文档库 最新最全的文档下载
当前位置:文档库 › 高一数学指数及指数函数基础知识

高一数学指数及指数函数基础知识

高一数学指数及指数函数基础知识
高一数学指数及指数函数基础知识

高一数学指数及指数函数

1?根式的性质

(3)负数没有偶次方根 (4)零的任何正次方根都是零

2?幕的有关概念 (1)正整数指数幕:

n

a

a a a ..… n

...... a (n N )

(2)零指数幕a 0

1(a 0)

1

⑶负整数指数幕 a p

-

(a 0.p N )

a p

m

(4)正分数指数幕

a n

n

m

a (a

0, m, n N ,且 n 1) (5)负分数指数幕

a m

1 n

m

(a

0, m, n N ,且 n 1)

a 石

(6)0的正分数指数幕等于

0,0的负分数指数幕无意义

3?有理指数幕的运算性质

r

r s

⑶(ab) a a ,(a

0,b 0, r Q)

4、指数函数的定义:

函数y a% 0且a °叫做指数函数,其中x 是自变量,函数定义域是R 。 ① 若a 0,则当x 0时,『0;当x 0时,a x 无意义.

1 1

② 若a 0,则对于X 的某些数值,可使a 无意义?如(

2),这时对于 4

2

等等,在实数范围内函数值不存在?

③ 若a 1,则对于任何x R ,a x 1,是一个常量,没有研究的必要性? 对于任何x R ,「都有意义,且『0.因此指数函数的定义域是R ,值域是(°

)

有些函数貌似指数函数,实际上却不是,如y 『k (a 0且 a 1,k Z );

x

有些函数看起来不像指数函数,实际上却是,如y a (a 0且a 1),因为它可 x

1 1 1 0 1 a ,其中a ,且a

(1)当n 为奇数时,有n a n

a

(2)当n 为偶数时,有;a" a a, (a 0) a, (a 0)

r s

r s .

八 亠、

(1) a a a ,(a 0, r, s Q)

/ r

、s

rs , -

亠、

⑵(a )

a ,(a 0,r,s Q)

以化为y

5、函数的图象

(1)①特征点:指数函数y = a x (a > 0且a ^ 1) 的图象经过两点(0 , 1)和(1,a).

②指数函数y = a x (a > 0且a 工1)的图象中,y = 1 反映了它的分布特征;而直线x = 1 与指数函数图象的交点(1,a)的纵坐 标则直观反映了指数函数的底数特 征,称直线x = 1和y = 1为指数函 数的两条特征线?

(2)、函数的图象单调性

当a > 1时,函数在定义域范围内 呈单调递增; 当0v a v 1时,函数在定义域范围 内呈单调递减; 推论:(1)底互为倒数的两个函数图像关于y 轴对称

(2)当a > 1时,底数越大,函数图象越靠近丫轴;当0v a v 1时,底数越小, 函数图象越靠近丫轴。

x

y a

0 < a < 1

a > 1

+ y

彳y

/

J J

一 2

4 z

定义域 R 值域

(0 , + g )

性 过定点(0,1),即卩x = 0时,y = 1

定点

(1) a > 1,当 x > 0 时,y> 1;当 x

< 0 时,0 < y < 1。

(2) 0 < a < 1,当 x > 0 时,0 < y < 1 ;当 x < 0 时,y> 1。

单调性 在R 上是减函数

在R 上是增函数

对称性

x

x

y a 和y a 关于y 轴对称

J k.rl kJ —

卜i 」

Q| x=l

X °l X-]莖

(a>J

高中数学函数相关知识点整理.doc

高中数学函数相关知识点整理 函数在高中数学中的地位不可动摇,考生必须掌握函数相关知识点,下面是我给大家带来的,希望对你有帮助。 高中数学反比例函数知识点 形如 y=k/x(k为常数且k0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质:反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为|k|。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x ,若在分母上加减任意一个实数 (即 y=k/(xm)m 为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 高中数学对数函数知识点 对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。 对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,

因为它们互为反函数。 (1)对数函数的定义域为大于0的实数集合。 (2)对数函数的值域为全部实数集合。 (3)函数总是通过(1,0)这点。 (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。 (5)显然对数函数无界。 高中数学指数函数知识点 指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得 可以得到: (1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2) 指数函数的值域为大于0的实数集合。 (3) 函数图形都是下凹的。 (4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

高中数学完整讲义指数与指数函数1指数基本运算

题型一 指数数与式的运算 【例1】 求下列各式的值: ⑴ 33(5)-;⑵ 2(3)-; ⑶ 335; ⑷ 2()()a b a b -<; ⑸ 4334(3)(3)ππ---.⑹2 3 8;⑺12 25- ;⑻5 12-?? ???;⑼34 1681- ?? ??? . 【例2】 求下列各式的值: ⑴ 44100;⑵ 55 (0.1)-;⑶ 2(4)π-;⑷ 66 ()()x y x y ->. 【例3】 用分数指数幂表示下列各式: (1)3 2x (2)43)(b a +(a +b >0) (3)32 )(n m - (4)4 )(n m -(m >n ) (5) 5 6 q p ?(p >0) (6)m m 3 典例分析 板块一.指数基本运算

【例4】 用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)3 22b a ab + (4)4233)(b a + 【例5】 用分数指数幂的形式表示下列各式(其中0)a >:3a ;2a . 【例6】 用根式的形式表示下列各式(a >0) 15 a ,34 a ,35 a -,23 a - 【例7】 用分数指数幂的形式表示下列各式: 2 a a ,3 3 2a a ,a a (式中a >0) 【例8】 求值:23 8,12 100 -,314-?? ???,3 41681- ?? ??? . 【例9】 求下列各式的值: (1)12 2 (2)1 2 6449- ?? ??? (3)34 10000- (4)23 12527- ?? ???

指数函数基础练习.docx

练习题 一,选择题 1.下列函数是指数函数的是() A.y = -2x B. y = 2x+, C. y = 2_x D. y=l x 2.函数y =@—2尸在R上为增函数,则a的取值范围是() A. a>0 且a7^1 B. a>3 C. a<3 D. 2

8. 设a,b,c,d 都是不等于1的正数,y = a\y = h\y = c\y = d x 在同一?处标系中的图像如图所示,则a,b,c,d 的 10. y= 0.3戶的值域是( ) 4. (-oo,0) B.[l,+x) C.(0,l] 0.(- oo,l] 11. 当xe[-l,l]时函数/(x) = 3v -2的值域是() A. --,1 B\-1,1] C. 1,- D.[0,l 3 3 2 2 1 1 | £ 5 12. 化简(/沪)(—3决质)十(丄,沪 )的结果 ( ) A . 6a B ? -a C . -9a D . 9a 2 设指数函数/(x) = a x (a > 0卫主1),则下列等式中不正确的是 (0,1] B ? (04) C ? (0,+o>) 13. 14. f(nx) = [f(x)]n (n e Q) f(xyy=[f(x)]n {f(y)Y (n G N") 函数 y = (x-5)°4-(x-2p {x \ x 5,x 工 2} B . {x\x > 2} {x\x>5} D . {x\2< x < 5^x > 5} 15. 函数/(x) = 2-,A 1的值域是 16. 若指数函数y = (a + \)x 在(—oo, + 00)上是减函数,那么( A 、 0 < a < I B 、 -l

高一数学指数函数知识点及练习题

2.1.1指数与指数幂的运算 (1)根式的概念 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次 当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根. n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数 时,0a ≥. n a =;当n a =;当n (0)|| (0) a a a a a ≥?==?-∈且1)n >.0的正分数指数幂等于0.② 正数的负分数指数幂的意义是: 1()0,,,m m n n a a m n N a -+==>∈且1)n >.0 的负分数指 数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① (0,,) r s r s a a a a r s R +?=>∈ ② ()(0,,) r s rs a a a r s R =>∈ ③ ()(0,0,)r r r ab a b a b r R =>>∈ 2.1.2指数函数及其性质 指数函数练习

1.下列各式中成立的一项 ( ) A .71 7 7)(m n m n = B .31243)3(-=- C .4 343 3)(y x y x +=+ D . 33 39= 2.化简)3 1 ()3)((65 61 3 12 12 13 2b a b a b a ÷-的结果 ( ) A .a 6 B .a - C .a 9- D .2 9a 3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是 ( ) A .f (x +y )=f(x )·f (y ) B .) () (y f x f y x f =-) ( C .)()] ([)(Q n x f nx f n ∈= D .)()]([· )]([)(+∈=N n y f x f xy f n n n 4.函数2 10 ) 2()5(--+-=x x y ( ) A .}2,5|{≠≠x x x B .}2|{>x x C .}5|{>x x D .}552|{><≤-=-0 ,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ( ) A .)1,1(- B . ),1(+∞- C .}20|{-<>x x x 或 D .}11|{-<>x x x 或 9.函数2 2)2 1(++-=x x y 得单调递增区间是 ( ) A .]2 1,1[- B .]1,(--∞ C .),2[+∞ D .]2,2 1 [ 10.已知2 )(x x e e x f --=,则下列正确的是 ( ) A .奇函数,在R 上为增函数 B .偶函数,在R 上为增函数

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

指数函数基础练习

指数函数·基础练习 (一)选择题 1.函数y =a |x|(0<a <1)的图像是 [ ] 2a 0a 1f(x)g(x)f(x)[ 1a +1 2 ]x .若>,且≠,是奇函数,则=-1 [ ] A .是奇函数 B .不是奇函数也不是偶函数 C .是偶函数 D .不确定 3y .函数=的单调减区间是()12 2 32x x -+ [ ] A .(-∞,1] B .[1, 2] C [3 2 D 3 2 ].,+∞.-∞,) ( 4.c <0,下列不等式中正确的是 [ ]

A c 2 B c C 2 D 2c c c c c c .≥.>.<.>()()()1 2 1 2 1 2 5.x ∈(1,+∞)时,x α>x β,则α、β间的大小关系是 [ ] A .|α|>|β| B .α>β C .α≥0≥β D .β >0>α 6.下列各式中正确的是 [ ] A B C D .<<.<<.<<.<<()()()()()()()()()()()()121512 121215 151212 151212 23231 3 13232 3 23132 3 23231 3 7.函数y =2-x 的图像可以看成是由函数y =2-x+1+3的图像平移后得到的,平移过程是 [ ] A .向左平移1个单位,向上平移3个单位 B .向左平移1个单位,向下平移3个单位 C .向右平移1个单位,向上平移3个单位 D .向右平移1个单位,向下平移3个单位 8y .已知函数=,下列结论正确的是31 31 x x -+ [ ] A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数 9y =a y =a y y a 12x 2x 2+1 21.函数,,若恒有≤,那么底数的取值范 围是 [ ] A .a >1 B .0<a <1 C .0<a <1或a >1; D .无法确 定

(完整版)指数函数经典习题大全

指数函数习题 新泰一中闫辉 一、选择题 1.下列函数中指数函数的个数是 ( ). ①②③④ A.0个 B.1个 C.2个 D.3个 2.若,,则函数的图象一定在() A.第一、二、三象限 B.第一、三、四象限 C.第二、三、四象限 D.第一、二、四象限 3.已知,当其值域为时,的取值范围是()A. B. C. D. 4.若,,下列不等式成立的是() A. B. C. D. 5.已知且,,则是() A.奇函数 B.偶函数 C.非奇非偶函数 D.奇偶性与有关 6.函数()的图象是() 7.函数与的图象大致是( ).

8.当时,函数与的图象只可能是() 9.在下列图象中,二次函数与指数函数的图象只可能是() 10.计算机成本不断降低,若每隔3年计算机价格降低 ,现在价格为8100元的计算机,则9年后的价格为( ). A.2400元 B.900元 C.300元 D.3600元 二、填空题 1.比较大小: (1);(2) ______ 1;(3) ______ 2.若,则的取值范围为_________. 3.求函数的单调减区间为__________.

4.的反函数的定义域是__________. 5.函数的值域是__________ . 6.已知的定义域为 ,则的定义域为__________. 7.当时, ,则的取值范围是__________. 8.时,的图象过定点________ . 9.若 ,则函数的图象一定不在第_____象限. 10.已知函数的图象过点 ,又其反函数的图象过点(2,0),则函数的解析式为____________. 11.函数的最小值为____________. 12.函数的单调递增区间是____________. 13.已知关于的方程有两个实数解,则实数的取值范围是_________. 14.若函数(且)在区间上的最大值是14,那么等于 _________. 三、解答题 1.按从小到大排列下列各数: ,,,,,,, 2.设有两个函数与,要使(1);(2),求、的取值范围. 3.已知 ,试比较的大小. 4.若函数是奇函数,求的值. 5.已知,求函数的值域. 6.解方程:

高考数学知识点:指数函数、函数奇偶性

高考数学知识点:指数函数、函数奇偶性指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。 可以看到: (1)指数函数的定义域为所有实数的集合,这里的前提是a 大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。 (2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y 轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。(7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性 注图:(1)为奇函数(2)为偶函数

1.定义 一般地,对于函数f(x) (1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 (2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 (3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。 (4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与 f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。 说明:①奇、偶性是函数的整体性质,对整个定义域而言 ②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不是奇(或偶)函数。 (分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论) ③判断或证明函数是否具有奇偶性的根据是定义 2.奇偶函数图像的特征: 定理奇函数的图像关于原点成中心对称图表,偶函数的图象

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

人教高一数学指数函数讲义

第四节、指数函数 一、初中根式的概念; 如果一个数的平方等于a ,那么这个数叫做a 的平方根,如果一个数的立方等于a ,那么这个数叫做a 的立方根; (一)指数与指数幂的运算 1.根式的概念 一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.此时,a 的n 次方根用符号n a 表示。 . 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。 当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.此时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号-n a 表示.正的n 次方根与负的n 次方根可以合并成±n a (a >0)。 由此可得:负数没有偶次方根;0的任何次方根都是0,记作00=n 。 思考:n n a =a 一定成立吗? 结论:当n 是奇数时,a a n n = 当n 是偶数时,???<≥-==) 0()0(||a a a a a a n n 例1、(1)=-+125.08 33-4 1633 (2)7722)(2y x y xy x -+ +-=

2.分数指数幂 正数的分数指数幂的意义 规定: )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(11 *>∈>==-n N n m a a a a n m n m n m 0的正分数指数幂等于0,0的负分数指数幂没有意义 指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂. 3.有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a ab =)( ),0,0(Q r b a ∈>>. 无理指数幂:一般地,无理数指数幂),0(是无理数αα>a a 是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂. 对于根式的运算,简单的问题可以根据根式的意义直接计算,一般要将根式化为分数指数幂,利用分数指数幂的运算性质来进行计算。 例2、化简(1)=÷?----32 11321 32)(a b b a b a b a (2)=?÷?363342b ab a

指数函数基础练习及答案

指数函数练习 1. 函数(1)x y 4=; (2) 4x y =; (3) x y 4-=; (4) x y )4(-=; (5) x y π=; (6) 24x y =; (7) x x y =; (8) 1()1(>-=a a y x , 且a 1≠)中,是指数函数的是 2. 函数33(0,1)x y a a a -=+>≠恒过的定点是 3. 若1()21x f x a = +-是奇函数,则a = 【答案】【解析】12(),()()2112x x x f x a a f x f x --=+=+-=--- 4. 若指数函数y a x =+()1在()-∞+∞,上是减函数,那么( ) A 、 01<,且1x x a b <<(0a >,0b >),则a 与b 的大小关系是( B ) A 1b a << B 1b << C 1b a << D 1a b << 8. 如图,指出函数①y=a x ;②y=b x ;③y=c x ;④y=d x 的图象,则a,b,c,d 的大小关系是B A a≠()01且,与函数 y a x =-()1的图象只能是( C ) 10. 函 数 x x x x e e y e e --+=-的 图像大致 为( A ). 【解析】:函数有意义,需使0x x e e --≠,其定义域为{}0|≠x x ,排除C,D,又因 为 D

高一数学指数函数经典例题

高一数学 指数函数平移问题 ⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x . f (x )的图象 向左平移a 个单位得到f (x +a )的图象;向右平移a 个单位得到f (x -a )的图象; 向上平移a 个单位得到f (x )+a 的图象;向下平移a 个单位得到f (x )-a 的图象. 指数函数·经典例题解析 (重在解题方法) 【例1】求下列函数的定义域与值域: (1)y 3 (2)y (3)y 12x ===-+---213321x x 解 (1)定义域为x ∈R 且x ≠2.值域y >0且y ≠1. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为y ≥0. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3,∴值域是≤<.0y 3 及时演练求下列函数的定义域与值域 (1)4 12 -=x y ; (2)|| 2()3 x y =; (3)12 41 ++=+x x y ; 【例2】指数函数y =a x ,y =b x ,y =c x ,y =d x 的图像如图2.6-2所示,则a 、b 、c 、d 、1之间的大小关系是 [ ] A .a <b <1<c <d B .a <b <1<d <c C . b <a <1<d <c D .c <d <1<a <b 解 选(c),在x 轴上任取一点(x ,0),则得b <a <1<d <c . 及时演练 指数函数① ② 满足不等式 ,则它们的图象是 ( ). 【例3】比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 358945 12--()

指数函数的基础知识

指数函数基础知识 指数函数施我们学习的基本函数之一,对于指数函数的学习,概念非常重要,因此一定要弄懂指数函数的定义。 一、指数函数的定义: 函数 )10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。 注意点1:为什么要规定01a a >≠且呢? ①若0a =,则当0x >时,0x a =;当0x <时,x a 无意义. ②若0a <,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于 14x = ,1 2x =,…等等,在 实数范围内函数值不存在. ③若1a =,则对于任何x R ∈,1x a =,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定01a a >≠且。在规定以后,对于任何x R ∈,x a 都有意义,且0x a >. 因此指数函数的定义域是R ,值域是(0,)+∞ 。 注意点2: 上述指数函数的定义是形式上的定义,它实质上是一种指数的对应关系,以a 为底数 作为指数对应过去。从对应的角度看指数函数的话,就能很容易理解为什么函数1 3+=x y 不 是指数函数,也能理解指数函数的解析式x y a =中,x a 的系数为什么是1. 有些函数貌似指数函数,实际上却不是,如 x y a k =+ (01a a >≠且,k Z ∈);有些函数看起来不像指数函数,实际上却是,如x y a -= (01a a >≠且),因为它可以化为 1x y a ?? = ???,其中10a >,且1 1 a ≠。 二、函数的图象 (1)①特征点:指数函数y =a x (a >0且a ≠1)的图象经过两点(0,1)和(1,a),我们称这两点为指数函数的两个特征点. ②指数函数y =a x (a >0且a ≠1)的图象中,y =1反映了它的分布特征;而直线x =1与指数函数图象的交点(1,a)的纵坐标则直观反映了指数函数的底数特征,我们称直线x =1和y =1为指数函数的两条特征线(如右图所示). (2)、函数的图象单调性 当a >1时,函数在定义域范围内呈单调递增; 当0<a <1时,函数在定义域范围内呈单调递减;

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

指数以及指数函数的整理讲义经典-(含答案)

指数与指数函数 一、指数 (一)n 次方根: 1的3次方根是( ) A .2 B .-2 C .±2 D .以上都不对 2、若4 a -2+(a -4)0有意义,则实数a 的取值范围是( ) A .a ≥2 B .a ≥2且a ≠4 C .a ≠2 D .a ≠4 (二)、 n 为奇数,a a n n = n 为偶数,?? ?<-≥==0 ,0 ,a a a a a a n n 1.下列各式正确的是( ) =-3 =a =2 D .a 0=1 2、.(a -b )2+5 (a -b )5的值是( ) A .0 B .2(a -b ) C .0或2(a -b ) D .a -b 3、若xy ≠0,那么等式 4x 2y 2=-2xy y 成立的条件是( ) A .x >0,y >0 B .x >0,y <0 C .x <0,y >0 D .x <0,y <0 4、求下列式子 (1).33 4433)32()23()8(---+- (2)223223--+ (三)、分数指数幂 1、求值 4 3 52 13 2811621258- --?? ? ????? ??;;; 243 的结果为 A 、5 B 、5 C 、-5 D 、-5 3、把下列根式写成分数指数幂的形式: (1)32ab (2)()42 a - (3) 3432x x x (四)、实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)( ),,0(R s r a ∈>. 1.对于a >0,b ≠0,m 、n ∈N *,以下运算中正确的是( )

4指数函数与对数函数基础知识点及练习题

指数函数与对数函数 1、指数及其运算性质:(1)、如果一个数的n 次方根等于a (* ,1N n n ∈>),那么这个数叫a 的n 次方根; n a 叫根式,当n 为奇数时,a a n n =;当n 为偶数时,? ??<-≥==)0()0(||a a a a a a n n (2)、分数指数幂:正分数指数幂:n m n m a a =;负分数指数幂:n m n m a a 1= - 0的正分数指数幂等于1,0的负分数指数幂没有意义(0的负数指数幂没有意义); (3)、运算性质:当Q s r b a ∈>>,,0,0时:r r r rs s r s r s r b a ab a a a a a ===?+)(,)(,, r r a a 1 =; 2、对数及其运算性质:(1)、定义:如果)1,0(≠>=a a N a b ,数b 叫以a 为底N 的对数,记作b N a =log ,其中a 叫底数,N 叫真数,以10为底叫常用对数:记为lgN ,以e=2.7182828…为底叫自然对数:记为lnN (2)、性质:①:负数和零没有对数,②、1的对数等于0:01log =a ,③、底的对数等于1:1log =a a ,④、积的对数:N M MN a a a log log )(log +=, 商的对数: N M N M a a a log log log -=, 幂的对数:M n M a n a log log =, 方根的对数:M n M a n a log 1 log = ,

1 <

指数函数与对数函数练习题 1、 函数y =)1lg(2-x 的定义域是__________________. 2、已知函数f (x )=log 3(8x +7),那么f ( 2 1 )等于_______________. 3、 与函数y = x 有相同图象的一个函数是( ). A .y =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 4、在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ). A.关于原点对称 B.关于x 轴对称 C.关于直线y =1对称. D.关于y 轴对称 5、下列函数中,在区间(0,+∞)上是增函数的是( ). A.y =-x 2 B.y = x 2-x +2 C.y =(21 )x D.y =x 1log 3.0 6、函数y =)(log 2x -是( ). A. 在区间(-∞,0)上的增函数 B. 在区间(-∞,0)上的减函数 C. 在区间(0,+∞)上的增函数 D. 在区间(0,+∞)上的减函数 7、已知函数f (x )=||2x ,那么函数f (x )( ). A. 是奇函数,且在(-∞,0)上是增函数 B. 是偶函数,且在(-∞,0)上是减函数 C. 是奇函数,且在(0,+∞)上是增函数 D. 是偶函数,且在(0,+∞)上是减函数 8、函数y =||log 3x (x ∈R 且x ≠0)( ) . A. 为奇函数且在(-∞,0)上是减函数 B. 为奇函数且在(-∞,0)上是增函数 C. 是偶函数且在(0,+∞)上是减函数 D. 是偶函数且在(0,+∞)上是增函数 9、如果函数y =x a log 的图象过点(9 1 ,2),则a =___________. 10、 实数2732–3log 22·log 21 8 +lg4+2lg5的值为_____________. 11、若1log 2 1>x ,则x 的取值范围是( ). A. 21< x B.2 10<x D.0

高一数学讲义-指数运算与指数函数

指数运算和指数函数 要求层次重点难点幂的运算 C ①根式的概念 ②有理指数幂 ③实数指数幂 ④幂的运算 ①分数指数幂的概 念和运算性质 ②无理指数幂的理 解 ③实数指数幂的意 义 指数函数的概念 B 在理解实数指数幂 的意义的前提下理 解指数函数 在理解实数指数幂 的意义的前提下理 解指数函数 指数函数的图象和 性质 C ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ①对于底数1 a>与 01 a <<时指数函 数的不同性质 ②掌握指数函数的 图象和运算性质 ③掌握指数函数作 为初等函数与二次 函数、对数函数结 合的综合应用问题 板块一:指数,指数幂的运算 (一)知识内容 1.整数指数 ⑴正整数指数幂:n a a a a =???,是n个a连乘的缩写(N n + ∈),n a叫做a的n次幂,a叫做幂的底数,n叫做幂的指数,这样的幂叫做正整数指数幂. ⑵整数指数幂:规定:01(0) a a =≠, 1 (0,) n n a a n a - + =≠∈N. 高考要求 第4讲 指数运算与指数函数 知识精讲

2.分数指数 ⑴ n 次方根:如果存在实数x ,使得n x a =(R,1,N )a n n +∈>∈,那么x 叫做a 的n 次方根. ⑵ 求a 的n 次方根,叫做a 开n 次方,称做开方运算. ① 当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时, a 的n 表示. ② 当n 是偶数时,正数的n 次方根有两个,它们互为相反数.正数a 的正、负n 0)a >. ⑶正数a 的正n 次方根叫做a 的n 次算术根. 负数没有偶次方根.0的任何次方根都是0 0. n 叫做根指数,a 3.根式恒等式: n a =;当n a =;当n ||a a a ?=?-? 0a a <≥. 4.分数指数幂的运算法则 ⑴正分数指数幂可定义为:1(0)n a a > 0,,,)m m n m a a n m n +==>∈N 且 为既约分数 ⑵负分数指数幂可定义为:1(0,,,)m n m n m a a n m n a - += >∈N 且 为既约分数 5.整数指数幂推广到有理指数幂的运算性质: ⑴(0,,Q)r s r s a a a a r s +=>∈ ⑵()(0,,Q)r s rs a a a r s =>∈ ⑶()(0,0,Q)r r r ab a b a b r =>>∈ 6.n 次方根的定义及性质:n 为奇数时 a =,n 为偶数时 a =. 7. m n a = m n a - =(0a >,,*m n N ∈,且1n >) 零的正分数指数幂为0,0的负分数指数幂没有意义. 8.指数的运算性质:r s r s a a a +=,()r r r ab a b =(其中,0a b >,,r s ∈R ) 9.无理数指数幂 ⑴ 无理指数幂(0,a a αα>是无理数)是一个确定的实数. ⑵ 有理数指数幂的运算性质同样适用于无理数指数幂. 10.一般地,当0a >,α为任意实数值时,实数指数幂a α都有意义. 对任意实数α,β,上述有理指数幂的运算法则仍然成立.

人教A版数学必修一《指数函数、对数函数、幂函数》综合基础知识讲解

指数函数、对数函数、幂函数综合 【学习目标】 1.理解有理指数幂的含义,掌握幂的运算. 2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理. 5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数x a y =与对数函数x y a log =互为反函数(a >0,a ≠1). 【知识框图】 【要点梳理】 要点一、指数及指数幂的运算 1.根式的概念 a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈ 当n 为奇数时,正数的n 次方根为正数,负数的n n a n 为偶数时,正数的n 次方根有两个,这两个数互为相反数可以表示为n a 负数没有偶次方根,0的任何次方根都是0. n a n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质: (1)当n n n a a =;当n ,0, ,0; n n a a a a a a ≥?==? -∈>;()10,,,1m n m n a a m n N n a - = >∈> 要点诠释: 0的正分数指数幂等于0,负分数指数幂没有意义.

4.有理数指数幂的运算性质: ()0,0,,a b r s Q >>∈ (1)r s r s a a a += (2)()r s rs a a = (3)()r r r ab a b = 要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为 R . 2.指数函数函数性质: 要点三、对数与对数运算 1.对数的定义

相关文档
相关文档 最新文档