氧。

2)淬火钛钢硬度随含Ti量增加而降低。因为TiC非常稳定,甚至加热到1300℃都不能溶入到固溶体而减少了合金固溶体中的碳浓度的缘故。

3)钛与N、O有很大的亲和力而极易成形TiN和TiO2,钢锭在较低温度时,就形成了较多的非金属夹杂和皮下多孔等缺陷。

4)Ti也是铁素体形成元素,所以其含量较多(>2%)就易生成铁素体δ相或其它脆性相而使韧性

降低。

5)铜V一样,含Ti达0.05%时就将使硅钢矫顽力降低,这可能是脱氧的作用,它对硅钢还会促进其二次再结晶,这倒可得粗晶而改善磁性。

(3)一般钢中的Ti含量:

1)通常钢中含Ti量取决于它的含碳量,一般约为Ti%=4~8倍*C%。

2)合金结构钢中有铬锰钛钢、不锈钢和耐热钢中也含Ti,一般为0.06%~2%。

11、Nb

(1)铌的有益作用是:

1)能生成高度分散的强固的碳化物NbC(熔点3500℃),所以可细化晶粒,直加热至于1100~1200℃,仍可阻止晶粒长大。

2)同Ti能防止产生晶间腐蚀,实践知,以含Ni=8*C%为佳。

3)能与Fe生成金属间化合物Fe2Nb2,这种化合物在α铁中听溶解度随温度↑而↓,所以含Nb低碳钢能促进时效硬化。

4)加铌可提高低碳钢的抗强度和屈服点(25%),可提高不锈钢的高温抗蚀性和强度,可提高抗酸能力。

(2)铌的不良影响是:

1)同Ti钢,铌钢的硬度亦将随含Nb量↑而↓。

2)Nb虽可细化晶粒而提高钢的韧性,但含量过高时,亦将生成铁素体δ相或其它脆性相,而使其韧性降低,热加工性能变坏。

一般合金钢中的含Nb量:仅不锈钢中含Nb,其量为8~12*C%≤1.5%。

12、Cu

(1)铜的有益作用:

1)能提高钢中奥氏体的稳定性,所以可提高可淬性和淬透性,在A体钢中加2

~4%Cu,可提高抗酸力。

2)有强化铁素体的作用,在铁素体中加Cu,可提高它在某些还原性介质中的耐蚀性和改善钢的韧性。

3)在低合金钢中加入0.20%左右的Cu,特别当和P联合使用时,可提高钢对大气的抗蚀力,当含Cu量超过0.75%时,可以经过沉淀硬化处理提高钢强度。

4)Cu是一种强烈的石墨化元素,用于炼制石墨钢。(Cu钢的时效硬化是因为Cu在α铁中的溶解度变化很大,在830℃时达3.5%,到20℃则降至0.35%,所以含Cu>0.35%者可促进时效硬化。)(2)铜的不良影响是:

1)含Cu量较高时将导致钢具热脆性,而使热锻轧加工困难。

2)含Cu过多会使矫顽力和磁滞损失增加,于磁钢不利。

3)“铜脆”——在钢的缺陷一文中指出当Cu>0.2%时,加热过程由于表面发生选择性氧化,使Fe先Cu而发生氧化,而表层Cu含量即相对增加形成一层薄膜,然后向扩散形成含Cu网络,在1030℃即容易锻裂。适量加Ni可生成熔点较高的Cu-Ni固溶体,可降低“铜脆”。

综合来说,含Cu<0.7%会溶于α-Fe中,促使碳不氧化,对磁性无大影响。含Cu=0.5%时,防锈能力可提高15倍;含Cu>0.7%时将出现不均匀混合物,而使矫顽力和磁滞损失增加,并使铜变脆。

(3)一般合金钢中含铜量:

1)硅钢:含Cu=0.2~0.3%

2)轴承钢:含Cu≤0.25%,且Cu+Ni≤0.50%,因为Cu会引起时效硬化而影响轴承精度,Ni会降低淬火层硬度。

3)低合金钢:Cu≤0.2%(对低合金高强度钢,合金元素含量一般地都限制在≯0.2%范畴)。

4)不锈钢:含Cu=2~4%(Cr18Ni9Cu3Ti等)。

5)石墨钢:含Cu=0.6%

13、S

(1)硫的有益作用是:

1)由于其切屑发脆而可得到非常光泽的表面,所以可用于制要求负荷不大而具高表面光洁度的钢制件(名为快削钢)。

2)某此高速钢工具钢进行硫化表面以达到如下目的。

(2)硫的不良影响是:

1)引起热脆:主要是因易生成(Fe+FeS)易熔共晶体分布于奥氏体晶界所致。

2)硫能使结构钢的塑性银屏剧降低,使工具钢的淬裂敏感性增高。

(3)、一般合金钢中的含S量:

1)一般地说,硫对各种钢均为有害的杂质元素,所以均限制它的含量。

普通碳钢S≤0.05%,酸性转炉冶炼,18MnSi及25MnSi钢允许含S≯0.05%).

轴承钢S≤0.02%

优质碳钢S≤0.04%

高级优质钢S≤0.03%

仅有极个别要求表面很光洁的钢(如Cr14)有意加进少量的硫(=0.2~0.4%)(Cr14可做螺钉、螺母、磁轮及其它螺纹零件,其表面光滑,耐磨性好)

14、P

(1)磷的有益作用:

1)由于其切屑发脆得到光洁的表面而加进快削钢,制受荷不大的零件。

2)某些高速钢,工具钢进行磷化表面处理以达到如下目的……

3)磷可提高比电阻,且由于容易粗晶而可使矫顽力和涡流损失降低,于磁感而言,则在弱中磁场下磷含量高的钢磁感会提高。而在磁场下则磷含量增高而磁感略有减弱。含P硅钢的热加工也并不困难。所以硅钢中有时加磷,但由于它会使硅钢具冷脆性。所以其量甚微≯0.15%(如冷轧电机用硅钢含 P=0.07~0.10%)。

4)磷是强化铁素体作用最强的元素。(P对硅钢再结晶温度和晶粒长大的影响将超过同等硅含量作用的4~5倍。)

(2)磷的不良影响:

1)磷溶于铁素体中,会使其晶格歪曲,晶粒长大,而且有冷脆性。P>0.13%时脆性特甚,P使钢破断能转变温度增高的作用比碳强约20倍。

2)和Mn一样使钢晶粒粗化。

(3)一般合金钢的磷含量:

普通碳钢P≯0.055%

轴承钢

P≯0.027%

P+S≯0.045%

优质碳钢

P≯0.045%

合金钢

P≯0.15%

P+C≯0.025%

高级优质钢

P≯0.035%

15、B

(1)硼的有益作用:

1)钢中加入微量的硼(0.0005~0.005%)即可显著提高钢的淬透性,此时对其它性能等无影响或影响甚小。——这在一定程度上可代替Ni(Cr、Mo)

2)硼对钢的淬裂敏感性影响很小。

3)结构钢中的硼会降低钢材在正火后的冲击值,但在淬火+低温回火后,却能得到良好的冲击值。

4)低碳硼钢渗碳性能良好,表面碳浓度不易过度增大。所以可得到高强度和疲劳强度,渗碳后可直接淬火,对缺口敏感性也很小。渗碳硼钢以含C≯1%为宜。

5)中碳硼钢在调质后有良好的综合机械性能。(其回火稳定性,回火脆性、疲劳极限与强度、硬度的关系等基本上同无硼钢)。

6)硼钢的热加工性能良好,同一般合金结构钢。

7)硼溶于固溶体,晶格变大,使强度提高,晶界中硼有阻止再结晶扩散作用,所以可增加钢的热强性。

(2)硼的不良影响:

1)含B量超过0.007%时,容易引起脆性(有说珠光体为此值,其它类钢可多些)。

2)会降低A体晶粒粗化的温度,易粗晶,但加铝可改善。

3)在尺寸硼钢热处理时心部易生针状铁素体而影响机械性能。

4)硼与O、N亲和力很强,易生非金属夹杂,且因此应多加硼量。为克服此缺陷可于冶炼时加0.1~0.12%Al和0.06~0.04%Ti以脱氧,去氮(Al、Ti未考虑烧损值)。

一般合金钢中含B量:0.001~0.005%

(目前仅合金结构钢中有硼钢含值如前,而其它含硼钢还少见到,国外硼钢品种较多,但其含量均不超过0.005%,否则淬透性反而变劣)。

16、N

(1)氮的有益作用:

1)N亦是强烈的A体形成元素,在这点上它与Ni相似,比Ni作用强27倍,特别在不锈钢中得到广泛注意。它有可能是代替Ni的重要元素之一,特别与Ni其同作用,稳定A体效果更好,尤利代Ni。

2)N还可在复杂的A体钢中借氮化物的析出而产生弥散硬化。因此,可在无显著成绩脆性的情况下提高它的热强性。

3)N能提高高铬钢,特别是含V的的高铬工具钢的热硬性。N能使这些钢的二次硬度的回火温度的间段增大,并使此间段向更高温方面移动,所以可得到较好的综合性能,在高铬钢中N还能改善其热加工性能。

4)N在铁素体中可促使A体形成,由于γ相的出现,可减小晶粒粗化倾向,所以可改善钢的韧性和焊接性能。

5)N对磁钢的影响较大:如当N溶解在钢中的固溶体状态存在时会使矫顽力稍增而磁导率降低,当形成AlN、FeN等非金属夹杂影响就加剧。N还是引起硅钢片磁时效的主要因素之一。一般说一定数量的夹杂对得到取向组织是有益的。所以它可阻碍位向不适合的晶粒生长。从而使取向合适的晶粒加速成长。N对取向冷轧变压的质量也有很大影响,过多或过少的含N量都不易使N量使冷轧硅钢片获得大晶粒和高磁性。适宜的含量是N =0.01~0.1%或更低至0.001%,但要获得更好磁性,最好能在热处理后将冷轧硅钢片中残留N除去。

6)钢的表面渗N,可使它得到高的表面硬度(RC70)500~600℃中进行和耐磨性,高的疲劳极限和抗蚀性(600~700℃中进行)。

7)铬锰钢中加入0.35~0.45%以上的N即可得单一的A体组织。

(2)氮的不良影响:

1)它与合金元素生成氮化物是非金属夹杂,更重要的是降低了合金元素的作用。

2)含N钢在退火过程中因氮化物析出而会显著降低它的塑性。

3)含N钢在锻造过程中N会产生挥发,所以工业用钢中含N成分标准是很难拟订的。

4)由实际表明,在一定含量的Cr,N钢中,必有一与其相适应的最小Mn含量,如低于这一Mn含量,钢在凝固时N就会逸出,而成气孔。例含Cr 15%,N 0.45%,Mn的最小含量为14.5~15%。(3)一般合金钢中含N量:

1)硅钢(冷轧):N=0.01~0.1%或更低至0.001%

2)不锈铬钢:N=(1/75~1/100)Cr%

3)氮化钢:38CrMoAlA、25CrMo2VA等

Cr18Mn10Ni5Mo3N钢其含N≤0.3%(用于尿素工业),有铬锰氮钢及铬锰氮镍钢等。如

Cr17Mn8Ni5N,目前铬锰氮钢因为具有良好的耐氧化可抗腐蚀的性能,其它性能需求也不坏,故它用来代替铬镍A体钢而取得相当成效,但无镍之铬锰氮钢,因为锭中容易产生严重气泡而未能多用。

注:TiN常呈规则晶状,颜色金黄。

17、H

氢的作用:

1)H 能提高钢的磁导率,但也会使矫顽力和铁损增加(加H后矫顽力可增大0.5~2倍)。

2)H与C作用能生成甲烷(CH4),所以H 的存在会促进脱碳。

3)H是一般钢中最有害的元素。因为它是产生钢中白点的罪魁祸首,实验知钢中形成白点的危险含H量为5~6cm3/100g Fe,主要是因为A体可溶H量大,而冷至低温珠光体则溶解度大大减小,所以当冷却过快,高压氢气来不及析出钢外,高压氢的张力与其它诸种应力作用,即可能超过材料的σb,因此产生许多微裂,此即谓之白点。实践知640~650℃最易使A体转变为珠光体,200℃则最关于钢中的危险含H量,不同的资料有不同的数据。

18、O

氧的作用:

1)残存于钢锭中的氧,或扩散到金属表层的氧,均易使晶界氧化而形成脆性的氧化物夹层,把(A体晶粒隔绝开来。以至在随后的变形加工中引起晶间裂纹(后者也即常说的过烧)。实践知,只要钢中含O量超过0.03~0.04%,其强度和塑性就明显下降。

2)氧与碳的作用,可能将钢中碳烧损以至造成脱碳,但是当有过量氧的情况下,则表面脱碳层将被完全烧成氧化皮而反而成了一层保护膜,而使脱碳过程减慢。(此时烧损金属较多,其作用还要看氧化皮的组织改善性。

3)氧会使硅钢中铁损增大,磁导率及磁感强度减弱,磁时效作用加剧。

4)FeO在高温时稳定,但当温度降低至560℃以下时则易分解成Fe3O4及α-Fe,钢加热后在空气中慢冷则可能出现Fe2O3。(钢中氧化物塑性差,氧化后则几乎无塑性)

常见八种金属材料及其加工工艺

常见八种金属材料及其加工工艺 1、铸铁——流动性 下水道盖子作为我们日常生活环境中不起眼的一部分,很少会有人留意它们。铸铁之所以会有如此大量而广泛的用途,主要是因为其出色的流动性,以及它易于浇注成各种复杂形态的特点。铸铁实际上是由多种元素组合的混合物的名称,它们包括碳、硅和铁。其中碳的含量越高,在浇注过程中其流动特性就越好。碳在这里以石墨和碳化铁两种形式出现。 铸铁中石墨的存在使得下水道盖子具有了优良的耐磨性能。铁锈一般只出现在最表层,所以通常都会被磨光。虽然如此,在浇注过程中也还是有专门防止生锈的措施,即在铸件表面加覆一层沥青涂层,沥青渗入铸铁表面的细孔中,从而起到防锈作用。金属加工微信,内容不错,值得关注。生产砂模浇注材料的传统工艺如今被很多设计师运用到了其他更新更有趣的领域。 材料特性:优秀的流动性、低成本、良好的耐磨性、低凝固收缩率、很脆、高压缩强度、良好的机械加工性。 典型用途:铸铁已经具有几百年的应用历史,涉及建筑、桥梁、工程部件、家居、以及厨房用具等领域。 2、不锈钢——不生锈的革命 不锈钢是在钢里融入铬、镍以及其他一些金属元素而制成的合金。其不生锈的特性就是来源于合金中铬的成分,铬在合金的表面形成了一层坚牢的、具有自我修复能力的氧化铬薄膜,这层薄膜是我们肉眼所看不见的。我们通常所提及的不锈钢和镍的比例一般是18:10。 20世纪初,不锈钢开始作为元才来噢被引入到产品设计领域中,设计师们围绕着它的坚韧和抗腐蚀特性开发出许多新产品,涉及到了很多以前从未涉足过的领域。这一系列设计尝试都是非常具有革命性的:比如,消毒后可再次使用的设备首次出现在医学产业中。 不锈钢分为四大主要类型:奥氏体、铁素体、铁素体-奥氏体(复合式)、马氏体。家居用品中使用的不锈钢基本上都是奥氏体。 材料特性:卫生保健、防腐蚀、可进行精细表面处理、刚性高、可通过各种加工工艺成型、较难进行冷加工。 典型用途:奥氏体不锈钢主要应用于家居用品、工业管道以及建筑结构中;马氏体不锈钢主要用于制作刀具和涡轮刀片;铁素体不锈钢具有防腐蚀性,主要应用在耐久使用的洗衣机以及锅炉零部件中;复合式不锈钢具有更强的防腐蚀性能,所以经常应用于侵蚀性环境。

金属材料的分类及性能

金属材料的分类及性能 一、金属材料定义:是金属元素或以金属元素为主构成的具有金属特性的材料。 二、金属材料分类: ①黑色金属:纯铁、铸铁、钢铁、铬、锰。 ②有色金属:有色轻金属、有色重金属、半金属、贵金属、稀有金属 三、金属材料性能: ①工艺性能:铸造性能、锻造性能、焊接性能、切削加工性能、热处理性能等 ②使用性能:机械性能、物理性能、化学性能等 1. 工艺性能 金属对各种加工工艺方法所表现出来的适应性称为工艺性能,主要有以下五个方面:(1)铸造性能:反映金属材料熔化浇铸成为铸件的难易程度,表现为熔化状态时的流动性、吸气性、氧化性、熔点,铸件显微组织的均匀性、致密性,以及冷缩率等。铸造性能通常指流动性,收缩性,铸造应力,偏析,吸气倾向和裂纹敏感性。 (2)锻造性能:反映金属材料在压力加工过程中成型的难易程度,例如将材料加热到一定温度时其塑性的高低(表现为塑性变形抗力的大小),允许热压力加工的温度范围大小,热胀冷缩特性以及与显微组织、机械性能有关的临界变形的界限、热变形时金属的流动性、导热性能等。可锻性:塑性和变形抗力 (3)焊接性能:反映金属材料在局部快速加热,使结合部位迅速熔化或半熔化(需加压),从而使结合部位牢固地结合在一起而成为整体的难易程度,表现为熔点、熔化时的吸气性、氧化性、导热性、热胀冷缩特性、塑性以及与接缝部位和附近用材显微组织的相关性、对机械性能的影响等。 (4)切削加工性能:反映用切削工具(例如车削、铣削、刨削、磨削等)对金属材料进行切削加工的难易程度。 (5)热处理性能:热处理是机械制造中的重要过程之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的,所以,它是机械制造中的特殊工艺过程,也是质量管理的重要环节。 2. 机械性能:

金属材料的力学性能

金属材料的力学性能 任何机械零件或工具,在使用过程中,往往要受到各种形式外力的作用。如起重机上的钢索,受到悬吊物拉力的作用;柴油机上的连杆,在传递动力时,不仅受到拉力的作用,而且还受到冲击力的作用;轴类零件要受到弯矩、扭力的作用等等。这就要求金属材料必须具有一种承受机械荷而不超过许可变形或不破坏的能力。这种能力就是材料的力学性能。金属表现来的诸如弹性、强度、硬度、塑性和韧性等特征就是用来衡量金属材料材料在外力作用下表现出力学性能的指标。 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 金属材料的机械性能 1、弹性和塑性: 弹性:金属材料受外力作用时产生变形,当外力 去掉后能恢复其原来形状的性能。力和变形同时存在、同时消失。如弹簧:弹簧靠弹性工作。 塑性:金属材料受外力作用时产生永久变形而不至于引起破坏的性能。(金属之间的连续性没破坏)塑性大小以断裂后的塑性变形大小来表示。 塑性变形:在外力消失后留下的这部分不可恢复的变形。 2、强度:是指金属材料在静载荷作用下抵抗变形和断裂的能力。强度指标一般用单位面积所承受的载荷即力表示,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。拉伸图:金属材料在拉伸过程中弹性变形、塑性变形直到断裂的全部力学性能可用拉伸图形象地表示出来。 材料在常温、静载作用下的宏观力学性能。是确定各种工程设计参数的主要依据。这些力学性能均需用标准试样在材料试验机上按照规定的试验方法和程序测定,并可同时测定材料的应力- 应变曲线。 对于韧性材料,有弹性和塑性两个阶段。弹性阶段的力学性能有: 比例极限:应力与应变保持成正比关系的应力最高限。当应力小于或等于比例极限时,应力与应变满足胡克定律,即应力与应变成正比。 弹性极限:弹性阶段的应力最高限。在弹性阶段内,载荷除去后,变形全部消失。这一阶段内的变形称为弹性变形。绝大多数工程材料的比例极限与弹性极限极为接近,因而可近似认为在全部弹性阶段内应力和应变均满足胡克定律。 塑性阶段的力学性能有: 屈服强度:材料发生屈服时的应力值。又称屈服极限。屈服时应力不增加但应变会继续增加。 屈服点:具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为 N/mm2(MPa)。 上屈服点(Re H):试样发生屈服而力首次下降前 的最大应力; 下屈服点(Re L):当不计初始瞬时效应时,屈服阶段中的最小应力。 条件屈服强度:某些无明显屈服阶段的材料,规定产生一定塑性应变量(例如0.2 %)时的应力值,作为条件屈服强度。应力超过屈服强度后再卸载,弹性变形将全部消失,但仍残留部分不可消失的变形,称为永久变形或塑性变形。 规定非比例延伸强度(Rp):非比例延伸率等于规定的引伸计标距百分率时的应力,例如Rp0.2 表示规定非比例延伸率为0.2%时的应力。 规定总延伸强度(Rt ):总延伸率等于规定的引伸计标距百分率时的应力。例如Rt0.5 表示规定总延伸率为

常用金属材料分类及鉴别知识

1.2 常用金属材料 金属材料来源丰富,并具有优良的使用性能和加工性能,是机械工程中应用最普遍的材料,常用以制造机械设备、工具、模具,并广泛应用于工程结构中。 金属材料大致可分为黑色金属两大类。黑色金属通常指钢和铸铁;有色金属是指黑色以外的金属及其合金,如铜合金、铝及铝合金等。 1.2.1 钢 钢分为碳素钢(简称碳钢)和合金两大类。 碳钢是指含碳量小于2.11%并含有少量硅、锰、硫、磷杂质的铁碳合金。工业用碳钢的含碳量一般为0.05%~1.35%。 为了提高钢的力学性能、工艺性能或某些特殊性能(如耐腐蚀性、耐热性、耐磨性等),冶炼中有目的地加入一些合金元素(如Mn、Si、Cr、Ni、Mo、W、V、Ti等),这种钢称为合金钢。 (一)碳钢 1.碳钢的分类 碳钢的分类方法有多种,常见的有以下三种。 (1)按钢的含碳量多少分类分为三类: 低碳钢,含碳量0.25%; 中碳钢,含碳量为0.25%~0.60%; 高碳钢,含碳量0.60%。 (2)按钢的质量(即按钢含有害元素S、P的多少)分类分为三类: 普通碳素钢,钢中S、P含量分别≤0.055%和0.045%; 优质碳素钢,钢中S、P含量均≤0.040%; 高级碳素钢,钢中S、P含量分别≤0.030%和0.035%。 (3)按钢的用途分类分为两类: 碳素结构钢,主要用于制造各种工程构件和机械零件; 碳素工具钢,主要用于制造各种工具、量具和模具等。 2.碳钢牌号的表示方法 (1)碳素结构钢碳素结构钢的牌号由屈服点“屈”字汉语拼音第一个字母Q、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z)等四部分按顺序组成。其中质量等级按A、B、C、D顺序依次增高,F代表沸腾钢,b代表镇静钢,Z代表镇静钢等。如Q235-A·F表示屈服强度为235Mpa的A级沸腾碳素结构钢。 (2)优质碳素结构钢优质碳素结构钢的牌号用两位数字表示。这两位数字代表钢中的平均含碳量的万分之几。例如45钢,表示平均含碳量为0.45%的优质碳素结构钢。08钢,表示平均含碳量为0.08%的优质碳素结构钢。 (3)碳素工具钢碳素工具钢的牌号是用碳字汉语拼音字头T和数字表示。其数字表示钢的平均含碳量的千分之几。若为高级优质,则在数字后面加“A”。例如,T12钢,表示平均含碳量为1.2%的碳素工具钢。T8钢,表示平均含碳量为0.8%的碳素工具钢。T12A,表示平均含碳量为1.2%的高级优质碳素工具钢。 3.碳钢的用途举例 Q195、Q215,用于铆钉、开口销等及冲压零件和焊接构件。 Q235、Q255,用于螺栓、螺母、拉杆、连杆及建筑、桥梁结构件。 Q275,用于强度较高转轴、心轴、齿轮等。 Q345,用于船舶、桥梁、车辆、大型钢结构。

金属材料的结构与性能

第一章材料的性能 第一节材料的机械性能 一、强度、塑性及其测定 1、强度是指在静载荷作用下,材料抵抗变形和断裂的能力。材料的强度越大,材料所能承受的外力就越大。常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。 2、塑性是指材料在外力作用下产生塑性变形而不断裂的能力。塑性指标用伸长率δ和断面收缩率ф表示。 二、硬度及其测定 硬度是衡量材料软硬程度的指标。 目前,生产中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。此时硬度可定义为材料抵抗表面局部塑性变形的能力。因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。硬度试验简单易行,有可直接在零件上试验而不破坏零件。此外,材料的硬度值又与其他的力学性能及工艺能有密切联系。 三、疲劳 机械零件在交变载荷作用下发生的断裂的现象称为疲劳。疲劳强度是指被测材料抵抗交变载荷的能力。 四、冲击韧性及其测定 材料在冲击载荷作用下抵抗破坏的能力被称为冲击韧性。。为评定材料的性能,需在规定条件下进行一次冲击试验。其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。 五、断裂韧性 材料抵抗裂纹失稳扩展断裂的能力称为断裂韧性。它是材料本身的特性。 六、磨损 由于相对摩擦,摩擦表面逐渐有微小颗粒分离出来形成磨屑,使接触表面不断发生尺寸变化与重量损失,称为磨损。引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。 按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大基本类型。

第二节材料的物理化学性能 1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。不同用 途的机械零件对物理性能的要求也各不相同。 2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀能 力。 第三节材料的工艺性能 一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。 二、可锻性能:可锻性是指材料在受外力锻打变形而不破坏自身完整性的能力。 三、焊接性能:焊接性能是指材料是否适宜通常的焊接方法与工艺的性能。 四、切削加工性能:切削加工性能是指材料是否易于切削。 五、热处理性能:人处理是改变材料性能的主要手段。热处理性能是指材料热处理的难易 程度和产生热处理缺陷的倾向。 第二章材料的结构 第一节材料的结合键 各种工程材料是由不同的元素组成。由于物质是由原子、分子或离子结合而成,其结合键的性质和状态存在的区别。 一:化学键 1:共价键 2:离子键 3:金属键 4:范德。瓦尔键 二:工程材料的键性 化学键:组成物质整体的质点(原子、分子、离子)间的相互作用力,成为化学键。 1:共价键:有些同类原子,例如周期表Ⅳa、Ⅴa、Ⅵa族中大多元素或电负性相差不大的原子相互接近时,原子之间不产生电子的转移,此时借共用电子对所产生的力结合,形成共价键,如金刚石、单质硅、SiC等属于共价键。 2:离子键:大部分盐类、碱类和金属氧化物在固态下是不导电的,熔融时可以导电。这类化合物为离子化合物。当两种电负性相差大的原子(如碱金属元素与卤素元素的原子)相互靠

最新常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 .生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性 能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在 于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化 铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生 铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低, 它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件 的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会 使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可 提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了 生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬 脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达 1.2%。硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁 化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高 的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是 由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定 影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格 的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和Fe形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于FeS化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S<0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 部分常用钢的牌号、性能和用途 1 《信息来源:无缝钢管》

金属材料分类概览

一.金属材料分类 1.黑色金属钢铁 2.有色金属通常指铜、铝、铅、钛

三.金属材料力学性能代号及含义

1.钢板 a.按轧制方法分为:热轧、冷轧 b.按性能及用途可分为: ①碳素结构钢和低合金结构钢冷轧薄钢板及钢带,一般厚度不大于4mm。 ②碳素结构钢和低合金结构钢热轧薄钢板及钢带,厚度不大于4mm。 ③碳素结构钢和低合金结构钢热轧厚钢板和钢带,4-200mm钢板及小于25mm钢带。 ④优质碳素结构钢热轧薄钢板和钢带,厚度不大于4mm。 ⑤优质碳素结构钢冷轧薄钢板和钢带,厚度不大于4mm。 ⑥合金结构钢薄钢板,厚度不大于4mm的热轧或冷轧。 ⑦锅炉用钢板 ⑧压力容器用钢板 ⑨不锈钢冷轧或热轧钢板 ⑩耐热钢板 ?花纹钢板 2.型钢 ①热轧扁钢,厚度3-60,宽度10-150。 ②碳素结构钢和低合金热轧圆钢、方钢、六角钢 ③热轧角钢,分为等边及不等边,宽度20-200。 ④热轧槽钢,宽度50-300。 ⑤热轧工字钢,高度100-560。 ⑥热轧T型钢,宽度100-300。 ⑦冷弯空心型钢。 3.钢管 A.直缝电焊钢管(GB/T 13793—1992) a.以热轧或冷轧钢带,经焊接或焊后冷加工方法制造。钢管以不热处理状态交货。 b.规格:直径5.0—121,壁厚0.5—3.5。 c. a.以热轧或冷拔(轧)管加工,有热轧或热处理状态交货。 b.规格:直径6.0—245,壁厚0.25—24。 c.

4.钢丝 材料可有多种材料加工而成, a.普通结构钢丝:Q195、Q215、Q235主要制钉及建筑用。 b.优质碳素结构钢丝:08F、10F、15、20、25、35、40、45、50,冷拉状态交货,可后热处理, c.碳素弹簧钢丝:65、70、75、85,一般淬火—回火状态交货,可后热处理。 d.合金结构钢丝:15Cr、38Cr、40Cr、20CrNi3等等。交货状态有冷拉—L,退火—T,可热处理。 e.不锈钢丝:0Cr18Ni9-R、1Cr18Ni9Ti-Q、0Cr19Ni9-L。后缀RQL表示 软拉(R)—钢丝进行光亮热处理和热处理后酸洗或类似的处理。 轻拉(Q)—钢丝热处理后进行小变形程度的拉拔。 冷拉(L)—钢丝热处理后进行常规拉拔。 f.电阻电热合金丝:Cr15Ni60、Cr20Ni80 、Cr30Ni70、1Cr13Al4,热处理后软态交货。五.钢铁材料的热处理 热处理是为了达到材料的使用目的,发挥材料各种元素的作用,调整材料的强韧性,以及加工工艺的需要。 1.热处理工艺分类: a.淬火—加热至相变到奥氏体组织后快速冷却得到马氏体组织,目的为了提高硬度。 b.回火—低温回火,目的是去除应力;中温回火及高温回火是为了调整材料的强韧性。通常在一定温度下保温一段时间后已一定的速度冷却。 c.退火—降低材料硬度,便于加工及成形,有完全退火和不完全退火之分。加热保温后慢速冷却。 d.正火—提高材料硬度,加热后空冷。 e.调质—达到需要的强韧性或加工工艺的需要。先淬火后回火,是两个工艺的合并。 f.渗碳—提高材料的表面硬度。通常使含碳量在0.3%以下的材料在表面1mm左右深度提高到1%左右。 g.氮化—提高材料的表面硬度,或耐腐蚀性。通常使含碳量在0.4%左右的材料在表面0。2mm 左右深度形成氮化层,表面硬度可达到HRC70以上。 2.按种类有: a.常规热处理—如淬火、回火、退火、正火、调质。 b.化学热处理—如渗碳、氮化、碳氮共渗、硼化、渗金属、表面陶瓷。 c.真空热处理—使用真空设备的热处理,优点是无氧化及脱碳,热处理变形小。 3.使用设备有: a.箱式炉—使用电热丝或碳棒加热,电热丝炉使用温度可在低于950度以下使用,功率一般在3-200KW,用途广泛,可用于淬火、回火、退火,使用成本低。 b.盐浴炉—用硝盐加热,有高、中、低温炉,可高温加热到1300度,用于淬火、回火、退火。加热速度快,氧化脱碳小,利于防止晶粒粗大,可大批量多品种生产。 c.燃气炉—使用煤气或其它气体加热(如乙炔气等),可用于大型零件在炉内加热正火、退火或锻造,及局部加热用。 d.井式炉—使用电热丝加热,用于淬火、回火、退火、渗碳、氮化。 e.真空炉—使用电热丝加热,用于淬火、回火、退火, f.箱式多用炉—使用电热丝加热,用于淬火、回火、退火、渗碳、氮化,可进行大批量多品种生产。

各种金属材料的特点

各种金属材料的特点

————————————————————————————————作者:————————————————————————————————日期: ?

各种金属材料的特点 铝材类 铝材属于金属类别中有色金属之一,由于应用较广,单独介绍如下:常用有铝型材和压铸铝合金两种。其中主要由纯度高达92%以上的铝锭为主要原材料,同时添加增加强度、硬度、耐磨性等性能金属元素,如碳、镁、硅、硫等,组成多种成分“合金”。 1.1铝型材 铝型材常见如屏风、铝窗等。它是采用挤出成型工艺,即铝锭等原材料在熔炉中熔融后,经过挤出机挤压到模具流出成型,它还可以挤出各种不同截面的型材。主要性能即强度、硬度、耐磨性均按国家标准GB6063。优点有:重量轻仅2.8,不生锈、设计变化快、模具投入低、纵向伸长高达10米以上。铝型材外观有光亮、哑光之分,其处理工艺采用阳极氧化处理,表面处理氧化膜达到0.12m/m厚度。铝型材壁厚依产品设计最优化来选择,不是市场上越厚越好,应看截面结构要求进行设计,它可以在0.5~5mm不均。外行人认为越厚越强硬,其实是错误的看法。 铝型材表面质量也有较难克服的缺陷:翘曲、变形、黑线、凸凹及白线。设计者水平高者及模具设计及生产工艺合理,可避免上述缺陷不太明显。检查缺陷应按国家规定检验方法进行,即视距40~50CM来判别缺陷。 铝型材在家具中用途十分广泛:屏风骨架、各种悬挂梁、桌台脚、装饰条、拉手、走线槽及盖、椅管等等,可进行千变万化设计和运用! 铝型材虽然优点多,但也存在不理想的地方: 未经氧化处理的铝材容易“生锈”从而导致性能下降,纵向强度方面比不上铁制品.表面氧化层耐磨性比不上电镀层容易刮花.成本较高,相对铁制品成本高出3~4倍左右。 1.2压铸铝合金 压铸合金和型材加工方法相比,使用设备均不同,它的原材料以铝锭(纯度92%左右)和合金材料,经熔炉融化,进入压铸机中模具成型。压铸铝产品形状可设计成像玩具那样,造型各异,方便各种方向连接,另外,它硬度强度较高,同时可以与锌混合成锌铝合金。 压铸铝成型工艺分: 1、压铸成型 2、粗抛光去合模余料 3、细抛光 另一方面,压铸铝生产过程,应有模具才能制造,其模具造价十分昂贵,比注塑模等其它模具均高。同时,模具维修十分困难,设计出错误时难以减料修复。 压铸铝缺点: 每次生产加工数量应多,成本才低。抛光较复杂生产周期慢产品成本较注塑件高3~4倍左右。螺丝孔要求应大一点(直径4.5mm)连接力才稳定 适应范围:台脚、班台连接件、装饰头、铝型材封口件、台面及茶几顶托等,范围十分广泛。 (2)五金类 “五金”概念属通俗说法,标准分类应划分为黑色金属和有色金属两大类,它在家具中运用有管状、棒状、板状、线、角状几种。 2.1黑色金属件

(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。包括纯金属、合金、金属材料金属间化合物和特种金属材料等。(注:金 属氧化物(如氧化铝)不属于金属材料) 1.意义 人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后 出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。 2.种类 金属材料通常分为黑色金属、有色金属和特种金属材料。 (1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。广义的黑色金属还包括铬、锰及其合金。 (2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。有色合金的强度和硬 度一般比纯金属高,并且电阻大、电阻温度系数小。 (3)特种金属材料包括不同用途的结构金属材料和功能金属材料。其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及 金属基复合材料等。 3.性能 一般分为工艺性能和使用性能两类。所谓工艺性能是指机械零件在加工制 造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。金属材料工 艺性能的好坏,决定了它在制造过程中加工成形的适应能力。由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、 切削加工性等。 所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它 包括力学性能、物理性能、化学性能等。金属材料使用性能的好坏,决定了它 的使用范围与使用寿命。在机械制造业中,一般机械零件都是在常温、常压和 非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷 的作用。金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为 机械性能)。金属材料的力学性能是零件的设计和选材时的主要依据。外加载 荷性质不同(例如拉伸、压缩、扭转、冲击、循环载荷等),对金属材料要求 的力学性能也将不同。常用的力学性能包括:强度、塑性、硬度、冲击韧性、 多次冲击抗力和疲劳极限等。 金属材料特质

金属材料ABC分类细则

一.总则 为加强采购物资(原材料、外购外协件、生产辅料)的质量管理,确保采购物资质量特性满足生产需求,特制定本分类细则。 二.分类要求明细 (一)A类物资:构成最终产品的一部分,对产品功能、使用及安全性能有直接或重大影响的采购或外协物资。主要A类物资分类明细如下: 等等。 三、报检要求 (一)A、B类物资到货后物资供应部门或生产制造部门应及时向质量检验部门报检;必要时须提供图样,以便检查。 (二)A类物资报检需要提供《检验通知单》、合格证或质量证明书(包括检验报告)、MA 证(属MA管理的)、生产许可证(属生产许可证管理的)、防爆证(属防爆产品的)等有效证件。 (三)B类物资报检需提供《检验通知单》、合格证或质量说明书(包括检验报告)、MA 证(属MA管理的)、生产许可证(属于生产许可证管理的)等有效证件。 四. 检验要求 (一)A、B类采购物资检验时,质检员首先查看报检资料是否齐全,随机资料和附件是否齐全。

(二)A、B类物资其他检验项目按相关标准、技术协议、图样及检验规程执行。 (三)C类物资一律由物资供应部库管员对其质量证明材料、外观、包装、数量等项目进行检查,其结果作为最终验收依据,合格后登记入库。 所有采购物资经检验合格后方可入库、投入使用。 锻件外观质量检验规范 (一)目的。规范企业内部对锻件外观检验的要求,指导员工更好的做好锻件外观质量工作 (二)使用范围。适用本企业内部及外购外协锻件的外观质量检验 二 (一)锻件尺寸公差必须符合图样、工艺要求,不允许有加工余量超差、过烧、脱碳、白点、锻伤、折叠、夹层、结疤、夹渣、内外裂纹等锻造缺陷。 (二)锻件表面不允许有飞边、毛刺、弯曲、变形等影响使用的外观缺陷。锻件表面应清楚氧化皮,对残留飞边尖角进行打磨修钝。 (三)对有加工符号的部位,必须按工艺留有一定的加工余量。需要机加工的锻件表面,确认缺陷深度能保证留有机械加工余量的50%以上时,允许不清楚。 (四)不进行机加工的锻件表面,缺陷整修后最大深度不得超过该尺寸下偏差,整修处必须平滑。 (五)锻件的表面缺陷深度超过机加工余量时,重要的零件若需补焊,必须取得技术部门同意,并给出补焊工艺,方可进行补焊。 (六)锻件应没有白点,当在一个锻件上发现白点时,则与该锻件同一炉钢并同一炉热处理的整批锻件应逐个进行白点检查。 机加工件外观质量检验规范 一、目的及适用范围 (一)目的。规范企业内部对机加工件外观检验的要求,指导员工更好地做好各类机加工件外观质量工作。 (二)适用范围。适用本企业内部或外购、外协各类机加工外观检验。 二、检验细则 (一)机加工尺寸部分全部按照图样要求,不允许超差 (二)未经机械加工的表面不允许有裂纹、折叠等缺陷。 (三)经机械加工的表面不允许有裂纹、锈蚀、磕碰伤、划痕等缺陷。 (四)工件加工后,毛刺修光,棱角倒钝,过度处应为圆角或倒角。 (五)工件加工后,必须清除铁屑和油污。 (六)机加工件加工后,不允许落地,擦拭干净,摆放整齐。 结构件外观质量检验规范 一、目的及适用范围 (一)目的。规范企业内部对结构件对外观检验的要求,指导员工更好地做好各类结构件外观质量工作。 (二)适用范围。适用于本企业内部及外协各类结构件外观检验。 二、检验细则 (一)下料结构件外观检验:

金属材料的分类及牌号

金属材料的分类及牌号 焊接基础、热处理 葛兆祥1 2 江苏省电力试验研究院有限公司 江苏省电机工程学会金属材料与焊接专委会 金属材料分类及牌号 金属材料的种类很多,常用的有钢、铁,铝及其合金,铜及其合金,钛及其合金,镁及其合金,锆及其合金,镍及其合金等。在我们电力系统,应用最多的还是钢和铁。所以,今天我们主要讨论钢和铁的有关内容。 一、铸铁 1、特点 铸铁与钢相比强度较低,塑性、韧性较差。但是具有良好的: ▇耐磨性 ▇吸震性 ▇铸造性、 ▇可切削性 铸铁的焊接性差,因此,影响了它的发展。但是随着焊接技术的发展,铸铁(设备)的焊接也取得了很大的成功,获得了很大的经济效益。 2、铸铁的分类 铸铁是含碳量为2%~4.5%的铁碳合金。在铸铁的化学成分中还有Si、Mn及S、P等杂质。为了改善铸铁的性能,常在铸铁中加入Ni、Cr、Mn、Si、V、Ti、Mg等元素,成为合金铸铁。 按照C在铸铁中存在的状态和形式的不同,可将铸铁分为五类: ▇白口铸铁 C在铁中绝大部分以渗碳体(Fe3C)的形式存在,断口呈白色而得名。渗碳体硬而脆,无法加工,故应用不广。主要用于轧辊、不需要加工的耐磨件等。 ▇灰口铸铁C以片状石墨存在,其断口呈暗灰色而得名。普通灰铁石墨较粗,如在浇注之前的铁水中加入少量的硅铁或硅钙等孕育剂,进行孕育处理,促使石墨自发形核,可使粗片状石墨细化,形成孕育铸铁。

▇可锻铸铁 C团絮状石墨存在,是将白口铁经长时间石墨化退火,使渗碳体分解形成石墨并呈团絮状分布于基体内,因其韧性较好故称可锻铸铁。可锻铸铁是由炼钢生铁在900~1000℃的温度下经过2~9天长时间的退火形成。 ▇球墨铸铁 C以球状石墨存在,故称球墨铸铁。这是铁水中加入纯镁或稀土镁合金等球化剂而获得,具有较高的强度和韧性,可通过热处理改善力学性能,可制造强度高,形状复杂的铸件。 ▇蠕墨铸铁 C以蠕虫状石墨存在,浇注前在铁水中加入稀土硅铁、稀土镁钛等蠕化剂,促使C形成蠕虫状。 ▇铁合金 铁合金是Fe和其它一定量的合金元素组成的合金。它是炼钢原料之一,也是焊接冶金必不缺少原材料。炼钢和焊接时作为脱氧剂或渗合金剂加入,起到脱氧、渗合金等作用,改善钢材和焊缝的性能。 ○常用铁合金 ――SiFe 硅铁分别有含硅95%、75%、45%的几种,也有12%的贫硅铁、硅铝合金、硅钙合金,硅锰合金。 ――MnFe 按含碳量分为碳素锰铁(含碳量7%),中碳锰铁(C1.5~1.0%),低碳锰铁(C0.50%)。 ――CrFe 按含碳量分为碳素铬铁(C8~4%),中碳铬铁(C4~0.5%),低碳铬铁(0.5~0.15),微碳铬铁(C0.06),超微碳铬铁(C<0.03),金属铬、硅铬合金。 3、铸铁组织 铸铁组织与化学成分和冷却速度有关 ――化学成分影响 ▇有些元素能促使石墨化,如C、Ni、Si、Al、Cu等; ▇有些是阻止石墨化元素,如S、V、Cr等。 在铸铁中,C以石墨形式析出的过程称为石墨化。 ――冷却速度的影响 ▇冷却速度很快时,便形成以珠光体和渗碳体(为基体),构成白口铁; ▇冷却速度足够慢时,便形成以铁素体为基体的片状石墨分布的灰口铸 ▇介于两者之间,形成以珠光体为基体和石墨组成灰口铁或珠光体和铁素体为基体灰口铁。 4、铸铁的牌号和力学性能 铸铁的牌号在GB/T5612-1985中作了相应的规定。规程对化学成分不做明确规定,仅规

金属材料的力学性能

第1章工程材料 1.1 金属材料的力学性能 金属材料的性能包括使用性能和工艺性能。使用性能是指金属材料在使用过程中应具备的性能,它包括力学性能(强度、塑性、硬度、冲击韧性、疲劳强度等)、物理性能(密度、熔点、导热性、导电性等)和化学性能(耐蚀性、抗氧化性等)。工艺性能是金属材料从冶炼到成品的生产过程中,适应各种加工工艺(如:铸造、冷热压力加工、焊接、切削加工、热处理等)应具备的性能。 金属材料的力学性能是指金属材料在载荷作用时所表现的性能。 1.1.1 强度 金属材料的强度、塑性一般可以通过金属拉伸试验来测定。 1.拉伸试样 图1.1.1拉伸试样与拉伸曲线 2.拉伸曲线 拉伸曲线反映了材料在拉伸过程中的弹性变形、塑性变形和直到拉断时的力 F时,拉伸曲线Op为一直线,即试样的伸长量与载荷学特性。当载荷不超过 p 成正比地增加,如果卸除载荷,试样立即恢复到原来的尺寸,即试样处于弹性变形阶段。载荷在Fp-Fe间,试样的伸长量与载荷已不再成正比关系,但若卸除载荷,试样仍然恢复到原来的尺寸,故仍处于弹性变形阶段。当载荷超过Fe后,试样将进一步伸长,但此时若卸除载荷,弹性变形消失,而有一部分变形当载荷增加到Fs时,试样开始明显的塑性变形,在拉伸曲线上出现了水平的或锯齿形的线段,这种现象称为屈服。当载荷继续增加到某一最大值Fb时,试样的局部截面缩小,产生了颈缩现象。由于试样局部截面的逐渐减少,故载荷也逐渐降低,试样就被拉断。 3.强度 强度是指金属材料在载荷作用下,抵抗塑性变形和断裂的能力。

(1) 弹性极限 金属材料在载荷作用下产生弹性变形时所能承受的最大应力称为弹性极限,用符号σe 表示: (2) 屈服强度金属材料开始明显塑性变形时的最低应力称为屈服强度 在拉伸试验中不出现明显的屈服现象,无法确定其屈服点。所以国标中规定,以试样塑性变形量为试样标距长度的0.2%时,材料 承受的应力称为“条件屈服强度”,并以符号 σ0.2 表示。 1.1.2 塑性 金属材料在载荷作用下,产生塑性变形而不破坏的能力称为塑性。常用的塑性指标有伸长率δ 和断面收缩率ψ。 1.伸长率 试样拉断后,标距长度的增加量与原标距长度的百分比称为伸长率,用δ表示: 2.断面收缩率 试样拉断后,标距横截面积的缩减量与原横截面积的百分比称为断面收缩率,,用ψ表示: 1.1.3 硬度

常用金属材料分类

常用金属材料分类 热浸镀锌钢板 (GI) 电镀锌钢板 (EG) 电镀锡钢板 - 马口铁 (SPTE) 不锈钢带材 冷轧碳素钢板 (CRS) 铝及铝合金板材 一.热浸镀锌钢板 (GI) 1. 概况: 热浸镀锌钢板即是将板材浸入熔化锌池中 , 在板材两面浸镀厚度均匀的锌层 . 锌池中锌的重量百分比 仝 97% . 2. 分类: 冷轧热浸镀锌钢材 ,依供货商习惯 .共使用 C1,C2,D1 三种材质 . 标注示范 :HGCC1-ZSFX 其中 : HG--- 热浸镀锌制程 C--- 冷轧底材 C1--- 商用品质 ; (C2--- 改良商用质量 ; D1--- 引申品质 ) Z--- 无锌花 (M--- 细小锌花 ) S--- 调质处理 (B--- 亮面调质处理 ) F--- 耐指纹涂复 (C--- 铬酸盐处理 ) X--- 不涂油 二.电镀锌钢板 (EG) 1. 概况 : 与 GI 料基体材料相同 , 均为商用性能 SPCC (冷轧碳素钢板中一款 ) 材质 . 不同的是采用电镀方式附着 表面锌层 . (又称为电解片: SECC ) 2. 镀锌层重量 : 是材料使用性能的一个重要参数 ,如果锌层较厚且致密,可有效防止SPCC 材质与空气或其它物质接触 产生氧化 . 3. 区别与用途: GI 料与EG 料目前在 NOTE-BOOK^业应用越来越广,因为: SPCC 质地较软,易冲压成形,并且易保证产品结构尺寸要求,另外价格便宜.常用于支架,外壳,连结 EG 料相对于GI 来讲价格稍贵,但表面状况相对显得较光亮.表面状况:无锌花或很细小锌花.防腐性 能相对较好 . 三.电镀锡钢板 - 马口铁 (SPTE) 1. 概况: 基材为低碳钢表面电镀锡 , 常称马口铁 (SPTE). 2. 镀锡用原钢板可划分为以下三种钢类型 : D 类—铝脱氧钢 ,适用于深引伸要求 ,减小表面折痕和拉伸变形等危害 . L 类--- 残留元素( Cu,Ni,Cr,Mo) 特别少 , 对某种食品耐蚀性极好 , 适用于食品类容器 . 用途: 片等.

常用金属材料的特性

它们都是含碳量比较低的优质碳素结构钢。它们不同的主要是两方面,一是含碳量不同;而是机械性能不同。 从化学成分上来看,是含碳量不同,10#钢平均含碳量为万分之10,20#钢平均含碳量为万分之20。 由于含碳量的不同就导致了它们的机械性能的不同。碳素结构钢随着含碳量的增加,强度硬度都相应提高,塑性纫性相应降低。10#、20#属于低碳钢,强度硬度不高,塑性纫性都很好。它们之间比较来说,10#钢的强度和硬度比20#钢要低;10#钢的塑性和纫性比20#钢要好,也是说要软些。 我国钢号表示方法的分类说明 1.碳素结构钢 ①由Q+数字+质量等级符号+脱氧方法符号组成。它的钢号冠以“Q”,代表钢材的屈服点,后面的数字表示屈服点数值,单位是MPa例如Q235表示屈服点(σs)为235 MPa的碳素结构钢。 ②必要时钢号后面可标出表示质量等级和脱氧方法的符号。质量等级符号分别为A、B、C、D。脱氧方法符号:F表示沸腾钢;b表示半镇静钢:Z表示镇静钢;TZ表示特殊镇静钢,镇静钢可不标符号,即Z和TZ都可不标。例如Q235-AF表示A级沸腾钢。 ③专门用途的碳素钢,例如桥梁钢、船用钢等,基本上采用碳素结构钢的表示方法,但在钢号最后附加表示用途的字母。 2.优质碳素结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.45%的钢,钢号为“45”,它不是顺序号,所以不能读成45号钢。 ②锰含量较高的优质碳素结构钢,应将锰元素标出,例如50Mn。 ③沸腾钢、半镇静钢及专门用途的优质碳素结构钢应在钢号最后特别标出,例如平均碳含量为0.1%的半镇静钢,其钢号为10b。 3.碳素工具钢 ①钢号冠以“T”,以免与其他钢类相混。 ②钢号中的数字表示碳含量,以平均碳含量的千分之几表示。例如“T8”表示平均碳含量为0.8%。 ③锰含量较高者,在钢号最后标出“Mn”,例如“T8Mn”。 ④高级优质碳素工具钢的磷、硫含量,比一般优质碳素工具钢低,在钢号最后加注字母“A”,以示区别,例如“T8MnA”。 4.易切削钢 ①钢号冠以“Y”,以区别于优质碳素结构钢。 ②字母“Y”后的数字表示碳含量,以平均碳含量的万分之几表示,例如平均碳含量为0.3%的易切削钢,其钢号为“Y30”。 ③锰含量较高者,亦在钢号后标出“Mn”,例如“Y40Mn”。 5.合金结构钢 ①钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40Cr。 ②钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”,例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同。当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3、4……等。例如18Cr2Ni4WA。 ③钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中标出。例如20MnVB钢中。钒为0.07-0.12%,硼为0.001-0.005%。 ④高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 ⑤专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如,铆螺专用的30CrMnSi钢,

金属材料力学性能

金属材料力学性能文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

常见的金属材料力学性能 一. 金属材料相关概念 任何机械零件或工具,在使用过程中,往往要受到各种形式的外力作用。这就要求金属材料必须具有一种承受机械载荷而不超过许可变形或不被破坏的能力;这种能力就是金属材料的力学性能。诸如金属材料的强度、刚度、硬度、塑性和韧性等特征就是用来衡量金属材料在外力下表现出来的力学性能的指标。 强度 强度是指金属材料在静载荷作用下抵抗变形和断裂的能力。一般用单位面 积所承受的作用力表示,符号为σ,单位为MPa。 工程中常用的强度指标有屈服强度和抗拉强度。屈服强度是指金属材料在外力作用下,产生屈服现象时的应力,或开始出现塑性变形时的最低应力值,用σs表示。抗拉强度是指金属材料在拉力作用下,被拉断前所承受的最大应力值,用σb表示。 对于大多数机械零件,工作时不允许产生塑性变形,所以屈服强度是零件强度设计的依据;对于因断裂而失效的零件,则用抗拉强度作为其设计的依据。 刚度 刚度是指金属材料在外力载荷作用下抵抗弹性变形的能力。对于机械零件要求较高的尺寸稳定性时,需要考虑刚度指标。 硬度 硬度是指材料表面抵抗比它更硬的物体压入的能力。

几种常用金属材料力学性能一览表 注:1.上表中材料的强度数值仅供参考,在不同的热处理工艺及环境下其对应的强度值不同。 二.材料的失效与许用应力 通常将材料的强度极限与屈服极限统称为材料的极限应力,用σu 表示。对于脆性材料强度极限为其唯一强度指标;对于塑性材料,其屈服应力小于强度极限,通常以屈服应力作为极限应力。 为了机械零件使用的安全性,对于机械构件要有足够的强度储备。因此,实际是使用的最大应力值必须小于材料的极限应力。最大使用应力称为许用应力,用[σ]表示。许用应力与极限应力的关系如下: [σ]=σu n , σu ={σs σb 式中,n 为大于1的因数,称为安全因数。对于塑性材料n 为,σu=σs ;对于脆性材料n 为,σu=σb 。 强度条件 σmax =(F A )max ≤[σ] 式中,F ,机械零件所承受的最大载荷作用力,单位N ;

金属材料的分类

金属材料的分类 金属是具有光泽、有良好的导电性、导热性与机械性能,并具有正的温度电阻系数的物质。金属,是个大家庭,现在世界上有86种金属。 一、通常人们把金属分成两大类,黑色金属和有色金属 (一)、黑色金属 黑色金属和有色金属这名字,常常使人误会,以为黑色金属一定是黑的,其实不然。黑色金属只有三种:铁、锰与铬。而它们三个都不是黑色的!纯铁是银白色的;锰是银白色的;铬是灰白色的。因为铁的表面常常生锈,盖着一层黑色的四氧化三铁与棕褐色的三氧化二铁的混合物,看去就是黑色的。怪不得人们称之为“黑色金属”。常说的“黑色冶金工业”,主要是指钢铁工业。因为最常见的合金钢是锰钢与铬钢,这样,人们把锰与铬也算成是“黑色金属”了。 除了铁、锰、铬以外,其他的金属,都算是有色金属。 (二)、什么是有色金属? 109个化学元素中的64个是这个家族的成员。其中人们比较熟知的有铜、铝、铅、锌、金、银等。目前,我国有色金属的产量已经超过美国,连续3年居世界第一,而对有色金属的需求量也是世界之冠。 (三)、有色金属的分类 (1)有色纯金属分为重金属、轻金属、贵金属、半金属和稀有金属五类。 (2)有色合金按合金系统分:重有色金属合金、轻有色金属合金、贵金属合金、 稀有金属合金等;按合金用途则可分:变形(压力加工用合金)、铸造合 金、轴承合金、印刷合金、硬质合金、焊料、中间合金、金属粉未等。 (3)有色材按化学成份分类:铜和铜合金材、铝和铝合金材、铅和铅合金材、镍和镍合金 材、钛和钛合金材。按形状分类时,可分为:板、条、带、箔、管、棒、线、型等品种。 (四)、在有色金属中,还有各种各样的分类方法 1.按照比重来分,铝、镁、锂、钠、钾等的比重小于5,叫做“轻金属”(密度小(0.53~4.5g/cm3),化学性质活泼,如铝、镁等. ) 2.而铜、锌、镍、汞、锡、铅等的比重大于5,叫做“重金属”。(一般密度在4.5g/cm3以上,如铜、铅、锌等;) 3.象金、银、铂、锇、铱等比较贵,叫做“贵金属”, 4.镭、铀、钍、钋等具有放射性,叫做“放射性金属”, 5.还有像铌、钽、锆、镥、金、镭、铪、钨、钼、锗、锂、镧、铀等因为地壳中含量较少,或者比较分散,人们又称之为“稀有金属”。

相关文档
相关文档 最新文档