文档库 最新最全的文档下载
当前位置:文档库 › (完整word版)高中数学二项式定理练习题

(完整word版)高中数学二项式定理练习题

(完整word版)高中数学二项式定理练习题
(完整word版)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理

一、选择题

1.二项式(a +b )2n 的展开式的项数是( )

A .2n

B .2n +1

C .2n -1

D .2(n +1)

2.(x -y )n 的二项展开式中,第r 项的系数是( )

A .C r n

B .

C r +1n

C .C r -1n

D .(-1)r -1C r -1n

3.在(x -3)10的展开式中,x 6的系数是( )

A .-27C 610

B .27

C 410

C .-9C 610

D .9C 410

4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( )

A .-4

B .-2

C .2

D .4

5.在? ??

??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3

B .5

C .8

D .10

6.在(1-x 3)(1+x )10的展开式中x 5的系数是( )

A .-297

B .-252

C .297

D .207

7.(2009·北京)在? ??

??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( )

A .3

B .4

C .5

D .6

8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于

( )

A .-1 B.12 C .1

D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是

( )

A.112<x <15

B.16<x <15

C.112<x <23

D.16<x <25

10.在?

????32x -1220的展开式中,系数是有理数的项共有( ) A .4项

B .5项

C .6项

D .7项

二、填空题

11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________.

12.(1+x )2(1-x )5的展开式中x 3的系数为________.

13.若? ??

??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________.

三、解答题

15.求二项式(a +2b )4的展开式.

16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数.

17.已知在(3x -123x

)n 的展开式中,第6项为常数项.

(1)求n ;

(2)求含x 2的项的系数;

(3)求展开式中所有的有理项.

18.若? ?????x +124x n 展开式中前三项系数成等差数列.求:展开式中系数最大的项.

1.[答案] B 2[答案] D 3 [答案] D

[解析] ∵T r +1=C r 10

x 10-r (-3)r .令10-r =6, 解得r =4.∴系数为(-3)4C 410=9C 410.

4[答案] C

[解析] (1+2x )3(1-3x )5=(1+6x +12x +8x x )(1-3x )5,

故(1+2x )3(1-3x )5的展开式中含x 的项为1×C 35(-3x )3+12x C 05=-10x +12x =2x ,

所以x 的系数为2.

5[答案] B

[解析] T r +1=C r n (2x 3)n -r ()1x 2r =2n -r ·C r n

x 3n -5r . 令3n -5r =0,∵0≤r ≤n ,r 、n ∈Z .

∴n 的最小值为5.

6[答案] D

[解析] x 5应是(1+x )10中含x 5项与含x 2项.

∴其系数为C 510+C 210(-1)=207.

7[答案] D

[解析] 通项T r +1=C r 10(x 2)n -r (-1x

)r =(-1)r C r n x 2n -3r ,常数项是15,则2n =3r ,且C r n =15,验证n =6时,r =4合题意,故选D.

8[答案] D

[解析] C r 5·x r (a x

)5-r =C r 5·a 5-r x 2r -5,令2r -5=3,∴r =4, 由C 45·

a =10,得a =2. 9[答案] A

[解析] 由??? T 2>T 1T 2>T 3得???

C 162x >1C 162x >C 26(2x )2∴112<x <15. 10[答案] A

[解析] T r +1=C r 20(32x )20-r ????-12r =???

?-22r ·(32)20-r C r 20·x 20-r , ∵系数为有理数,

∴(2)r 与220-r

3均为有理数,

∴r 能被2整除,且20-r 能被3整除,

故r 为偶数,20-r 是3的倍数,0≤r ≤20.

∴r =2,8,14,20.

11[答案] -162

12[答案] 5

[解析] 解法一:先变形(1+x )2(1-x )5=(1-x )3·(1-x 2)2=(1-x )3(1+x 4-2x 2),展开式中x 3的系数为-1+(-2)·C 13(-1)=5;

解法二:C 35(-1)3+C 12·C 25(-1)2+C 22C 15

(-1)=5. 13[答案] 2

[解析] C 36(x 2)3·()1ax

3=20a 3x 3=52x 3

,∴a =2. 14[答案] -5 [解析] (1+x +x 2)()x -1x 6

=()x -1x 6+x ()x -1x 6+x 2()x -1x 6,

∴要找出()x -1x 6中的常数项,1x 项的系数,1x 2项的系数,T r +1=C r 6x 6-r (-1)r x -r =C r 6(-1)r x 6-2r ,

令6-2r =0,∴r =3,

令6-2r =-1,无解.

令6-2r =-2,∴r =4.

∴常数项为-C 36+C 46=-5.

15[解析] 根据二项式定理

(a +b )n =C 0n a n +C 1n a n -1b +…+C k n a n -k b k +…+C n n b n n 得

(a +2b )4=C 04a 4+C 14a 3(2b )+C 24a 2(2b )2+C 34a (2b )3+C 44(2b )4=a 4+8a 3b +24a 2b 2+32ab 3+16b 4.

16[解析] 由题设m +n =19,∵m ,n ∈N *.

∴??? m =1n =18,??? m =2n =17,…,???

m =18

n =1

. x 2的系数C 2m +C 2n =12(m 2-m )+12

(n 2-n )=m 2-19m +171. ∴当m =9或10时,x 2的系数取最小值81,此时x 7的系数为C 79+C 710=156. 17[解析] (1)T r +1=C r n ·(3x )n -r ·(-123x

)r =C r n ·(x 13)n -r ·(-12·x -13

)r =(-12)r ·C r n ·x n -2r 3

. ∵第6项为常数项,

∴r =5时有n -2r 3

=0,∴n =10. (2)令n -2r 3=2,得r =12

(n -6)=2, ∴所求的系数为C 210(-12)2=454

. (3)根据通项公式,由题意得:??? 10-2r 3∈Z 0≤r ≤10r ∈Z

令10-2r 3

=k (k ∈Z ),则10-2r =3k , 即r =

10-3k 2=5-32k . ∵r ∈Z ,∴k 应为偶数,∴k 可取2,0,-2,

∴r =2,5,8,∴第3项、第6项与第9项为有理项.

它们分别为C 210·(-12)2·x 2,C 510(-12

)5, C 810·(-12

)8·x -2. [解析] 通项为:T r +1=C r n ·(x )n -r ·? ??

??124x r . 由已知条件知:C 0n +C 2n ·122=2C 1n ·12

,解得:n =8. 记第r 项的系数为t r ,设第k 项系数最大,则有: t k ≥t k +1且t k ≥t k -1.

又t r =C r -18·2-r +1,于是有:

??? C k

-18·2-k +1≥C k 8·2-k C k -18·2-k +1≥C k -28·2-k +2

即?????

8!(k -1)!·(9-k )!×2≥8!k !(8-k )!,8!(k -1)!·(9-k )!≥8!(k -2)!·(10-k )!×2. ∴??? 29-k ≥1k ,1k -1≥210-k .解得3≤k ≤4.

3 5和第4项T4=7·x

7

4

.

∴系数最大项为第3项T3=7·x

高中数学《二项式定理》公开课优秀教学设计二

二项式定理(第1课时) 一、内容和内容解析 内容:二项式定理的发现与证明. 内容解析:本节是高中数学人教A版选修2-3第一章第3节的内容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此内容安排在组合计数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分内容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、目标和目标解析 目标: (1)能通过多项式乘法,归纳概括出二项式定理内容,并会用组合计数模型证明二项式定理. (2)能从数列的角度认识二项式的展开式及其通项的规律,并能通过特例体会二项式定理的简单应用. (3)通过二项式定理的发现过程培养学生的数学抽象素养,以及用二项式定理这个模型培养学生数学建模素养. 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二项式定理符合学生的认知规律.但归纳概括的结论,如果不加以严格的证明不符合数学的基本要求.因此,在归纳概括的过程中,用好组合模型不仅可以更自然地得到结论,还能为证明二项式定理提供方法. (2)由于二项展开式是一个复杂的多项式.如果不把其看成一个数列的和,引进数列的通项帮助理解与应用,学生很难短期内对定理有深入的认识.因此,通过一些特例,建立二项式展开式与数列及数列和的联系,是达成教学目标的一个重要途径.(3)数学核心素养是数学教学的重要目标,但数学核心素养需要在每一堂课中寻找机会去落实.在二项式定理的教学中,从特殊的二项式展开式的特征归纳概括一般二项式展开式的规律是进行数学抽象教学的很好机会;同时利用组合计数模型证明二项式定理,以及利

高中数学集合典型例题

-- -- 集 合 1.集合概念 元素:互异性、无序性、确定性 2.集合运算 全集U:如U =R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图(即韦恩图、Ve nn 图)、数轴 典型例题 1. 集合(){}0,=+=y x y x A ,(){}2,=-=y x y x B ,则=B A 2. 已知集合{}R x x y y P ∈+-==,22,{}R x x y x Q ∈+-==,2,那么Q P 等于 3. 设(){}R b b x b x x A ∈=++++=,0122,求A 中所有元素之和. 4. 已知集合{}24,3,22++=a a A ,{}a a a B --+=2,24,7,02,且{}7,3=B A ,求a 的值. 5. 已知(){}011=+-=x m x A ,{}0322=--=x x x B ,若B A ?,则m 的值为 6. 已知{}121-≤≤+=m x m x A ,{}52≤≤-=x x B ,若B A ?,求实数m 的取值范围. 7. 设全集{}32,3,22-+=a a S ,{}2,12-=a A ,{}5=A C S ,求a 的值. 8. 若{}Z n n x x A ∈==,2,{}Z n n x x B ∈-==,22,试问B A ,是否相等. 9. 已知(){}a x y y x M +==,,(){}2,22=+=y x y x N ,求使得φ=N M 成立的实数a 的取值范围. 10. 设集合{}R x x x x A ∈=+=,042,(){}R x R a a x a x x B ∈∈=-+++=,,011222,若A B ?,求实数a 的取值范围. 11. 设R U =,集合{}R x a ax x x A ∈=+-+=,03442,(){}R x a x a x x B ∈=+--=,0122,{}R x a ax x x C ∈=-+=,0222,若C B A ,,中至少一个不是空集,求实数a 的取值范围. 12. 设集合(){}01,2=--=x y y x A ,(){} 05224,2=+-+=y x x y x B ,(){==y y x C ,}b kx +,是否存在N b k ∈,,使得()φ=C B A ?若存在,请求出b k ,的值;若不存在,请说明理由.

(完整word)高中数学二项式定理练习题

选修2-3 1.3.1 二项式定理 一、选择题 1.二项式(a +b )2n 的展开式的项数是( ) A .2n B .2n +1 C .2n -1 D .2(n +1) 2.(x -y )n 的二项展开式中,第r 项的系数是( ) A .C r n B . C r +1n C .C r -1n D .(-1)r -1C r -1n 3.在(x -3)10的展开式中,x 6的系数是( ) A .-27C 610 B .27 C 410 C .-9C 610 D .9C 410 4.(2010·全国Ⅰ理,5)(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 5.在? ?? ??2x 3+1x 2n (n ∈N *)的展开式中,若存在常数项,则n 的最小值是( ) A .3 B .5 C .8 D .10 6.在(1-x 3)(1+x )10的展开式中x 5的系数是( ) A .-297 B .-252 C .297 D .207 7.(2009·北京)在? ?? ??x 2-1x n 的展开式中,常数项为15,则n 的一个值可以是( ) A .3 B .4 C .5 D .6 8.(2010·陕西理,4)(x +a x )5(x ∈R )展开式中x 3的系数为10,则实数a 等于 ( ) A .-1 B.12 C .1 D .2

9.若(1+2x )6的展开式中的第2项大于它的相邻两项,则x 的取值范围是 ( ) A.112<x <15 B.16<x <15 C.112<x <23 D.16<x <25 10.在? ????32x -1220的展开式中,系数是有理数的项共有( ) A .4项 B .5项 C .6项 D .7项 二、填空题 11.(1+x +x 2)·(1-x )10的展开式中,x 5的系数为____________. 12.(1+x )2(1-x )5的展开式中x 3的系数为________. 13.若? ?? ??x 2+1ax 6的二项展开式中x 3的系数为52,则a =________(用数字作答). 14.(2010·辽宁理,13)(1+x +x 2)(x -1x )6的展开式中的常数项为________. 三、解答题 15.求二项式(a +2b )4的展开式. 16.m 、n ∈N *,f (x )=(1+x )m +(1+x )n 展开式中x 的系数为19,求x 2的系数的最小值及此时展开式中x 7的系数. 17.已知在(3x -123x )n 的展开式中,第6项为常数项.

沪教版高一数学教案

沪教版高一数学教案 精品文档 沪教版高一数学教案 了解集合、元素的概念,体会集合中元素的三个特征; 理解元素与集合的“属于”和“不属于”关系; 掌握常用数集及其记法; 教学重点:掌握集合的基本概念; 教学难点:元素与集合的关系; 教学过程: 一、引入课题 军训前学校通知:8月15日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生~ 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。 阅读课本P2-P3内容 集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合 ,也简称集。 3. 思考1:判断以下元素的全体是否组成集合,并说明理由: 大于3小于11的偶数; 我国的小河流; 非负奇数; 1 / 3 精品文档 方程x210的解; 某校2007级新生; 血压很高的人; 著名的数学家;

平面直角坐标系内所有第三象限的点全班成绩好的学生。 对学生的解答予以讨论、点评,进而讲解下面的问题。 4. 关于集合的元素的特征 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体, 因此,同一集合中不应重复出现同一元素。 无序性:给定一个集合与集合里面元素的顺序无关。集合相等:构成两个集合的元素完全一样。 5. 元素与集合的关系; 如果a是集合A的元素,就说a属于A,记作:a?A 如果a不是集合A的元素,就说a不属于A,记作:aA 例如,我们A表示 “1~20以内的所有质数”组成的集合,则有3?A 4A,等等。 6(集合与元素的字母表示: 集合通常用大写的拉丁字母A,B,C表示,集合的元素用 小写的拉丁字母a,b,c,表示。 ,(常用的数集及记法: 2 / 3 精品文档 非负整数集,记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R; 例题讲解: 例1(用“?”或“”符号填空: ; ; Z; 设A为所有亚洲国家组成的集合,则中国A,美国,印度A, 英国 A。例2(已知集合P的元素为1,m,m23m3, 若3?P且-1P,求实数m的值。

高三数学 二项式定理

二项式定理 1. 知识精讲: (1)二项式定理:()n n n r r n r n n n n n n b C b a C b a C a C b a +++++=+--ΛΛ110(* ∈N n ) 其通项是=+1r T r r n r n b a C - (r=0,1,2,……,n ),知4求1,如:555 156b a C T T n n -+== 亦可写成:=+1r T r n r n a b a C )( ()()()n n n n r r n r n r n n n n n b C b a C b a C a C b a 11110-++-++-=---ΛΛ(*∈N n ) 特别地:()n n n r n r n n n n n x C x C x C x C x +++++=+-ΛΛ101(* ∈N n ) 其中,r n C ——二项式系数。而系数是字母前的常数。 例1.n n n n n n C C C C 13 21393-++++Λ等于 ( ) A .n 4 B 。n 43? C 。134-n D.3 1 4-n 解:设n n n n n n n C C C C S 13 21393-++++=Λ,于是: n n n n n n n C C C C S 333333 3221++++=Λ=133333 32210 -+++++n n n n n n n C C C C C Λ 故选D 例2.(1)求7 (12)x +的展开式的第四项的系数; (2)求91 ()x x -的展开式中3 x 的系数及二项式系数解:(1)7 (12)x +的展开式的第四项是333317(2)280T C x x +==, ∴7 (12)x +的展开式的第四项的系数是280. (2)∵9 1()x x -的展开式的通项是9921991 ()(1)r r r r r r r T C x C x x --+=-=-, ∴923r -=,3r =, ∴3x 的系数339(1)84C -=-,3 x 的二项式系数3984C =. (2)二项展开式系数的性质:①对称性,在二项展开式中,与首末两端“等距离”的两项的 二项式系数相等,即ΛΛ,,,,22110k n n k n n n n n n n n n n C C C C C C C C ---==== ②增减性与最大值:在二项式展开式中,二项式系数先增后减,且在中间取得最大值。如果

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高中数学目录(沪教版)

高中数学教材(沪教版)目录 高一上 第一章集合与命题 一集合 1.1集合及其表示法 1.2集合之间的关系 1.3集合的运算 二四种命题的形式 1.4命题的形式及等价关系 三充分条件与必要条件 1.5充分条件、必要条件 1.6子集与推出关系 第二章不等式 2.1不等式的基本性质 2.2一元二次不等式的解法2.3其他不等式的解法 2.4基本不等式及其应用 *2.5不等式的证明 第三章函数的基本性质3.1函数的概念3.2函数关系的建立 3.3函数的运算 3.4函数的基本性质 第四章幂函数、指数函数和对数函数(上)一幂函数 4.1幂函数的性质与图像 二指数函数 4.2指数函数的性质与图像 *4.3借助计算器观察函数递增的快慢 高一下 第四章幂函数、指数函数和对数函数(下)三对数 4.4对数的概念及其运算 四反函数 4.5反函数的概念 五对数函数 4.6对数函数的性质与图像 六指数方程和对数方程 4.7简单的指数方程

4.8简单的对数方程 第五章 三角比 一 任意角的三角比 5.1任意角及其度量 5.2任意角的三角比 二 三角恒等式 5.3同角三角比的关系和诱导公式 5.4两角和与差的正弦、余弦和正切 5.5二倍角与半角的正弦、余弦和正切 三 解斜三角形 5.6正弦定理、余弦定理和解斜三角形 第六章 三角函数 一 三角函数的图像及性质 6.1正弦函数和余弦函数的图像与性质 6.2正切函数的图像与性质 6.3函数()sin y A x ωφ=+的图像与性质 二 反三角函数与最简三角方程 6.4反三角函数 6.5最简三角方程 高二上 第七章 数列与数学归纳法 一 数列 7.1数列 7.2等差数列 7.3等比数列 二 数学归纳法 7.4数学归纳法 7.5数学归纳法的应用 7.6归纳—猜想—证明 三 数列的极限 7.7数列的极限 7.8无穷等比数列各项的和 第八章 平面向量的坐标表示 8.1向量的坐标表示及其运算 8.2向量的数量积 8.3平面向量的分解定理 8.4向量的应用 第九章 矩阵和行列式初步 一 矩阵 9.1矩阵的概念 9.2矩阵的运算 二 行列式 9.3二阶行列式 9.4三阶行列式

高中数学 2二项式定理(带答案)

二项式定理 一.二项式定理 1.右边的多项式叫做()n a b +的二项展开式 2.各项的系数r n C 叫做二项式系数 3.式中的r n r r n C a b -叫做二项展开式的通项,它是二项展开式的第1r +项,即 1(0,1,2, ,).r n r r r n T C a b r n -+== 4.二项展开式特点:共1r +项;按字母a 的降幂排列,次数从n 到0递减;二项式系数r n C 中r 从0到 n 递增,与b 的次数相同;每项的次数都是.n 二.二项式系数的性质 性质1 ()n a b +的二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即m n m n n C C -= 性质2 二项式系数表中,除两端以外其余位置的数都等于它肩上两个数之和,即11m m m n n n C C C -++= 性质3 ()n a b +的二项展开式中,所有二项式系数的和等于2n ,即012.n n n n n C C C ++ += (令1a b ==即得,或用集合的子集个数的两种计算方法结果相等来解释) 性质4 ()n a b +的二项展开式中,奇数项的二项式系数的和等于偶数项 的二项式系数的和,即 02 213 21 12.r r n n n n n n n C C C C C C +-++ ++ =++ ++ = (令1,1a b ==-即得) 性质5 ()n a b +的二项展开式中,当n 为偶数时,中间一项的二项式系数2n n C 取得最大值;当n 为奇数时,中间两项的二项式系数1 2,n n C -1 2n n C +相等,且同时取得最大值.(即中间项的二项式系数最大)

高中数学解题的21个典型方法与技巧

高中数学解题的21个典型方法与技巧 1、解决绝对值问题(化简、求值、方程、不等式、函数)的基本思路是:把绝对值的问题转化为不含绝对值的问题。具体转化方法有: ①分类讨论法:根据绝对值符号中的数或表达式的正、零、负分情况去掉绝对值。 ②零点分段讨论法:适用于含一个字母的多个绝对值的情况。 ③两边平方法:适用于两边非负的方程或不等式。 ④几何意义法:适用于有明显几何意义的情况。 2、根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:提取公因式→选择用公式→十字相乘法→分组分解法→拆项添项法。 3、利用完全平方式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有: ①()2222a ab b a b ±+=± ②()2 222222a b c ab bc ca a b c +++++=++ ③()()()22222212a b c ab bc ca a b b c c a ??+++++=+++++? ? ④222222224224244b b b b b b ac ax bx c a x x c a x x c a x a a a a a a ??-????++=++=+??++-=++ ? ? ??????? 4、解某些复杂的特型方程要用到换元法。换元法解题的一般步骤是:设元→换元→解元→还元。 5、待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求解点的坐标、函数解析式、曲线方程等重要问题的解决。其步骤是:①设②列③解④写 6、复杂代数等式条件的使用技巧:右边化为零,左边变形。 ①因式分解型:()()0---?---=,两种情况为或型。 ②配成平方型:()()22 0---+---=,两种情况为且型。 7、数学中两个最伟大的解题思路: ①求值的思路?????→方程思想与方法列欲求值字母的方程或方程组 ②求取值范围的思路 ??????→不等式思想与方法欲求范围字母的不等式或不等式组 8m 化成完全平方式。

(推荐)高中数学二项式定理

二项式定理 【2011?新课标全国理,8】51()(2)a x x x x +-的展开式中各项系数的和为2,则该展开式中常数项为( ). A .-40 B .-20 C .20 D .40 【答案】D 【最新考纲解读】 二项式定理 (1)能用计数原理证明二项式定理. (2)会用二项式定理解决与二项展开式有关的简单问题. 【回归课本整合】 1.二项式定理的展开式 011()n n n r n r r n n n n n n a b C a C a b C a b C b --+=+++++,其中组合数r n C 叫做第r +1项的二 项式系数;展开式共有n +1项. 注意:(1)项的系数与二项式系数是不同的两个概念,但当二项式的两个项的系数都为1 时,系数就是二项式系数。如在()n ax b +的展开式中,第r+1项的二项式系数为r n C ,第

3.项的系数和二项式系数的性质 (1)对称性:与首末两端“等距离”的两个二项式系数相等( m n m n n C C- = ). 【方法技巧提炼】

(2)()()n m a b c d ++结构:①若n 、m 中一个比较小,可考虑把它展开得到多个;②观察()()a b c d ++是否可以合并;③分别得到()()n m a b c d ++、 的通项公式,综合考虑. 例2 61034(1)(1)x x 展开式中的常数项为( ) A .1 B .46 C .4245 D .4246

答案: D 例3 5 )2 1 2 (+ + x x 的展开式中整理后的常数项为 .

答案: 632 例5 若对于任意实数x,有 323 0123 (2)(2)(2) x a a x a x a x =+-+-+- ,则2 a的值为()

高考数学 《二项式定理》

二项式定理 主标题:二项式定理 副标题:为学生详细的分析二项式定理的高考考点、命题方向以及规律总结。 关键词:二项式定理,二项式系数,项系数 难度:2 重要程度:4 考点剖析: 1.能用计数原理证明二项式定理. 2.会用二项式定理解决与二项展开式有关的简单问题. 命题方向: 1.二项式定理是高中数学中的一个重要知识点,也是高考命题的热点,多以选择、填空题的形式呈现,试题难度不大,多为容易题或中档题. 2.高考对二项式定理的考查主要有以下几个命题角度: (1)求二项展开式中的第n项; (2)求二项展开式中的特定项; (3)已知二项展开式的某项,求特定项的系数. 规律总结: 1个公式——二项展开式的通项公式 通项公式主要用于求二项式的特定项问题,在运用时,应明确以下几点: (1)C r n a n-r b r是第r+1项,而不是第r项; (2)通项公式中a,b的位置不能颠倒; (3)通项公式中含有a,b,n,r,T r+1五个元素,只要知道其中的四个,就可以求出第五个,即“知四求一”. 3个注意点——二项式系数的三个注意点 (1)求二项式所有系数的和,可采用“赋值法”; (2)关于组合式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法; (3)展开式中第r+1项的二项式系数与第r+1项的系数一般是不相同的,在具体求各项的系数时,一般先处理符号,对根式和指数的运算要细心,以防出错.

知 识 梳 理 1.二项式定理 二项式定理 (a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *) 二项展开式 的通项公式 T r +1=C r n a n -r b r ,它表示第r +1项 二项式系数 二项展开式中各项的系数C 0 n ,C 1n ,…,C n n 2.二项式系数的性质 (1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n . (2)二项式系数先增后减中间项最大 当n 为偶数时,第n 2 +1项的二项式系数最大,最大值为2n n C ;当n 为奇数时,第n +1 2项和n +3 2项的二项式系数最大,最大值为21 -n n C 或21 +n n C . (3)各二项式系数和:C 0 n +C 1n +C 2n +…+C n n =2n , C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2 n -1.

2018年高考二项式定理十大典型问题及例题

学科教师辅导讲义 1.二项式定理: 011 ()()n n n r n r r n n n n n n a b C a C a b C a b C b n N --*+=++ ++ +∈, 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n ,是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数 (包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+- ++ +-∈ 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1) k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n n n n n n n C C C C C +++++ +=, 变形式1221r n n n n n n C C C C ++ ++ +=-。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123 (1)(11)0n n n n n n n n C C C C C -+-++-=-=, 从而得到:02421321 11222 r r n n n n n n n n n C C C C C C C +-++???++???=++ ++???= ?= ④奇数项的系数和与偶数项的系数和:

二项式定理知识点总结

二项式定理 一、二项式定理: ()n n n k k n k n n n n n n b C b a C b a C a C b a +++++=+-- 110(*∈N n )等号右边的多项式叫做 ()n b a +的二项展开式,其中各项的系数k n C )3,2,1,0(n k ???=叫做二项式系数。 对二项式定理的理解: (1)二项展开式有1+n 项 (2)字母a 按降幂排列,从第一项开始,次数由n 逐项减1到0;字母b 按升幂排列,从第一项开始,次数由0逐项加1到n (3)二项式定理表示一个恒等式,对于任意的实数b a ,,等式都成立,通过对b a ,取不同的特殊值,可为某些问题的解决带来方便。在定理中假设x b a ==,1,则 ()n n n k n k n n n n n x C x C x C x C x +++++=+- 101(*∈N n ) (4)要注意二项式定理的双向功能:一方面可将二项式()n b a +展开,得到一个多项式; 另一方面,也可将展开式合并成二项式()n b a + 二、二项展开式的通项:k k n k n k b a C T -+=1 二项展开式的通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=是二项展开式的第1+k 项,它体现了 二项展开式的项数、系数、次数的变化规律,是二项式定理的核心,它在求展开式的某些特定项(如含指定幂的项、常数项、中间项、有理项、系数最大的项等)及其系数等方面有广泛应用 对通项k k n k n k b a C T -+=1)3,2,1,0(n k ???=的理解: (1)字母b 的次数和组合数的上标相同 (2)a 与b 的次数之和为n (3)在通项公式中共含有1,,,,+k T k n b a 这5个元素,知道4个元素便可求第5个元素

高三数学-二项式定理

10.3二项式定理强化训练 【基础精练】 1.在二项式(x 2-1 x )5的展开式中,含x 4的项的系数是 ( ) A .-10 B .10 C .-5 D .5 2.(2009·北京高考)若(1+2)5=a +b 2(a ,b 为有理数),则a +b = ( ) A .45 B .55 C .70 D .80 3.在( 1x + 51 x 3 )n 的展开式中,所有奇数项的系数之和为1 024,则中间项系数 是 ( ) A .330 B .462 C .682 D .792 4.如果? ?? ?? 3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为 ( ) A .10 B .6 C .5 D .3 5.在? ? ??? 2x -y 25的展开式中,系数大于-1的项共有 ( ) A .3项 B .4项 C .5项 D .6项 6.二项式41(1)n x +-的展开式中,系数最大的项是 ( ) A .第2n +1项 B .第2n +2项 C .第2n 项 D .第2n +1项和第2n +2项 7.若(x 2+1 x 3)n 展开式的各项系数之和为32,则其展开式中的常数项是________. 8.( x +2 x 2)5的展开式中x 2的系数是________;其展开式中各项系数之和为________.(用 数字作答) 9.若? ? ? ??2x - 229 的展开式的第7项为214,则x =________. 10.已知(x - 124 x )n 的展开式中,前三项系数的绝对值依次成等差数列.

(1)证明:展开式中没有常数项; (2)求展开式中所有有理项. 11.设(2x-1)5=a0+a1x+a2x2+…+a5x5,求: (1)a0+a1+a2+a3+a4; (2)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|; (3)a1+a3+a5; (4)(a0+a2+a4)2-(a1+a3+a5)2. 【拓展提高】 1.在(3x-2y)20的展开式中,求: (1)二项式系数最大的项; (2)系数绝对值最大的项; (3)系数最大的项.

二项式定理的十一种考题解法

二项式定理的十一种考题解法 1.二项式定理: 2.基本概念: ①二项式展开式:右边的多项式叫做()n a b +的二项展开式。 ②二项式系数:展开式中各项的系数r n C (0,1,2,,)r n =???. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。用 1r n r r r n T C a b -+=表示。 3.注意关键点: ①项数:展开式中总共有(1)n +项。 ②顺序:注意正确选择a ,b ,其顺序不能更改。()n a b +与()n b a +是不同的。 ③指数:a 的指数从n 逐项减到0,是降幂排列。b 的指数从0逐项减到n , 是升幂排列。各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是 012,,,,,,.r n n n n n n C C C C C ??????项的系数是a 与b 的系数(包括二项式系数)。 4.常用的结论: 令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L

令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L 5.性质: ①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等, 即0n n n C C =,···1k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为 0122r n n n n n n n C C C C C ++++++=L L , 变形式1221r n n n n n n C C C C +++++=-L L 。 ③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=L , 从而得到:02421321 11 222 r r n n n n n n n n n C C C C C C C +-++???++???=++++???=?=L ④奇数项的系数和与偶数项的系数和: ⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n n C 取得最大值。 如果二项式的幂指数n 是奇数时,则中间两项的二项 式系数1 2n n C -,12n n C +同时取得最大值。 ⑥系数的最大项:求()n a bx +展开式中最大的项,一般采用待定系数法。设 展开式中各项系数分别 为121,,,n A A A +???,设第1r +项系数最大,应有112 r r r r A A A A +++≥??≥?,

2020年高考理科数学 《二项式定理》题型归纳与训练及参考答案

2020年高考理科数学 《二项式定理》题型归纳与训练 【题型归纳】 题型一 二项式定理展开的特殊项 例 在二项式5 21??? ??-x x 的展开式中,含4x 的项的系数是( ) A .10- B .10 C .5- D .5 【答案】B 【解析】对于()()r r r r r r r x C x x C T 3105525111--+-=??? ??-=,对于2,4310=∴=-r r ,则4x 的项的系数是()101225=-C 【易错点】公式记错,计算错误。 【思维点拨】本题主要考查二项式定理的展开公式,知道什么是系数,会求每一项的系数. 题型二 求参数的值 例 若二项式n x x ??? ? ?+21的展开式中,第4项与第7项的二项式系数相等,则展开式6x 的系数为________.(用数字作答) 【答案】9 【解析】根据已知条件可得: 96363=+=?=n C C n n , 所以n x x ??? ? ?+21的展开式的通项为23999912121C r r r r r x C x x T --+??? ??=??? ??=,令26239=?=-r r ,所以所求系数为921292=??? ??C . 【易错点】分数指数幂的计算 【思维点拨】本题主要考查二项式定理的展开公式,并用其公式求参数的值. 题型三 展开项的系数和 例 已知()()()()10 102210101...111x a x a x a a x -++-+-+=+,则8a 等于( ) A .180- B .180 C .45 D .45- 【答案】B

【解析】由于()()[]1010121x x --=+,又()[]10 12x --的展开式的通项公式为: ()[]()()r r r r r r r r x C x C T -???-=--??=--+12112101010101,在展开式中8a 是()81x -的系数,所以应取8=r , ∴()1802128108 8=??-=C a . 【易错点】对二项式的整体理解 【思维点拨】本题主要对二项式定理展开式的综合考查,学会构建模型 题型四 二项式定理中的赋值 二项式()932y x -的展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和. 【答案】(1)9 2 (2)-1 (3)2 159- 【解析】设()9927281909...32y a y x a y x a x a y x ++++=+ (1)二项式系数之和为9992919 092...=++++C C C C . (2)各项系数之和为()132 (9) 9210-=-=++++a a a a (3)由(2)知1...9210-=++++a a a a ,令1,1-==y x ,得992105...=++++a a a a ,将两式相加,得2 15986420-=++++a a a a a ,即为所有奇数项系数之和. 【思维点拨】本题主要学会赋值法求二项式系数和、系数和,难点在于赋值 【巩固训练】 题型一 二项式定理展开的特殊项 1.在 ()10 2-x 的展开式中,6x 的系数为( ) A .41016C B .41032C C .6108C - D .61016C - 【答案】A

高中数学典型题型与解析

高中数学典型题型与解析 一、选择题 1.设,21,a b R a b +∈+=、则2224ab a b --有( ) A .最大值 1 4 B .最小值14 C .最大值 212 - D .最小值54- 2. 某校有6间不同的电脑室,每天晚上至少开放2间,欲求不同安排方案的种数,现有四 位同学分别给出下列四个结果:①2 6C ;②6 65 64 63 62C C C C +++;③726 -;④2 6A .其中 正确的结论是( ) A .仅有① B .仅有② C .②和③ D .仅有③ 3. 将函数y =2x 的图像按向量a →平移后得到函数y =2x +6的图像,给出以下四个命题:① a →的坐标可以是(-3.0);②a →的坐标可以是(0,6);③a →的坐标可以是(-3,0)或(0, 6);④a →的坐标可以有无数种情况,其中真命题的个数是( ) A .1 B .2 C .3 D .4 4. 不等式组? ??>->-a x a x 2412,有解,则实数a 的取值范围是( ) A .(-1,3) B .(-3,1) C .(-∞,1) (3,+∞) D .(-∞,-3) (1,+∞) 5. 设a >0,c bx ax x f ++=2 )(,曲线y =f (x )在点P (0x ,f (0x ))处切线的倾斜角 的取值范围为[0,4π ],则P 到曲线y =f (x )对称轴距离的取值范围为( ) A .[0,]1a B .0[,]21a C .0[,|]2|a b D .0[,|]21 |a b - 6. 已知)(x f 奇函数且对任意正实数1x ,2x (1x ≠2x )恒有 0) ()(2 121>--x x x f x f 则一定正确的是( ) A .)5()3(->f f B .)5()3(-<-f f C .)3()5(f f >- D .)5()3(->-f f 7. 将半径为R 的球加热,若球的半径增加R ?,则球的体积增加≈?V ( ) A . R R ?3 π3 4 B .R R ?2π4 C .2π4R D .R R ?π4 8. 等边△ABC 的边长为a ,将它沿平行于BC 的线段PQ 折起,使平面APQ ⊥平面BPQC ,若折叠后AB 的长为d ,则d 的最小值为( ) A . a 43 B .a 45 C .4 3a D . a 410 9. 锐角α、β满足β α βα2424sin cos cos sin +=1,则下列结论中正确的是( ) A .2π≠ +βα B .2π<+βα C .2π>+βα D .2 π=+βα

高中数学知识点总结---二项式定理

高中数学知识点总结---二项式定理 1. ⑴二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项; ② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C ③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开. ⑵二项展开式的通项. n b a ) +(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+. ⑶二项式系数的性质. ①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第 12 +n 项,它的二项式系数2 n n C 最大; II. 当n 是奇数时,中间项为两项,即第2 1+n 项和第 12 1++n 项,它们的二项式系数212 1+-=n n n n C C 最大. ③系数和: 1 314 201 2 2-=+ +=+++=+++n n n n n n n n n n n C C C C C C C C 附:一般来说b a by ax n ,()(+为常数)在求系数最大的项或最小的项........... 时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组1 111 1(,+-+-+???≤≤???≥≥k k k k k k k k k k T A A A A A A A A A 为或的系数或系数 的绝对值)的办法来求解. ⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢?其中 , ,,N r q p ∈且 n r q p =++把 n n c b a c b a ] )[()(++=++视为二项式,先找出含有r C 的项r r n r n C b a C -+)(,另一方面在r n b a -+) (中含有q b 的项为 q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为 r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --== ---?-= ! !!!)! (!)! ()!(!! . 2. 近似计算的处理方法.

相关文档
相关文档 最新文档