文档库 最新最全的文档下载
当前位置:文档库 › 我国含硫硅烷偶联剂的生产与应用

我国含硫硅烷偶联剂的生产与应用

我国含硫硅烷偶联剂的生产与应用
我国含硫硅烷偶联剂的生产与应用

我国含硫硅烷偶联剂的生产与应用

王 灿,阮少阳,尹 超

(荆州江汉精细化工有限公司,湖北荆州 434005)

摘要:阐述含硫硅烷偶联剂Si69和Si75的化学结构和作用机理,分析固体含硫硅烷偶联剂和液体含硫硅烷偶联剂在生产和使用中的特点,介绍2种具有技术优势

的新型硅烷偶联剂NXT和VP-Si-363。

关键词:含硫硅烷偶联剂;偶联剂Si69;偶联剂Si75;偶联剂NXT;偶联剂VP-Si-363

在橡胶工业中,为提高复合材料的性能通常需要填充大量无机填料进行补强,炭黑和白炭黑是常用的补强剂,其中白炭黑具有粒径小、比表面积大的优点,在降低轮胎滚动阻力和提高抗湿滑性能等方面比炭黑更具优势。但白炭黑也存在一些不足:首先,白炭黑与烃类橡胶在化学性质上存在显著差异,相容性很差;其次,白炭黑表面含有大量极性的羟基基团,在氢键的作用下很容易发生团聚,使得其在胶料中的分散性很差,严重影响胶料的加工性能和力学性能。为了提高白炭黑在胶料中的分散性,常用的方法是在胶料中加入硅烷偶联剂对其进行表面改性。

硅烷偶联剂是一种含有性质不同的双官能团的有机化合物,分子中既含有亲无机材料的官能团,也含有亲有机材料的官能团,因此硅烷偶联剂可在无机物质和有机物质的界面之间架起分子桥,把2种性质悬殊的材料连接在一起,增加材料之间的黏合强度,提高复合材料的性能。硅烷偶联剂已成为现代有机高分子工业、复合材料工业及相关高技术领域中不可缺少的配套化学添加剂。橡胶工业中主要使用的是含硫硅烷偶联剂,因其可以有效提高白炭黑与橡胶之间的相容性,改善胶料的加工性能,降低胶料的门尼黏度、生热和滚动阻力,提高硫化胶的耐磨性,目前白炭黑-含硫硅烷偶联剂补强体系在橡胶工业中得到了广泛应用,特别是随着绿色轮胎概念的不断推行,白

炭黑的用量越来越大,含硫硅烷偶联剂的需求量也随之不断增大。

过去10年,我国硅烷偶联剂,特别是含硫硅烷偶联剂生产企业发展迅速,生产规模、技术水平、产品质量都得到了迅速提高。目前我国已经成为世界重要的含硫硅烷偶联剂生产基地,形成了江西宏柏化学科技有限公司、荆州江汉精细化工有限公司、南京曙光化工集团有限公司3家规模较大的生产企业,年生产能力达到4.0万t(以液体产品计),2010年销售量超过3.0万t,产品覆盖各主要轮胎市场,占全球市场的份额估计已超过30%。

1 化学结构和作用机理

目前常用的含硫硅烷偶联剂主要有双-[3-(三乙氧基硅)丙基]-四硫化物(Si69)和双-[3-(三乙氧基硅)丙基]-二硫化物(Si75)2种,其分子结构式如图1所示。

在橡胶混炼的过程中,含硫硅烷偶联剂两端的乙氧基与白炭黑表面的硅羟基产生化学键合,硅烷偶联剂分子在白炭黑表面富集成膜,使白炭黑的表面由极性向非极性转化,从而提高了白炭黑与橡胶的相容性,促进了白炭黑分散,如图2所示。

在接下来的硫化过程中,含硫硅烷偶联剂分子中的四硫键或二硫键先与硫黄反应形成多硫键,多硫键断裂后参与橡胶的硫化交联。这样,含

·

· 橡胶科技市场 2011年第10期

硫硅烷偶联剂通过化学键将白炭黑与橡胶连接在一起,最终结果是白炭黑与橡胶的结合力大大加强,随之胶料的模量、耐磨性和拉伸强度都得到提高。因此,含硫硅烷偶联剂在橡胶中起到分散剂、硫化剂、润湿剂等多重作用。

从化学结构看,Si69与Si75的区别在于硫原子数量不同,这决定了二者在使用方法与性能上的差异。Si69是应用最早、用量最大的硅烷偶联剂,分子中含有4个硫原子,在橡胶硫化过程中,分子中四硫烷基团的交联速度与硫黄的还原速度大体相同,这使胶料具有抗硫化返原性。Si69在白炭黑填充胶料中具有助分散和助硫化2种功效,可以显著提高胶料的硬度、拉伸强度、定伸应力和撕裂强度。1973年德固赛(Degussa)公司首次将Si69用作增黏剂,随后又发现将它应用在雪地轮胎中可以明显提高轮胎的抓着力,该产品迅速在轮胎工业中大量使用。但正是由于Si69分子结构中含硫键过多,因此其胶料存在高温下易焦烧、析出硫黄、橡胶硫化不均匀的缺点。为了提高硅烷偶联剂在高温混炼时的稳定性,减少多硫

键的断裂重排,又开发出双官能团二硫有机硅烷Si75,其特定的硫链分布使其具有较好的高温稳定性,避免了高温混炼过程中多硫硅烷产生游离硫(使胶料提前硫化)。Si75在橡胶中还可以均匀分散,改善胶料的加工性能,使胶料获得极好的低生热和低滚动阻力等性能。

2 传统产品的生产与应用

2.1 固体含硫硅烷偶联剂

固体含硫硅烷偶联剂俗称含硫硅烷偶联剂颗粒料,按产品形态分为柱状和粒状2种。柱状颗粒料是将液体硅烷偶联剂与干法造粒炭黑按一定比例在密炼机中混合均匀后,通过螺杆挤出机挤出切粒,螺杆挤出机的出口直径和挤出速度控制柱状颗粒料的直径与长度;由于含硫硅烷偶联剂对炭黑的黏合能力有限,通常还需要在配方中加入一定量的黏合剂或聚合物,以维持产品外形结构的稳定性。粒状颗粒料是将液体硅烷偶联剂与湿法造粒炭黑在双螺旋混合机中混合,液体被炭黑颗粒吸附而聚集造粒,再分筛得到一定粒径范

·

·

2011年第10期 发展论坛

围的颗粒产品,粒径过大或过小的产品循环返回混合机重新造粒。

目前,国内轮胎市场主要使用固体含硫硅烷偶联剂,这可能与20世纪80-90年代引进意大利倍耐力Zero Gradi子午线轮胎技术和设备有关。固体含硫硅烷偶联剂主要优点在于:固体产品称量和投料更方便;分散在炭黑颗粒中,可以有效的防止硅烷偶联剂在密炼初期发生水解自缩合现象,有利于硅烷偶联剂均匀分散;可以一次性投入密炼机中,不需要缓慢投料。但固体含硫硅烷偶联剂的生产与使用也存在如下一些缺点。

(1)生产成本高。固体含硫硅烷偶联剂的成本比液体含硫硅烷偶联剂更高。固体硅烷偶联剂的载体是炭黑,其在生产和应用过程中与硅烷偶联剂之间并不发生化学反应,在胶料中的用量和作用也远不及在配方中单独添加的炭黑填料。对于生产厂家而言,固体硅烷偶联剂的混合过程增大了工作量;为保证炭黑的清洁使用需要较大的厂房与更多的设备;国内市场的炭黑通常含一定量的水分,容易导致含硫硅烷偶联剂水解缩合,影响使用效果,所以在生产过程中还需要增加炭黑烘干工艺,以保证固体硅烷偶联剂的储存稳定性;在炭黑采购价格、产品运输费用等方面,固体含硫硅烷偶联剂的成本比液体含硫硅烷偶联剂更高。

(2)质量控制困难。固体硅烷偶联剂精确的质量检测需要用溶剂将液体成分从颗粒料中完全抽提出来,按除去溶剂后硅烷偶联剂实际质量进行配合检测。轮胎厂家通常在固体硅烷偶联剂的质量检测方面相对粗略,主要通过在胶料中的配方试验对产品质量进行验证和跟踪,但配方试验存在一定波动性。一些厂家利用这点将硅烷偶联剂在颗粒料中的混合比例减小,不严格控制液体硅烷偶联剂合成工艺,或者在粒状颗粒料生产中略去湿法造粒炭黑的烘干工艺,这些都使颗粒料非常容易出现质量问题。另外,在柱状颗粒料生产过程中,在配方控制不好的情况下容易导致挤出颗粒成型困难,一些厂家在粒料挤出之后增加晾干或者烘干工艺以得到外形稳定的颗粒,这个过程实际上是利用颗粒料表面的硅烷水解自缩合反应,结果形成很多在胶料中分散困难的硅氧烷

聚合物,使固体硅烷偶联剂的使用效果受到很大影响。

2.2 液体含硫硅烷偶联剂

因为上述存在的问题以及绿色轮胎胶料配方中炭黑用量的减小,固体硅烷偶联剂在世界主要轮胎厂家中的使用比例不断降低,目前估计已经不超过20%。过去固体硅烷偶联剂用量较大的意大利倍耐力公司也已经从6年前开始逐步淘汰固体硅烷偶联剂,转而使用液体硅烷偶联剂,其在我国山东兖州的工厂添购新密炼机后,液体硅烷偶联剂的使用比例已经超过50%。

国内液体含硫硅烷偶联剂的生产经历了从无水体系到水相体系的转变,质量不断提高且成本不断下降。无水体系的生产工艺是先生产无水多硫化钠,将多硫化钠与3-氯丙基三乙氧基硅烷在乙醇中通过缩合反应得到含硫硅烷、氯化钠与乙醇的混合物,再经氯化钠过滤、活性炭脱色和乙醇蒸馏得到产品。此工艺中,无水多硫化钠的质量优劣是影响产品质量的关键因素,其生产方法主要有金属钠与硫黄反应法、硫化氢经乙醇钠吸收后与硫黄反应法、硫化钠与硫黄高温烧制法。考虑到生产成本和安全控制技术的因素,国内厂家常用的是硫化钠与硫黄高温烧制法。此工艺的缺点在于生产过程污染严重,安全性不高,产品收率低,成本高。特别是无水多硫化钠容易吸潮,整个反应体系强碱性的环境会导致Si69在生产过程中发生水解,严重影响产品质量。另外,高温烧制多硫化钠过程中硫黄的挥发量难以控制,导致产品中硫链分布的波动特别大。

水相体系的生产工艺是将硫黄与硫化钠在水溶液中反应制得多硫化钠,然后在溶液中加入相转移催化剂和缓冲剂,再滴加3-氯丙基三乙氧基硅烷直接反应得到硅烷粗品,通过相分离、干燥、过滤得到合格产品。水相法生产工艺因为不需要预先烧制多硫化钠,不需要使用有机溶剂,在安全环保和成本控制上极具优势,目前已成为国内厂家的主要生产方法。但此工艺在条件控制上相对无水体系要复杂得多,首先硅烷偶联剂遇水容易发生水解自聚,水相体系条件控制不好的情况下产品会发生严重的水解,甚至得不到产品。其次,

·

· 橡胶科技市场 2011年第10期

水相工艺引入了更多的反应物,包括相转移催化剂、缓冲溶液、干燥剂等,在相分离过程中,油相中容易残存过多杂质,

导致最终产品因杂质过多发生变色、沉淀等质量问题。最后,减少多硫化物遇缓冲溶剂生成的硫化氢残留也是工艺控制中的难点。

轮胎厂家在液体含硫硅烷偶联剂的质量检测中,最好配置高效液相色谱仪以检测产品的硫链分布和水解物含量,增加简单的烘烤试验,以检测产品的耐变色性能(

催化剂残留量控制),同时增加醋酸铅试纸以检测产品的硫化氢含量。国内厂家通过对水相法生产工艺的研发和改进取得了非常好的成绩,目前我国Si69与Si75的产品质量已经达到了国际先进水平。

虽然液体含硫硅烷偶联剂在质量控制和生产成本上相对固体产品更具优势,但其在使用上要复杂一些,

因为硅烷偶联剂加入胶料后除了与白炭黑表面的羟基反应之外,还容易发生水解自聚合反应,

所以液体硅烷偶联剂不能一次性加入密炼机中,需要在混合过程开始后通过进料泵缓慢进料。

在液体硅烷偶联剂的使用上,Si69和Si75的选择应视生产条件而定。从分子结构上看,Si69与Si75的结构基本一致,区别是Si75的硫链短。在橡胶硫化的过程中,无论Si69还是Si75,首先是硫链断开与硫黄反应使硫链增长,增长的硫链再参与橡胶的硫化(如图3所示),二者在硫化中的区别只是硫链加硫的速度不同,最终的偶联效果是基本一致的

图3 硅烷偶联剂胶料硫化过程示意

在混炼工艺上,Si69和Si75存在一定差别。因为Si75的含硫量低,高温混炼时焦烧温度更高,焦烧时间更长,故使用Si75可以提高混炼温度,延长混炼时间。在市场上,Si69和Si75的选择更多在于轮胎厂家对生产成本的平衡考虑。因为Si75比Si69少2个硫原子,所以Si75的合成收率较低,产品成本比Si69高大约12%,但因为Si75可以使用更高的密炼温度,在密炼过程中的能耗和时间成本又相对较低。Si69和Si75胶料性能在配方设计合理的情况下区别不大,世界五大轮胎企业中,米其林和倍耐力主要使用Si69,固特异、普利司通和大陆公司主要使用Si75,这些企业都能生产出高质量高性能的轮胎产品就是一个例证。

3 新产品

虽然Si69和Si75可以为混炼胶提供优异的补强性能,但同时也都存在明显的缺点,在混炼温度较高时,Si69和Si75分子中的多硫键可能发生

断裂,参与硫化反应,导致胶料焦烧。因此,存在胶料混炼时间长、混炼段数多、胶料因焦烧而产生次品等缺陷。另外,Si69和Si75在使用时会水解脱去乙醇,

高温混炼时乙醇会快速气化导致橡胶气孔率增大。要解决上述问题,必须开发新型含硫硅烷偶联剂,在改善胎面胶的加工性能的同时又能提高胎面胶的物理性能。理想的硅烷偶联剂应该具有高效能、低挥发性、高分散性、低成本的特点。

目前,世界上已经出现的新型含硫硅烷偶联剂产品有GE公司推出的3-(

辛酰硫基)丙基三乙氧基硅烷(NXT)和德固赛公司开发的硅烷VP-Si-

363。3.1 NXT

NXT的化学名称为3-(辛酰硫基)丙基三乙氧基硅烷,其分子结构式如图4所示。 NXT是一种封端型巯基硅烷偶联剂。众所周知,巯基硅烷偶联剂具有优良的补强性能,可以使白炭黑与橡胶理想的结合,但是其分子中的巯基具有很强的反应活性,会引起混炼胶的早期焦

·

11·2011年第10期 发展论坛

图4 NXT的分子结构式

烧,不能用传统加工方法加工,因此限制了巯基硅烷偶联剂的应用范围。NXT的辛酰基封闭了分子中活性较强的巯基,

这使得在加工过程中硅烷与橡胶的反应活性较低,有利于高温混炼,可以避免胶料黏度增大或发生早期硫化。混炼开始阶段,NXT与白炭黑表面的羟基结合,白炭黑粒子亲水性下降,长链的辛酰基通过位阻效应可以防止白炭黑粒子附聚,使其可以均匀的分散到橡胶中。混炼结束阶段和硫化期间,

通过加入助剂脱去分子中的辛酰基产生可以迅速与橡胶结合的巯基硅烷。因此与Si69和Si75相比,NXT既表现了优异的补强性能,又避免了高温混炼过程中早期硫化的问题。

3.2 VP-Si-

363VP-Si-

363分子中有1个与橡胶反应的自由巯基,1个与白炭黑表面羟基反应的乙氧基,以及2个聚合的两亲性取代基,

聚合取代基由极性的聚醚和非极性的烷基组成。

VP-Si-

363的分子结构式如图5所示

。图5 VP-Si-

363的分子结构式 混炼过程中乙氧基水解使硅烷以共价键结合

到白炭黑表面,

由于体积庞大的聚合取代基的立体位阻效应,反应速率可能降低;但另一方面,聚合取代基中的极性聚醚会促进乙氧基与白炭黑的快速反应。白炭黑表面的硅羟基被非挥发性的长链取代基屏蔽,使白炭黑具有极好的疏水性。巯基主要对硅烷和聚合物链的有效偶合发挥作用,以提高胶料性能。Si69对硅烷-聚合物偶合的促进效率为50%,但自由的巯基可对硅烷-聚合物偶合的促进效率为100%,因此相对于Si69,

只需要一半用量的VP-Si-

363就可以达到相同的效果。由于长链特性的屏蔽效应,含自由巯基的硅烷偶联剂胶料焦烧现象会受硫化体系和硅原子上的聚合取代基的影响,如图6所示。另外,VP-Si-363分子中的聚合取代基不具有挥发性,与Si69相比

挥发性有机化合物(VOC)排放量减小了60%,同时也降低了胶料的气孔率,提高了胶料性能。

图6 硅烷偶联剂VP-Si-

363屏蔽作用示意 从分子结构看,NXT是对硅烷的有机端基团进行改性的产品,VP-Si-363是对硅烷的无机端基团进行改性的产品,这2种新型硅烷偶联剂在性能上比Si69和Si75都有所提高。虽然NXT和VP-Si-363这2种产品很早就问世,但是目前还没有大规模应用,原因主要有2点:一是生产成本高,这2种产品在合成过程中必须使用市场价格一直居高不下的3-巯丙基三乙氧基硅烷作为原料,导致NXT和VP-Si-363的生产成本较高;二是轮胎企业在使用NXT和VP-Si-

363时需要对现有密炼工艺和设备重新设计或改造,大大增加了企业的使用成本。因此,这2种新产品虽然具有明显的技术优势,短期内却难以形成较大的市场规模。

4 结语

含硫硅烷偶联剂是橡胶工业中不可或缺的功能性助剂,

世界橡胶工业的飞速发展对橡胶助剂也提出了更高的要求。目前国内企业在传统含硫硅烷偶联剂合成技术、产品质量和生产规模等方面已经达到一定的水平,初步具备了与国外企业抗衡的能力,但在新产品研发及应用技术开发方面与国外相比依然存在不小的差距。建议在今后的发展过程中,重点对应用技术进行研究,在此基础上进行自主创新,开发使用效果好、生产成本低、环保节能的新型含硫硅烷偶联剂产品。

·

21· 橡胶科技市场 2

011年第10期

常用硅烷偶联剂 (2)

常用硅烷偶联剂——K H550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH2(CH2)3Si(OC2H5)3 分子量:221.37 分子结构: 三、物理性质:

外观:无色透明液体 密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560

硅烷偶联剂的使用(完整篇)

硅烷偶联剂的使用(完整篇) 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及 CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个/μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si-OH数为5.3个/μ㎡硅质基体,经在400℃或800℃下加热处理后,则Si-OH值可相应降为2.6个/μ㎡或<1个/μ㎡。反之,使用湿热盐酸处理基体,则可得到高Si-OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS),是指1g硅烷偶联剂的溶液所能覆盖基体的面积(㎡/g)。若将其与含硅基体的表面积值(㎡/g)关连,即可计算出单分子层覆盖所需的硅烷偶联剂用量。以处理填料为例,填料表面形成单分子

硅烷偶联剂的使用说明资料

硅烷偶联剂的使用说 明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si-OH含量。已知,多数硅质基体的Si-OH含是来4-12个 /μ㎡,因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用 Y3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因Y3SiX价昂,且覆

常用硅烷偶联剂介绍

常用硅烷偶联剂介绍标准化管理部编码-[99968T-6889628-J68568-1689N]

常用硅烷偶联剂介绍 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体 密度(ρ25℃):0.946

沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。

硅烷偶联剂的使用方法

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X ,而与有机聚合物的反应活性则取于碳官能团C-丫。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeC、OOVi 及CH2-CHOCH-2O 的硅烷偶联剂;环氧树脂多选用含CH2- CHCH2及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NC0NH硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而, 光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕 3 种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中丫与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的Si—OH含量。已知,多数硅质基体的Si —OH含是来4-12 个/卩叭因而均匀分布时,1mol硅烷偶联剂可覆盖约7500m2的基体。具有多个可水解基团的硅烷偶联剂,由于自身缩合反应,多少要影响计算的准确性。若使用丫3SiX处理基体,则可得到与计算值一致的单分子层覆盖。但因丫3SiX价昂,且覆盖耐水解性差,故无实用价值。此外,基体表面的Si-OH数,也随加热条件而变化。例如,常态下Si —OH数为5.3个/卩川硅质基体,经在400C或800C 下加热处理后,则Si —OH值可相应降为2.6个/卩卅或V 1个/卩讥反之,使用湿热盐酸处理基体,则可得到高Si —OH含量;使用碱性洗涤剂处理基体表面,则可形成硅醇阴离子。硅烷偶联剂的可润湿面积(WS,是指ig硅烷偶联剂的溶液所能覆

硅烷偶联剂使用说明

硅烷偶联剂使用说明 一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃多选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 二、使用方法 如同前述,硅烷偶联剂的主要应用领域之一是处理有机聚合物使用的无机填料。后者经硅烷偶联剂处理,即可将其亲水性表面转变成亲有机表面,既可避免体系中粒子集结及聚合物急剧稠化,还可提高有机聚合物对补强填料的润湿性,通过碳官能硅烷还可使补强填料与聚合物实现牢固键合。但是,硅烷偶联剂的使用效果,还与硅烷偶联剂的种类及用量、基材的特征、树脂或聚合物的性质以及应用的场合、方法及条件等有关。本节侧重介绍硅烷偶联剂的两种使用方法,即表面处理法及整体掺混法。前法是用硅烷偶联剂稀溶液处理基体表面;后法是将硅烷偶联剂原液或溶液,直接加入由聚合物及填料配成的混合物中,因而特别适用于需要搅拌混合的物料体系。 1、硅烷偶联剂用量计算 被处理物(基体)单位比表面积所占的反应活性点数目以及硅烷偶联剂覆盖表面的厚度是决定基体表面硅基化所需偶联剂用量的关键因素。为获得单分子层覆盖,需先测定基体的

硅烷偶联剂的产品分类与用途.pdf

硅烷偶联剂介绍

目录 1 硅烷偶联剂 (1) 有机硅烷偶联剂的选择原则 (3) 偶联剂用量 (4) 硅烷偶联剂作用机理 (5) 硅烷偶联剂使用方法 (6) 硅烷偶联剂分类与用途 (7) 硅烷偶联剂A-151 (7) 硅烷偶联剂A-171 (8) 硅烷偶联剂A-172 (9) 硅烷偶联剂KH-540 (9) 硅烷偶联剂KH-550 (10) 硅烷偶联剂KH-551 (10) 硅烷偶联剂KH-560 (11) 硅烷偶联剂KH-570 (12) 硅烷偶联剂KH-580 (13) 硅烷偶联剂KH-602 (13) 硅烷偶联剂KH-791 (14) 硅烷偶联剂KH-792 (15) 硅烷偶联剂KH-901 (16) 硅烷偶联剂KH-902 (16) 硅烷偶联剂nd-22 (17) 硅烷偶联剂ND-42(南大42) (17) 硅烷偶联剂ND-43 (17) 硅烷偶联剂SI-69 (18) 苯基三甲氧基硅烷 (18) 苯基三乙氧基硅烷 (19) 甲基三乙氧基硅烷 (20)

钛酸酯偶联剂 (20) 钛酸酯偶联剂101(钛酸酯TTS) (20) 钛酸酯偶联剂102 (21) 钛酸酯偶联剂105 (21) 有机硅烷偶联剂的选择原则 有机硅烷偶联剂的选择一般凭借对有机硅烷偶联剂侧试数据进行经脸总结,准确.地预测有机硅烷偶联剂是非常困难的。使用有机硅烷偶联剂后增大的键强度是一系列复杂因素的综合,如浸润、表面能、边界层的吸附、极性吸附,酸碱相互作用等. 预选有机硅烷偶联剂可遵循以下规津:不饱和聚醋可选用乙烯纂、环氧基及甲基丙烯陈氧基型有机硅烷偶联剂;环氧树脂宜选用环氧基或氨基型有机硅烷偶联剂;酚醛树脂宜选用氨基或服基型有机硅烷偶联剂;烯烃聚合物宜选用乙烯基型右机硅烷偶联剂;硫磺硫化的橡胶宜选用疏基型有机硅烷偶联剂等, 一、选用硅烷偶联剂的一般原则已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验,预选并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含CH2=CMeCOOVi及CH2-CHOCH2O的硅烷偶联剂:环氧树脂多选用含CH2CHCH2O及H2N硅烷偶联剂:酚醛树脂多选用含H2N及H2NCONH硅烷偶联剂:聚烯烃多选用乙烯基硅烷:使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接强度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。 硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应:改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性:后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。 硅烷偶联剂牌号偶联剂应用领 域 偶联剂作用 KH-540 KH-550 胶黏剂行业●提高粘接力及粘接寿命 ●在潮湿和干燥的条件下仍具有良好的粘结效果●更佳的耐溶剂性、提高储存寿命 KH-560 KH-570 KH-792 Si-602 Si-563 KH-540 KH-550 涂料行业●有机聚合物和无机表面之间的附着力促进剂●粘合体系的交联剂和固化剂,共聚单体 ●填料和颜料的分散剂 ●在抗刮和抗腐蚀涂料中充当粘结组分及涂层 KH-560 KH-570 KH-792 Si-602 Si-563 A-151

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。 (1)表面预处理法 将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇(甲氧基硅烷选择甲醇,乙氧基硅烷选择乙醇)、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值,除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 (2)直接添加方法 将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂具体使用方法 (1)预处理填料法 将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。

硅烷偶联剂KH-560的应用范围

硅烷偶联剂KH-560的应用范围 硅烷偶联剂KH-560是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、巯基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。 在进行偶联时,首先X基水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成—SiO—M共价键(M表示无机粉体颗粒表面)。同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。 扬州万禾化工有限公司是一家专注于聚合物添加助剂研发和营销销售精细有机硅氟材料的科技型企业,公司的主要产品包括:硅烷偶联剂系列如:硅烷偶联剂、硅烷偶联剂A-172、硅烷偶联剂KH-560、硅烷偶联剂KH-570/580等等。下面由万禾化工带领我们了解一下KH-560硅烷偶联剂应用范围: 1、涂料、粘接剂和密封剂 硅烷偶联剂KH-560是一种优异的粘接促进剂,应用于丙烯酸涂料、粘接剂和密封剂。对于硫化物、聚氨酯、RTV、环氧、腈类、酚醛树脂、粘接剂和密封剂,氨基硅烷可改善颜料的分散性并提高与玻璃、铝和钢铁的粘接力。 2、玻璃纤维的增强 在玻璃纤维增强的热固性与热塑性塑料中使用,硅烷偶联剂KH-560可大幅度提高在干湿态下的弯曲强度、拉伸强度和层间剪切强度,并显著提高湿态电气性能。在干湿态情况下使用这种硅烷时,玻璃纤维增强的热塑性塑料、聚酰胺、聚酯和聚碳酸酯在浸水以前和以后的抗弯曲强度和抗拉强度均上升。 3、玻璃纤维和矿物棉绝缘材料 将硅烷偶联剂KH-560加入酚醛树脂粘接剂中可提高防潮性及压缩后的回弹性。 4、矿物填料和树脂体系 硅烷偶联剂KH-560能大幅度提高无机填料填充的酚醛树脂、聚酯树脂、环氧、聚胺、聚碳酸酯等热塑性和热固性树脂的物理力学性能和电气性能,并改善填料在聚合物中的润湿性和分散性。 5、铸造应用 使用硅烷偶联剂KH-560可以降低硅砂铸造模的酚醛树脂或呋喃树脂键合剂用量可以降低,并使型砂强度提高,发气量也减少。 6、树脂砂轮制造

常用硅烷偶联剂

常用硅烷偶联剂 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常用硅烷偶联剂——KH550、KH560、KH570、KH792、DL602 1.KH550 KH550硅烷偶联剂CAS号:919-30-2 一、国外对应牌号 A-1100(美国联碳),Z-6011(美国道康宁),KBM-903(日本信越)。本品有碱性,通用性强,适用于环氧、PBT、酚醛树脂、聚酰胺、聚碳酸酯等多种热塑性和热固性树脂。 二、化学名称分子式: 名称:γ-氨丙基三乙氧基硅烷 别名:3-三乙氧基甲硅烷基-1-丙胺 【3-TriethoxysilylpropylamineAPTES】, γ-氨丙基三乙氧基硅烷或3-氨基丙基三乙氧基硅烷 【3-AminpropyltriethoxysilaneAMEO】 分子式:NH 2(CH 2 ) 3 Si(OC 2 H 5 ) 3 分子量:221.37 分子结构: 三、物理性质: 外观:无色透明液体

密度(ρ25℃):0.946 沸点:217℃ 折光率nD25:1.420 溶解性:可溶于有机溶剂,但丙酮、四氯化碳不适宜作释剂;可溶于水。在水中水解,呈碱性。 本品应严格密封,存放于干燥、阴凉、避光的室内。 四、KH550主要用途: 本品应用于矿物填充的酚醛、聚酯、环氧、PBT、聚酰胺、聚碳酸酯等热塑性和热固体树脂,能大幅度提高增强塑料的干湿态抗弯强度、抗压强度、剪切强度等物理力学性能和湿态电气性能,并改善填料在聚合物中的润湿性和分散性。 本品是优异的粘结促进剂,可用于聚氨酯、环氧、腈类、酚醛胶粘剂和密封材料,可改善颜料的分散性并提高对玻璃、铝、铁金属的粘合性,也适用于聚氨酯、环氧和丙烯酸乳胶涂料。 在树脂砂铸造中,本品增强树脂硅砂的粘合性,提高型砂强度抗湿性。 在玻纤棉和矿物棉生产中,将其加入到酚醛粘结剂中,可提高防潮性及增加压缩回弹性。 在砂轮制造中它有助于改进耐磨自硬砂的酚醛粘合剂的粘结性及耐水性。 2.KH560 一、国外对应牌号: A-187(美国联碳公司)。 KBM-403(日本信越化学工业株式会社) 二、化学名称及分子式 化学名称:γ-缩水甘油醚氧丙基三甲氧基硅烷

硅烷偶联剂使用方法

硅烷偶联剂kh550使用方法硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节PH值至4-5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。下面是一些具体应用,以供用户参考:(1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HENSHEL(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。(2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将PH调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。(3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。(4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。大致的填料直径和使用硅烷的比例如下:填料尺寸使用硅烷比例60目0.1%,100目0.25%,200目0.5%,300目0.75%,400目1.0%,500目以上1.5%常用硅烷醇/水溶液所需PH值:产品名称处理时的溶剂适宜PH 值KH-550乙醇/水:9.0~10.0 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的

偶联剂的种类、特点及应用

偶联剂的种类、特点及应用 偶联剂是一种重要的、应用领域日渐广泛的处理剂,主要用作高分子复合材料的助剂。偶联剂分子结构的最大特点是分子中含有化学性质不同的两个基团,一个是亲无机物的基团,易与无机物表面起化学反应;另一个是亲有机物的基团,能与合成树脂或其它聚合物发生化学反应或生成氢键溶于其中。因此偶联剂被称作“分子桥”,用以改善无机物与有机物之间的界面作用,从而大大提高复合材料的性能,如物理性能、电性能、热性能、光性能等。偶联剂用于橡胶工业中,可提高轮胎、胶板、胶管、胶鞋等产品的耐磨性和耐老化性能,并且能减小NR用量,从而降低成本。偶联剂的种类繁多,主要有硅烷偶联剂、钛酸酯偶联剂、铝酸酯偶联剂、双金属偶联剂、磷酸酯偶联剂、硼酸酯偶联剂、铬络合物及其它高级脂肪酸、醇、酯的偶联剂等,目前应用范围最广的是硅烷偶联剂和钛酸酯偶联剂。 1 硅烷偶联剂 硅烷偶联剂是人们研究最早、应用最早的偶联剂。由于其独特的性能及新产品的不断问世,使其应用领域逐渐扩大,已成为有机硅工业的重要分支。它是近年来发展较快的一类有机硅产品,其品种繁多,结构新颖,仅已知结构的产品就有百余种。1945年前后由美国联碳(UC)和道康宁(DOW CORNING)等公司开发和公布了一系列具有典型结构的硅烷偶联剂;1955年又由UC公司首次提出了含氨基的硅烷偶联剂;从1959年开始陆续出现了一系列改性氨基硅烷偶联剂;20世纪60年代初期出现的含过氧基硅烷偶联剂和60年代末期出现的具有重氮和叠氮结 构的硅烷偶联剂,又大大丰富了硅烷偶联剂的品种。近几十年来,随着玻璃纤维增强塑料的发展,促进了各种偶联剂的研究与开发。改性氨基硅烷偶联剂、过氧基硅烷偶联剂和叠氮基硅烷偶联剂的合成与应用就是这一时期的主要成果。我国于20世纪60年代中期开始研制硅烷偶联剂。首先由中国科学院化学研究所开始研制Γ官能团硅烷偶联剂,南京大学也同时开始研制Α官能团硅烷偶联剂。 1.1 结构和作用机理 硅烷偶联剂的通式为RNSIX(4-N),式中R为非水解的、可与高分子聚合物结合的有机官能团。根据高分子聚合物的不同性质,R应与聚合物分子有较强的亲和力或反应能力,如甲基、乙烯基、氨基、环氧基、巯基、丙烯酰氧丙基等。X为可水解基团,遇水溶液、空气中的水分或无机物表面吸附的水分均可引起分解,与无机物表面有较好的反应性。典型的X基团有烷氧基、芳氧基、酰基、氯基等;最常用的则是甲氧基和乙氧基,它们在偶联反应中分别生成甲醇和乙醇副产物。由于氯硅烷在偶联反应中生成有腐蚀性的副产物氯化氢,因此要酌情使用。 近年来,相对分子质量较大和具有特种官能团的硅烷偶联剂发展很快,如辛烯基、十二烷基,还有含过氧基、脲基、羰烷氧基和阳离子烃基硅烷偶联剂等。LAWRENCE等利用硅烷偶联剂对碳纤维表面进行处理,偶联剂中的甲基硅烷氧端基水解生成的硅羟基与碳纤维表面 的羟基官能团进行键合,结果复合材料的拉伸强度和模量提高,空气孔隙率下降。早在1947年美国JOHNSHOPKINS大学的WITTRW等在一份报告中指出,在对烷基氯硅烷偶联剂处理玻璃纤维表面的研究中发现,用含有能与树脂反应的硅烷基团处理玻璃纤维制成聚酯玻璃钢,其强 度可提高2倍以上。他们认为,用烷基氯硅烷水解产物处理玻璃纤维表面,能与树脂产生化学键。这是人们第一次从分子的角度解释表面处理剂在界面中的状态。

硅烷偶联剂

Unitive@ silane coupling agents MP-320 2,3-环氧丙基丙基三甲氧基硅烷 2,3-epoxypropyl trimethoxy silane ·环氧官能团偶联剂,提供可稳定储存且不泛黄1的粘接促进效果,适宜作为聚硫、聚氨酯、环氧、丙烯酸类密封剂和胶黏剂的粘合促进剂 ·可显著提高涂料、油墨对玻璃、金属、陶瓷等无机材料的附着力和耐水性。 ·改善环氧树脂电子材料、灌封料、印刷电路板的电气性能,尤其是湿态电气性能。 ·作为无机填料的表面处理剂,适用于硅微粉、玻璃微珠、氢氧化铝、陶土、滑石粉、硅灰石、白炭黑、石英粉、金属粉末等。

MP-321 氨基官能团三甲氧基硅烷 Aminofunctional trimethoxysilane · 是一款强附着性多功能Adherant 附着力促进剂, 为一种含有氨基官能团硅烷偶合物。 · 针对特定的镁、铝、铁、锌等复合金属材料、氧 化涂层的涂覆和黏合的要求而设计。 · 更适用于接着剂、弹性体、填缝剂,油墨等,以 提高长时间的优良附着性涂膜耐水性、防蚀性与抗盐雾性。 · 对环氧树脂、酚醛、三聚氰胺、丙烯酸、聚氨酯、 有机硅等有优异的相容性,高温烘烤260℃不影响光泽度及色彩的鲜艳性。 MP-383 巯基官能团硅烷偶联剂 (3-Mercaptopropyl)trimethoxy silane · 随着巯基官能团的引入使得其具有碳碳双键的光聚合反应,与树脂体系产生双重交联固化。巯基官能团还可与聚 氨酯树脂发生亲核加成反应,在光固化和双组份交联固化体系作为金属表面保护剂具有特殊功效。 · 用其处理金、银、铜等金属表面,可增强其表面的耐腐性、抗氧化性以及耐水性和耐老化性、增加其与树脂等高 分子的粘接性。 · 用于处理白炭黑,炭黑,玻璃纤维、云母等无机填料,能有效提高橡胶的力学性能和耐磨性能等。 MP-397 异氰酸酯基硅烷偶联剂 3-Isocyanatopropyltrimethoxysilane · 在涂料、油墨、粘合剂中作为交联剂和助粘剂使用。出众的湿性粘附性能在玻璃、金属和其他无机基底上广泛应 用;还可以较好的附着于难以粘附的有机材料,如尼龙和其他塑料产品。 · 在大气湿度存在下可以快速水解,不黄变且具有非常好的热稳定性、化学稳定性和UV 稳定性。 · 适合的聚合物:丙烯酸类、硅树脂类(Si)、PU-预聚物等。 MP-328 乙烯基三(2-甲氧基乙氧基)硅烷 Vinyl tris(2-methoxyethoxy) silane · 特殊的乙烯基硅烷偶合物,对各类塑 胶、金属、玻璃及其他无机材料具有持久的湿膜和干膜附着力。 · 可明显增强涂膜的耐湿热、水煮和盐 雾性能,在气干性塑胶涂料及UV 光固化体系同样有效。 · 优异的储存稳定性在各类涂料,油 墨,胶黏剂中有广泛的应用。

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法 硅烷偶联剂含两个活性官能团,可分别与有机物和无机物起反应,能改善填料与高分子之间界面特性。 用途功能 玻纤、玻璃钢:提高复合材料湿态物理机械强度、湿态电气性能,并 改善玻纤的集束性、保护性和加工工艺。 胶粘剂和涂料:提高湿态下的粘合力、耐候性,改善颜料分散性,提高耐磨 性和树脂的交联。 铸造:提高树脂砂的强度。以实现高度、低发气。 工程塑料:改善了玻纤等填料与树脂之间的粘合,显著提高了增强塑料的机械性能。 橡胶:提高制品机械强度、耐磨性、湿态电气性能和流变性。 密封胶:提高湿态的粘合力,提高填料的分散性,制品耐磨性。 纺织:令纺织品柔软丰满、提高其防水性、以及对染料的粘合力。 印刷油墨:提高粘合力的浸润性。 填料表面处理:在树脂中提高填料和树脂的相容性、浸润性、分散性。 交联聚乙烯:用于交联聚乙烯电缆及热水管增强强度。耐用性及使用寿命。 硅烷偶联剂应用方法 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂的原液。硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%)、醇(72%)、水(8%),醇一般为乙醇(对乙氧基硅烷)甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷)因硅烷水解速度与PH值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的PH值(注意:氨基硅烷如550,602,792无需加酸调节),其他硅烷可加入少量醋酸,调节PH值至4—5,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,最好在一小时内用完。 下面是一些具体应用,以供用户参考:

硅烷偶联剂的用法简介(三)

硅烷偶联剂的用法简介(三) 硅烷偶联剂的使用方法 使用硅烷偶联剂有两种基本的途径。硅烷可以用于无机材料与树脂混合前的无机材料的表面处理,或者硅烷直接加入有机树脂中。 1/无机的材料的表面处理 在无机材料被加入有机材料之前,有两种通用方法可以用于无机填充材料表面的处理。 1.1湿法 通过用硅烷偶联剂稀释液混合无机材料浆由混合无机的材料浆,可以得到一个高度均一和精桷的无机材料的表面处理。 1.2干法 高剪切、高速率的混合器被用于将硅烷偶联剂将无机材料分散进入无机材料。硅烷通常以纯的或以浓缩液的形式使用。与湿方法相比,干法最常适用于大规模生产中,在一个相对小的时间内处理大量的填充材料并且产生相对微乎其微的混合垃圾。,但是这种方法更难得到均一处理。 2/有机材料中的添加 与无机材料表面处理方法相比较,向有机材料中加入硅烷在工业中应用更加广泛因为其优秀的加工效率,虽然可能更加困难。有两种通用的方法。 2.1整体混合法 这种方法涉及将硅烷偶联剂与由无机材料和有机材料一起混合的合成物配方进行简单的搅拌。 2.2母料法 在这个方法中硅烷偶联剂首先加入少量有机树脂材料形成所谓的母料。通常以小球的形式或大颗粒的形式,当生产合成材料时,在小团或的表格大小粒,当生产合成的材料时,母料可以和

有机材料小球一起很容易地添加。 3/硅烷偶联剂溶液的制备 我们知道硅烷偶联剂在使用时,硅烷偶联剂溶液需要进行稀释,这些溶液制备方法如下: 硅烷通常用水稀释成约0.1~2%的浓度,如果使用硅烷是不溶于水的,推荐与0.1~2.0%的乙酸水溶液或乙醇水溶液(乙酸、乙醇、水一起)联合使用,乙酸用于控制水解速率,PH值的调整极大影响硅烷醇的稳定性。 (1)将乙酸加入水中制备最终浓度为0.1~2%的水溶液。如果硅烷溶解性更好,推荐使用更低浓度的乙酸溶液。对于氨基硅烷,无需添加乙酸。 (2)将硅烷偶联剂滴入乙酸水溶液并混合至最终浓度为0.1~2.0%。缓慢滴加硅烷,快速搅拌水溶液,这样可以防止生成凝胶。 (3)加入硅烷以后,需要继续振动30~60分钟直到溶液变成完全透明,表明硅烷已经完全水解。 (4)如果需要,随后进行过滤。如果出现固体杂质,推荐进行过滤。如果硅烷溶液连续不断地使用,推荐使用低于0.5μ的筛子进行环循过滤。 (5)每种硅烷联剂的稳定性如表3所示烷基甲氧基硅烷官能团和水反应生成一个不稳定的硅烷醇基官能团,这种硅烷醇官能团迅速缩合形成硅氧烷结构。在有水存在的条件下,硅烷醇通常是不稳定的,但它在弱酸溶液中更加稳定。氨基硅烷是一个例外,因为氨基官能团有助于硅烷在水溶液变得更加稳定。各种产品水溶液有它们最稳定的PH值。 东莞市之升化工有限公司 如需更详尽产品及特殊用法应用,欢迎来电探讨!公司销售人员将竭诚为你服务!

硅烷偶联剂的使用方法

硅烷偶联剂的使用方法文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、选用硅烷偶联剂的一般原则 已知,硅烷偶联剂的水解速度取于硅能团Si-X,而与有机聚合物的反应活性则取于碳官能团C-Y。因此,对于不同基材或处理对象,选择适用的硅烷偶联剂至关重要。选择的方法主要通过试验预选,并应在既有经验或规律的基础上进行。例如,在一般情况下,不饱和聚酯多选用含 CH2=CMeCOO、Vi及CH2-CHOCH2O-的硅烷偶联剂;环氧树脂多选用含CH2-CHCH2O及H2N-硅烷偶联剂;酚醛树脂多选用含H2N-及H2NCONH-硅烷偶联剂;聚烯烃选用乙烯基硅烷;使用硫黄硫化的橡胶则多选用烃基硅烷等。由于异种材料间的黏接可度受到一系列因素的影响,诸如润湿、表面能、界面层及极性吸附、酸碱的作用、互穿网络及共价键反应等。因而,光靠试验预选有时还不够精确,还需综合考虑材料的组成及其对硅烷偶联剂反应的敏感度等。为了提高水解稳定性及降低改性成本,硅烷偶联剂中可掺入三烃基硅烷使用;对于难黏材料,还可将硅烷偶联剂交联的聚合物共用。硅烷偶联剂用作增黏剂时,主要是通过与聚合物生成化学键、氢键;润湿及表面能效应;改善聚合物结晶性、酸碱反应以及互穿聚合物网络的生成等而实现的。增黏主要围绕3种体系:即(1)无机材料对有机材料;(2)无机材料对无机材料;(3)有机材料对有机材料。对于第一种黏接,通常要求将无机材料黏接到聚合物上,故需优先考虑硅烷偶联剂中Y与聚合物所含官能团的反应活性;后两种属于同类型材料间的黏接,故硅烷偶联剂自身的反亲水型聚合物以及无机材料要求增黏时所选用的硅烷偶联剂。

硅烷偶联剂的使用

硅烷偶联剂的使用方法 ⑴表面预处理法将硅烷偶联剂配成0.5~1%浓度的稀溶液,使用时只需在清洁的被粘表面涂上薄薄的一层,干燥后即可上胶。所用溶剂多为水、醇、或水醇混合物,并以不含氟离子的水及价廉无毒的乙醇、异丙醇为宜。除氨烃基硅烷外,由其它硅烷偶联剂配制的溶液均需加入醋酸作水解催化剂,并将pH值调至3.5~5.5。长链烷基及苯基硅烷由于稳定性较差,不宜配成水溶液使用。氯硅烷及乙酰氧基硅烷水解过程中伴随有严重的缩合反应,也不宜配成水溶液或水醇溶液使用,而多配成醇溶液使用。水溶性较差的硅烷偶联剂,可先加入0.1~0.2%(质量分数)的非离子型表面活性剂,然后再加水加工成水乳液使用。 ⑵迁移法将硅烷偶联剂直接加入到胶粘剂组分中,一般加入量为基体树脂量的1~5%。涂胶后依靠分子的扩散作用,偶联剂分子迁移到粘接界面处产生偶联作用。对于需要固化的胶粘剂,涂胶后需放置一段时间再进行固化,以使偶联剂完成迁移过程,方能获得较好的效果。 实际使用时,偶联剂常常在表面形成一个沉积层,但真正起作用的只是单分子层,因此,偶联剂用量不必过多。 硅烷偶联剂的使用方法主要有表面预处理法和直接加入法,前者是用稀释的偶联剂处理填料表面,后者是在树脂和填料预混时,加入偶联剂原液。 硅烷偶联剂配成溶液,有利于硅烷偶联剂在材料表面的分散,溶剂是水和醇配制成的溶液,溶液一般为硅烷(20%),醇(72%),水(8%),醇一般为乙醇(对乙氧基硅烷)、甲醇(对甲氧基硅烷)及异丙醇(对不易溶于乙醇、甲醇的硅烷);因硅烷水解速度与P H值有关,中性最慢,偏酸、偏碱都较快,因此一般需调节溶液的P H值、除氨基硅烷外,其他硅烷可加入少量醋酸,调节P H值至4-5 ,氨基硅烷因具碱性,不必调节。因硅烷水解后,不能久存,最好现配现用,适宜在一小时用完。 下面是一些具体应用,以供用户参考: (1)、预处理填料法:将填料放入固体搅拌机(高速固体搅拌机HE NSHE L(亨舍尔)或V型固体搅拌机等),并将上述硅烷溶液直接喷洒在填料上并搅拌,转速越高,分散效果越好。一般搅拌在10-30分钟(速度越慢,时间越长),填料处理后应在120℃烘干(2小时)。 (2)、硅烷偶联剂水溶液(玻纤表面处理剂):玻纤表面处理剂常含有:成膜剂、抗静电剂、表面活性剂、偶联剂、水。偶联剂用量一般为玻纤表面处理剂总量的0.3%-2%,将5倍水溶液首先用有机酸或盐将P H调至一定值,在充分搅拌下,加入硅烷直到透明,然后加入其余组份,对于难溶的硅烷,可用异丙醇助溶。在拉丝过程中将玻纤表面处理剂在玻纤上干燥,除去溶剂及水份即可。 (3)、底面法:将5%-20%的硅烷偶联剂的溶液同上面所述,通过涂、刷、喷,浸渍处理基材表面,取出室温晾干24小时,最好在120℃下烘烤15分钟。 (4)、直接加入法:硅烷亦可直接加入“填料/树脂”的混合物中,在树脂及填料混合时,硅烷可直接喷洒在混料中。偶联剂的用量一般为填料量的0.1%-2%,(根据填料直径尺寸决定)。然后将加入硅烷的树脂/填料进行模型(挤出、注塑、涂覆等)。 大致的填料直径和使用硅烷的比例如下: 填料尺寸 使用硅烷比例 60目 0.1% 100目0.25% 200目0.5%

相关文档
相关文档 最新文档