文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方程第三版(谷超豪)答案

数学物理方程第三版(谷超豪)答案

数学物理方程第三版(谷超豪)答案
数学物理方程第三版(谷超豪)答案

数学物理方程第三版第一章答案(全)

数学物理方程第三版答案 第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ????

数学物理方程谷超豪版第二章课后答案

第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??-- =??--=11 1124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 24ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=--??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第二版答案

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??- 23 222)( 22 52222 3 2222 2 ) (3) (t y x t y x t t u ?--+---=??- -

数学物理方程 答案 谷超豪

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为 (2)若l x =为自由端,则杆在l x =的张力x u x E t l T ??=) (),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若0=x 为自由端,则相应的边界条件为 x u ??∣00==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的 偏移由函数)(t v 给出,则在l x =端支承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --==

含有阻尼项的弦振动方程及其仿真

含有阻尼项的弦振动方程及其仿真 内容提要: 本文通过对古典吉他的琴弦振动情况建立数学物理方程,得到一个含有阻尼项的双 曲型方程的初边值问题,对解用Matlab进行仿真。最后依据弦振动方程的结果,列举 了在这种情况下几种泛音的位置,并结合该方程,对右手给出指导。 关键词 数学物理方程,Matlab,驻波。 引言: 在弦乐器表演中常用到泛音这样的一个技巧,即左手虚按琴弦,滤掉一部分波在琴 弦上形成驻波。比如在弦的三分点进行滤波,则波长的三倍不能被弦长整除的波,将会 被滤掉。但是在拨弦乐器的教学中,关于泛音的位置一直是老师们口口相传。而且某些 泛音准确位置并不在拨弦乐器的品(山口)上,所以缺乏理论指导。 在国内的研究领域中,韩佩琪《弦乐器泛音的分析及应用》一文中只是对弹拨乐器 的空弦状态下进行求解而且忽略了空气的阻力,而且并没有结合列出的解给出演奏技巧 上的指导。而邱桂明《阻尼作用下的弦振动研究》的初边值条件并不符合乐器的条件。另外在周伟《古典吉他演奏教程》以及相关的一些吉他教学视频中只是提及了左手虚按 的位置,关于右手的位置没有给出一个指导。综上来看,国内研究领域,对定弦振动泛 音的理论研究尚处于一个盲区。然而一维双曲型微分方程的理论已经比较完善给本文提 供了理论依据,给研究带来了可行性。 一、模型建立: 如图所示:琴弦的初始状态: 1

其中h是弹拨弦与初始位置间的距离,b是弹拨点距离原点的距离,l表示弦的长度。 弦的两端是静止不动的,从而边值条件:为u(0,t)=u(l,t)=0 其中t表示振动时间。 列出方程: 其中:错误!未找到引用源。,而T表示琴弦松弛时的张力,错误!未找到引用源。表示琴弦线密度。 边值条件: 初值条件: 二、问题的求解 从物理上知道,一个复杂的振动往往可以分解成许多简单的振动的叠加。如弦振动所发出的声音可以分解成各种不同频率的单音叠加。相应于每种单音,弦振动时波形保持不变,从而当时间变化是个点的振幅做同步的变化,所以可以有如下形式: 带入到原方程会得到: 分离变量: 等式左右两边相等,左边仅是t的函数,右边仅是x的函数,左右两边要相等,只有等于同一个常数才可能。设此常数为错误!未找到引用源。。则得到两个常微分方程。 得到以下通解: 因为阻尼系数很小,所以 2

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方程习题解答案

数学物理方程习题解 习题一 1,验证下面两个函数: (,)(,)sin x u x y u x y e y == 都是方程 0xx yy u u += 的解。 证明:(1 )(,)u x y = 因为322 2 22 2222 2222 22 322 222 2222 2222 222222 222222 1 1()22 () 2()()11()22()2()()0()() x xx y yy xx yy x u x x y x y x y x x x y u x y x y y u y x y x y x y y y y x u x y x y x y y x u u x y x y =-? ?=- +++-?-=-=++=-??=-+++-?-=-=++--+=+=++ 所以(,)u x y =是方程0xx yy u u +=的解。 (2)(,)sin x u x y e y = 因为 sin ,sin cos ,sin x x x xx x x y yy u y e u y e u e y u e y =?=?=?=-? 所以 sin sin 0x x xx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。 2,证明:()()u f x g y =满足方程 0xy x y uu u u -=

其中f 和g 都是任意的二次可微函数。 证明:因为 ()()u f x g y = 所以 ()(),()()()() ()()()()()()()()0 x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=?=?''=?''''-=?-??= 得证。 3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。 解:令x y ξλ=+则(,)()u x y f ξ= 所以2 (),()x xx u f u f ξλξλ'''=?=? (),(),()xy y yy u f u f u f λξξξ'''''=?== 将上式带入原方程得2 (43)()0f λλξ''-+= 因为f 是一个具有二阶连续可导的任意函数,所以2 -430 λλ+=从而12 =3,1λλ=, 故1122(,)(3),(,)()u x y f x y u x y f x y =+=+都是原方程的解,12,f f 为任意的二阶可微函数,根据迭加原理有 12(,)(3)()u x y f x y f x y =+++为通解。 4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。 解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相 同的,取杆的左端截面的形心为原点,杆轴为x 轴。在杆上任意截取位于 [,]x x x +?的一段微元,杆的截面积为s ,由材料力学可知,微元两端处的相对伸长(应 变)分别是 (,)u x t x ??与(,)u x x t x ?+??,又由胡克定律,微元两端面受杆的截去部分的拉力分别为()(,)u SE x x t x ??与()(,)u SE x x x x t x ?+?+??,因此微元受杆的截去部分的作用力的合力为:()(,)()(,)u u SE x x x x t SE x x t x x ??+?+?-??

数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1 +=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03=??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程02222=??+??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )22),(y x y x u += (C )2 21),(y x y x u += (D )22ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A )ρc t x F x u a t u ),(222 22+??=?? (B )ρc t x F x u a t u ),(222+??=?? (C ) ρc t x u x F a t F ),(22222+??=?? (D) ρc t x u x F a t F ),(22 2+??=?? (其中ρc k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 1 2 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条 件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件 为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为 2 222)1(])1[(t u h x x u h x x E ??-=??-??ρ 其中h 为圆锥的高(如图1) 证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l 为:

数学物理方程谷超豪版第二章课后规范标准答案

,. 第 二 章 热 传 导 方 程 §1 热传导方程及其定解问题的提 1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律 dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。 解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。记杆的截面面积4 2 l π为S 。 由假设,在任意时刻t 到t t ?+内流入截面坐标为x 到x x ?+一小段细杆的热量为 t x s x u k t s x u k t s x u k dQ x x x x ????=???-???=?+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。由假设,在时刻t 到t t ?+在截面为 x 到x x ?+一小段中产生的热量为 ()()t x s u u l k t x l u u k dQ ??--=??--=111124π 又在时刻t 到t t ?+在截面为x 到x x ?+这一小段内由于温度变化所需的热量为 ()()[]t x s t u c x s t x u t t x u c dQ t ????=?-?+=ρρ,,3 由热量守恒原理得: ()t x s u u l k t x s x u k t x s t u c x t ??-- ????=????11 2 2 4ρ 消去t x s ??,再令0→?x ,0→?t 得精确的关系: ()11 224u u l k x u k t u c -- ??=??ρ 或 ()()11 22 2112244u u l c k x u a u u l c k x u c k t u --??=-- ??=??ρρρ 其中 ρ c k a =2 2. 试直接推导扩散过程所满足的微分方程。 解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt n u D dM ??-=,其中D 为扩散系数,得 ?????= 2 1 t t s dsdt n u D M 浓度由u 变到2u 所需之溶质为 ()()[]???????????ΩΩΩ ??=??=-=2 12 1121,,,,,,t t t t dvdt t u C dtdv t u C dxdydz t z y x u t z y x u C M 两者应该相等,由奥、高公式得: ????????Ω Ω??==????????? ??????+???? ??????+??? ??????=2 12 11t t t t dvdt t u C M dvdt z u D z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。一般情形1=C 。由于21,,t t Ω的任意性即得方程: ?? ? ??????+???? ??????+??? ??????=??z u D z y u D y x u D x t u C 3. 砼(混凝土)内部储藏着热量,称为水化热,在它浇筑后逐渐放出,放热速度和它所储藏的 水化热成正比。以()t Q 表示它在单位体积中所储的热量,0Q 为初始时刻所储的热量,则 Q dt dQ β-=,其中β为常数。又假设砼的比热为c ,密度为ρ,热传导系数为k ,求它在浇后温度u 满足的方程。 解: 可将水化热视为一热源。由Q dt dQ β-=及00Q Q t ==得()t e Q t Q β-=0。由假设,放 热速度为 t e Q ββ-0 它就是单位时间所产生的热量,因此,由原书71页,(1.7)式得 ??? ? ??-=+??? ? ????+??+??=??-ρρββc k a e c Q z u y u x u a t u t 20222222 2 4. 设一均匀的导线处在周围为常数温度0u 的介质中,试证:在常电流作用下导线的温度满足微分方程 ()2201224.0ρω ρωρc r i u u c P k x u c k t u +--??=?? 其中i 及r 分别表示导体的电流强度及电阻系数,表示横截面的周长,ω表示横截面面积,而k 表示导线对于介质的热交换系数。 解:问题可视为有热源的杆的热传导问题。因此由原71页(1.7)及(1.8)式知方程取形式为

数学物理方程第一章部分答案

第一章. 波动方程 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与+x x ?。现在计算这段杆 在时刻t 的相对伸长。在时刻t 这段杆两端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其相对伸长等于 ),()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于是得运动方程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=)(x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条件为

数学物理方程第一章答案

数学物理方程第一章答案

第一章 §1 方程的导出。定解条件 1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明 ),(t x u 满足方程 ()?? ? ??????=??? ??????x u E x t u x t ρ 其中ρ为杆的密度,E 为杨氏模量。 证:在杆上任取一段,其中两端于静止时的坐标分别为 x 与 +x x ?。现在计算这段杆在时刻t 的相对伸长。在时刻t 这段杆两 端的坐标分别为: ),();,(t x x u x x t x u x ?++?++ 其 相 对 伸 长 等 于 ) ,()],([)],([t x x u x x t x u x t x x u x x x ?+=??-+-?++?+θ 令 0→?x ,取极限得在点x 的相对伸长为x u ),(t x 。由虎克 定律,张力),(t x T 等于 ),()(),(t x u x E t x T x = 其中)(x E 是在点x 的杨氏模量。 设杆的横截面面积为),(x S 则作用在杆段),(x x x ?+两端的力分别为 x u x S x E )()(x u x x S x x E t x )()();,(?+?+).,(t x x ?+ 于 是 得 运 动 方 程 tt u x x s x ???)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(-?+?+ 利用微分中值定理,消去x ?,再令0→?x 得 tt u x s x )()(ρx ?? = x ESu () 若=) (x s 常量,则得 22)(t u x ??ρ=))((x u x E x ???? 即得所证。 2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3) 端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。 解:(1)杆的两端被固定在l x x ==,0两点则相应的边界条 件为 .0),(,0),0(==t l u t u (2)若l x =为自由端,则杆在 l x =的张力 x u x E t l T ??=)(),(|l x =等于零,因此相应的边界条件为 x u ??|l x ==0 同理,若 0=x 为自由端,则相应的边界条件为 x u ??∣ 00 ==x (3)若l x =端固定在弹性支承上,而弹性支承固定于某 点,且该点离开原来位置的偏移由函数)(t v 给出,则在l x =端支 承的伸长为)(),(t v t l u -。由虎克定律有 x u E ??∣)](),([t v t l u k l x --== 其中k 为支承的刚度系数。由此得边界条件 )( u x u σ+??∣ ) (t f l x == 其中 E k = σ 特别地,若支承固定于一定点上,则,0)(=t v 得边界条件 )( u x u σ+??∣0==l x 。 同理,若0=x 端固定在弹性支承上,则得边界条件 x u E ??∣)](),0([0t v t u k x -== 即 )(u x u σ-??∣).(0t f x -= 3. 试证:圆锥形枢轴的纵振动方程为

中国杰出数学家_谷超豪_生平

中国杰出数学家_谷超豪_生平 谷超豪(1926-2012),数学家。复旦大学教授,中国科学院院士。浙江温州人。1948年毕业于浙江大学数学系,1953年起在复旦大学任教,历任复旦大学副校长、中国科学技术大学校长。1980年当选为中国科学院数学物理学部委员,撰有《数学物理方程》等专著。研究成果“规范场数学结构”、“非线性双曲型方程组和混合型偏微分方程的研究”、“经典规范场”分别获全国科学大会奖、国家自然科学二等奖、三等奖、09年度国家最高科技奖。2010年1月11日,谷超豪院士获得2009年度国家最高科学技术奖。2012年6月24日01时08分在上海逝世,享年87岁。 出生 1926年5月15日,谷超豪出生在温州市,幼年由婶母抚养,婶母的性格对谷超豪起到了潜移默化的影响,使他从小善良、纯真、助人为乐。 小学 他5岁入私塾接受启蒙教育。两年后进入温州瓯江小学。谷超豪从小性格文静,聪慧过人,对各门功课都有兴趣。数学、语文、历史、地理、自然等课程,都学得很好。他平时文文雅雅,不太爱说话,不大喜爱运动。但是,在课堂上,他思想活跃,喜欢独立思考。特别是数学,分数与循环小数的互化早在小学三年级时就掌握了,并开始知道数学上有无限的概念。 中学 1937年,全面抗战开始,谷超豪进入温州中学。温州中学后来汇集了不少回乡的大学老师,拥有雄厚的师资力量,尤其是数学和物理。这对谷超豪来说真是如鱼得水。他的语文、社会科学、数理的基础是很全面的,每次考试,成绩都名列前茅。(这里还有一个小故事,在谷超豪初一时,老师讲完乘方的知识后,出了道习题:用4个“1”组成一个最小数,但不能用运算符号,谷超豪举手回答:“是1的111次方”老师又说“那3个9组成的最大数哪?”“是9的9次方的9次方”)他不满足于课本知识,看了不少课外书,如刘熏宇著的《数学园地》,其中介绍了微积分和集合论的初步思想,使他初步了解到数学中无限的3个层次:循环小数,微积分,集合论,这使他对数学产生更浓厚的兴趣。 大学 1943年秋天,谷超豪考入浙江大学龙泉分校(注:时值抗日战争岁月,浙江大学在浙江龙泉市开设有浙江大学龙泉分校),后成为苏步青的得意弟子,开始了大学生活。当时一年级课程并不要求太多的逻辑推理,但对直观能力、演算能力和解应用问题的能力,却有很高的要求。这些训练,为谷超豪打下了扎实的数学基础。谷超豪原来有不太细致的毛病,通过学微积分,逐步克服了。他读了一本用综合方法写的射影几何的著作,完全不用计算,便能把二次曲线的基本性质描述清楚,引起他很大兴趣。他非常喜爱笛沙格定理、帕普斯定理和帕斯卡定理等。从此,他对几何学就有了偏爱。后来,他的许多研究成果,即使是分析的或物理的,都带有几何的风格。同时他也感到,尽管自己看了大量的书和做了许多难题,但听了苏步青、陈建功这些著名教授的课后,方觉自己的了解是很肤浅的。因此他认识到必须把自学与课堂的严格训练结合起来,基础才更为扎实。谷超豪还尽可能多掌握其他方面的知识。他对物理学的课程非常感兴趣,他认为物理和数学相互促进。理论力学是必修课,他做了许多题目;他并不满足于做对,还常常探索其他比较别致的做法,为此,受到周北屏教授的称赞。周老师说:念理论力学要有几何的眼光与手段。谷超豪在三四年级时

数学物理方程课程

《数学物理方程》课程 教学大纲 课程代码:B0110040 课程名称:数学物理方程/equation of mathematic physics 课程类型:学科基础课 学时学分:64学时/4学分 适用专业:地球物理学 开课部门:基础课教学部 一、课程的地位、目的和任务 课程的地位:数学物理方程是地球物理学专业的一门重要的专业(或技术)基础课。数学物理方程是反应自然中物理现象的基本模型,也是一种基本的数学工具,与数学其他学科和其他科学技术领域诸如数值分析、优化理论、系统工程、物理、化学、生物等学科都有广泛联系。对于将来从事工程地震技术工作及自然科学研究的学生来说是必不可少的。期望学生通过该门课程的学习,能深刻地理解数学物理方程的不同定解问题所反应的物理背景。 课程的目的与任务:使学生了解数学物理方程建立的依据和过程,认识这门学科与物理学、力学、化学、生物学等自然科学和社会科学以及工程技术的极密切的广泛的联系。掌握经典数学物理方程基本定解问题的提法和相关的基本概念和原理,重点掌握求解基本线性偏微分方程定解问题的方法和技巧。使学生掌握与本课程相关的重要理论的同时,注意启发和训练学生联系自己的专业,应用所学知识来处理和解决实际问题的能力。 二、课程与相关课程的联系与分工 学生在进入本课程学习之前,应修课程包括:大学物理、高等数学、线性代数、复变函数、场论与向量代数。这些课程的学习,为本课程奠定了良好的数学基础。本课程学习结束后,可进入下列课程的学习:四大力学、电磁场与微波技术、近代物理实验等。且为进一步选修偏微分方程理论、数值计算、控制理论与几何分析等课程打下基础。

三、教学内容与基本要求 第一章绪论 1.教学内容 第一节偏微分方程的基本概念 第二节弦振动方程及定解条件 第三节热传导方程及定解条件 第四节拉普拉斯方程及定解条件 第五节二阶线性偏微分方程的分类 第六节线性算子 2.重点难点 重点:物理规律“翻译”成数学物理方程的思路和步骤,实际问题近似于抽象为理想问题 难点:数学物理方程的数学模型建立及数学物理方程的解空间是无限维的函数空间 3.基本要求 (1)了解数学物理方程研究的基本内容,偏微分方程的解、阶、维数、线性与非线性、齐次与非齐次的概念;了解算子的定义。了解三类典型方程的建立及其定解问题(初值问题、边值问题和混合问题)的提法,定解条件的物理意义。 (2)掌握微分算子的运算规律,理解线性问题的叠加原理 (3)了解二阶线性方程的特征理论 (4)掌握两个变量二阶线性偏微分方程分类方法及化简方法 (5)掌握三类方程的标准形式及其化简过程,会三类方程的比较,并能通过标准形式求得某些方程的通解。 第二章分离变量法 1.教学内容 第一节有界弦的自由振动。 第二节有界长杆的热传导问题。 第三节二维拉普拉斯方程的边值问题。 第四节非齐次方程得求解问题。

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。 定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则 x 点处的张力)(x T 为 ) ()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)] ([22ρ∣ x u x l g x x ??--?+] [ρ∣ g x ρ 利用微分中值定理,消去x ?,再令0→?x 得

])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 2 2 1),,(y x t t y x u --=在锥2 22 y x t -->0中都 满足波动方程 2 22222y u x u t u ??+??=??证:函数 2 2 2 1),,(y x t t y x u --= 在锥 2 22y x t -->0内对变量t y x ,,有 二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 2 2 52222 32222 2)(3) (t y x t y x t t u ?--+---=??-- ) 2()(22223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 2 25222232222 23x y x t y x t x u - ---+--=?? ( )( )2 22 252222y x t y x t -+- -=- 同理 ()()22225222222y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题

相关文档
相关文档 最新文档