文档库 最新最全的文档下载
当前位置:文档库 › 用积分法求图示各梁的挠曲线方程

用积分法求图示各梁的挠曲线方程

用积分法求图示各梁的挠曲线方程
用积分法求图示各梁的挠曲线方程

用积分法求图示各梁的挠曲线方程

『7-1』写出图示各梁的边界条件。在图(d)中支座B 的弹簧刚度为C(N/m)。

『7-2』如将坐标系取为y 轴向下为正(见图),试证明挠曲线的微分方程

(7-1)应改写为

『7-3』用积分法求图示各梁的挠曲线方程及自由端的绕度和转角。设EI=常

数。

解答

(a)

。(b)

(c)

。(d )。

『7-4』用积分法求图示各梁的挠曲线方程、端截面转角

和、跨度中点的

挠度和最大挠度。设EI=常量。

解答

(a)

,,

(b),

(c)

(d),,,

『7-5』求图示悬臂梁的挠曲线方程及自由端的挠度和转角。设

EI=常数。求解时应注意到梁在CB 段内无载荷,故CB 仍为直线。

解答

(a),。

(b )

, 。

『7-6』若只在悬臂梁的自由端作用弯曲力偶m ,使其成为纯弯曲,则由

常量,挠曲线应为圆弧。若由微分方程(7-1)积分,将得到

。它表明挠曲线是一抛物线。何以产生这种差别?试求按两种结果所

得最大挠度的相对误差。 解答

『7-7』用积分法求梁的最大转角和最大挠度。在图

b 的情况下,梁对跨度中点对称,所以可以只考虑梁的二分之一。

解答 (a )

(b),

『7-8』用叠加法求图示各梁截面 A 的挠度和截面 B 的转角。EI为已知常数。

解答

(a)

(b)

(c)

(d)

『7-9』用叠加法求图示各外伸梁外伸端的挠度和转角。设EI=常数。

解答

(a)

(b)

(c)

(d),。

『7-10』磨床砂轮主轴的示意图如图所示。轴的外伸段的长度 a =100mm,轴承间距l = 350mm,E = 210GPa,Py = 600N,Pz =

200N,试求主轴外伸端的总挠度。

解答

圆锥曲线标准方程求法(学生版)

圆锥曲线标准方程求法 一、椭圆标准方程求法 1、定义法 【例1】已知ABC ?的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。 【变式】:在周长为定值的△ABC 中,已知|AB|=6,且当顶点C 位于定点P 时,cosC 有最小值为25 7.建立适当的坐标系,求顶点C 的轨迹方程. 【例2】已知椭圆C 以坐标轴为对称轴,以坐标原点为对称中心,椭圆的一个焦点为()0,1,点??? ? ??26,23M 在椭圆上,求椭圆C 的方程; 【例3】已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程. 【例4】设R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量, ,)2(j y i x a ++=j y i x b )2(-+=,且8||||=+.求点),(y x M 的轨迹C 的方程; 2、待定系数法 1.已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为 2 ,且G 上一点到G 的两个焦点的距离之和为12,椭圆G 的方程.

2.已知椭圆1C :22 221(0)y x a b a b +=>>的右顶点为(1,0)A ,过1C 的焦点且垂直长轴的弦长为1.求椭圆1C 的方程. 3.已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.求椭圆C 的方程. 4.设椭圆:E 22 221x y a b +=(,0a b >>)过2)M ,(6,1)N 两点,O 为坐标原点,求椭圆E 的方程。 3、转化已知条件 【例1】已知点,A B 的坐标分别是(0,1)-,(0,1),直线,AM BM 相交于点M ,且它们的斜率之积为12- .求点M 轨迹C 的方程; 【例2】设Q 、G 分别为ABC ?的外心和重心,已知)0,1(-A ,)0,1(B ,AB QG //?求点C 的轨迹E 【例3】已知动点P 到直线33 4- =x 的距离是到定点(0,3-)的距离的332倍.求动点P 的轨迹方程;

求曲线方程的几种常用方法

求曲线方程的几种常用方法 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1:在直角△ABC 中,斜边是定长2a (0)a >,求直角顶点C 的轨迹方程。 解法一:由于未给定坐标系,为此,首先建立直角坐标系,取AB 所在的直线为x 轴,AB 的有中点O 为坐标原点,过O 与AB 垂直的直线为y 轴(如图).则A (,0)a -,B (,0)a 。 设动点C 为(,)x y , ∵222||||||AC BC AB +=, ∴2 224a +=, 即222x y a +=. 由于C 点到达A 、B 位置时直角三角形ABC 不存在,轨迹中应除去A 、B 两点, 故所求方程为222x y a +=(x a ≠±)。 解法二:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,C (,)x y ∵1AC BC k k =-, (1) ∴1y y x a x a =-+- , (2) 化简得:222 x y a += , (3) 由于在x a ≠±时方程(2)与(3)不等价,故所求轨迹方程为222x y a +=(x a ≠±)。 解法三:如解法一建立直角坐标系,设A (,0)a -,B (,0)a ,且设动点C (,)x y 。 ∵1||||2 CO AB =, a =,即222x y a +=。 轨迹中应除去A 、B 两点(理由同解法一),故所求轨迹方程为222x y a +=(x a ≠±)。 说明:利用这种方法求曲线方程的一般方法步骤:

求曲线方程的常用方法

求曲线方程的常用方法 1. 直接法——若动点的运动规律就是一些几何量的等量关系,这些条件简单明确易于表 达,则可根据已知(或可求)的等量关系直接列出方程的方法。 2. 定义法——利用二次曲线的定义求轨迹方程。 (1) 若平面上的动点P(x,y)满足条件:11||||PF PF +=定长2a ,且122||a F F >(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的椭圆。故只须选择恰当的坐标系, 就可直接写出椭圆的方程。 (2) 若平面上的动点P(x,y)满足条件:11||||||PF PF -=定长2a ,且122||a F F <(F 1F 2 为定点),那么P 点的轨迹为以F 1、F 2为焦点的双曲线。当122||a F F =时,P 点的轨迹为射线;如果不含绝对值,那么轨迹是一支双曲线或一条射线。故只 须选择恰当的坐标系,依双曲线的定义,就可直接写出椭圆的方程。 3. 代入法(或称相关点法)——有时动点P 所满足的几何条件不易求出,但它随另一动点 P ’的运动而运动,称之为相关点,若相关点P ’满足的条件简单、明确(或P ’的轨迹方程已知),就可以用动点P 的坐标表示出相关点P ’的坐标,再用条件把相关满足的轨迹方程表示出来(或将相关点坐标代入已知轨迹方程)就可得所求动点的轨迹方程的方法。 4. 几何法——利用平面几何的有关知识找出所求动点满足的几何条件,并写出其方程的方 法。 5. 参数法——有时很难直接找出动点的横纵坐标间的关系,可选择一个(有时已给出)与 所求动点的坐标x,y 都相关的参数,并用这个参数把x,y 表示出来,然后再消去参数的方法。 如:遇求两动直线的交点的轨迹方程问题,可适当引进参数(如斜率、截距等),写出两动直线的方程,然后消去参数就得到所求的两动直线的交点的轨迹方程,这种方法又称交轨法,其关键有二:一是选参,要容易写出动直线的方程;二是消参,消参的途径灵活多变,有时分别从两个方程中解出参数,再消参;有时分别解出x,y ,再消参;有时直接或适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参。 5.定义法—— 注意点:求动点轨迹方程在掌握一般步骤的基础上还要注意以下两点,一选建适当的坐标系,以简化运算;二是要注意曲线图形的范围,即根据条件限定方程中变量x,y 的取值范围,将方程中不适合题意的解去掉。 思路方法技巧: 1.“直接法”求动点的轨迹方程 例1. 在正三角形ABC 内有一动点P ,已知P 到三个顶点的距离分别为|PA|、|PB|、|PC| 且满足22||||||P A P B P C =+,求动点P 的轨迹方程。 222()4(0(2)x y a y +=<≤ 例2. 互相垂直的两条直线1l 、2l 的交点为P(a,b),长为2r 的线段MN 的两端点分别在1l 、 2l 上滑动,求线段MN 的中点Q 的轨迹。 (|PQ|=1/2|MN|222()()x a y b r -+-=) 例3. 已知一条曲线在x 轴的上方,它上面的每一个点到A(0,2) 的距离减去它到x 轴的

求曲线方程的几种常见方法

求曲线方程的几种常见方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

2.1.2求曲线的方程(2)(教学设计)

2.1.2求曲线的方程(2)(教学设计) 教学目标: 知识目标:1.根据条件,求较复杂的曲线方程. 2.求曲线的交点. 3.曲线的交点与方程组解的关系. 能力目标: 1.进一步提高应用“五步”法求曲线方程的能力. 2.会求曲线交点坐标,通过曲线方程讨论曲线性质. 情感目标: 1.渗透数形结合思想. 2.培养学生的辨证思维. 教学重点 1.求曲线方程的实质就是找曲线上任意一点坐标(x,y)的关系式f(x,y)=0. 2.求曲线交点问题转化为方程组的解的问题. 教学难点 1. 寻找“几何关系”. 2. 转化为“动点坐标”关系. 教学方法 启发诱导式教学法. 启发诱导学生联想新旧知识点的联系,从而发现解决问题的途径. 教学过程 一、复习回顾: 求曲线的方程(轨迹方程),一般有下面几个步骤: 1.建立适当的坐标系,设曲线上任一点M 的坐标(,)x y ; 2.写出适合条件P 的几何点集:{} ()P M P M =; 3.用坐标表示条件()P M ,列出方程(,)0f x y =; 4.化简方程(,)0f x y =为最简形式; 5.证明(查漏除杂). 说明:回顾求简单曲线方程的一般步骤,阐明步骤(2)、(3)为关键步骤,说明(5)步不要求书面表达,但思维一定要到位,注意等价性即可. 二、师生互动,新课讲解: (一)、直接法: 由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫直接法. 例1:(1)求和定圆x 2+y 2=R 2的圆周的距离等于R 的动点P 的轨迹方程; (2)过点A(a ,o)作圆O ∶x 2+y 2=R 2(a >R >o)的割线,求割线被圆O 截得弦的中点的轨迹. 对(1)分析: 动点P 的轨迹是不知道的,不能考查其几何特征,但是给出了动点P 的运动规律:|OP|=2R 或|OP|=0.

求曲线轨迹方程的常用方法

求曲线轨迹方程的常用 方法 Hessen was revised in January 2021

高考数学专题:求曲线轨迹方程的常用方法 张昕 陕西省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的内在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下: (1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程的方法就称为直接法,直接法求轨迹经常要联系平面图形的性质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系数法求解.这种求轨迹方程的方法称为定义法,利用定 义法求方程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法.

(4) 参数法:若动点的坐标(x ,y )中的x ,y 分别随另一变量的 变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程,消去参数来求轨迹方程. (5) 几何法:根据曲线的某种几何性质和特征,通过推理列出等式 求轨迹方程,这种求轨迹的方法叫做几何法. (6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示范讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+=(x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点

求曲线方程的几种常用方法 - 副本

求曲线方程(导学案) 选编:万立勇审核:吴海燕 求曲线的方程,是学习解析几何的基础,求曲线的方程常用的方法主要有: 1.直接法:就是课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为(,x y)后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有,x y的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 a>,求直角顶点C的轨迹方程。 例1:在直角△ABC中,斜边是定长2a(0) Array 说明:利用这种方法求曲线方程的一般方法步骤: (1)建立适当的直角坐标系,用(,) x y表示曲线上任意点M的坐标; (2)写出适合条件p的点M的集合{|()} =; p M p m (3)用坐标表示() p m,列出方程(,)0 f x y=; (4)化简方程(,)0 f x y=为最简形式; (5)证明以化简后的方程的解为坐标的点都是曲线上的点(此步骤经常省略,但一定要注意所求的方程中所表示的点是否都表示曲线上的点,要注意那些特殊的点。)。 这种按照上述五个步骤来求曲线方程的方法,又称“五步法”或“条件直译 法”,这是求曲线方程的基本方程。

2.代入法(或利用相关点法):即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2:已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,AM MB=,求动点M的轨迹方程。 且:1:2 3.几何法:求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种求轨迹方程的方法称作几何法。 -),B(2,0),O为原点,动点P与线段AO、BO所例3:如图,已知两定点A(6,0 张的角相等,求动点P的轨迹方程。

求曲线方程的常用方法

求曲线方程的常用方法 曲线方程的求法就是解析几何的重要内容与高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路与方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法 求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件与图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆周上, 将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点N 、现将圆 形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2=4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E 、 (1)证明曲线E 就是椭圆,并写出当a =2时该椭圆的标准方程; (2)设直线l 过点C 与椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心率e ∈???? ?? 1 232,求点Q 的纵坐标的取值范围. 解 (1)依题意,直线m 为线段AM 的垂直平分线, ∴|NA |=|NM |、 ∴|NC |+|NA |=|NC |+|NM |=|CM |=2a >2, ∴N 的轨迹就是以C 、A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3、 ∴椭圆的标准方程为x 24+y 2 3 =1、 (2)设椭圆的标准方程为x 2a 2+y 2 b 2=1 (a >b >0). 由(1)知:a 2-b 2=1、又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+y b =1,即bx -y +b =0、 设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称,

曲线方程的求法

曲线方程的求法 建立了平面直角坐标系后,坐标平面上的点就和有序数对建立了一一对应的关系。点动成线,当点运动的时候,其坐标就会发生变化,这种变化并不是毫无章法的,其横,纵坐标是相互依懒的,对这种关系的定量刻画就是曲线的方程。 (在前面的学习中我们已经做过了很多求曲线方程的题,下面我们归类,总结一下之前所用到的方法。) 一.待定系数法 这种方法需要预先知道曲线的方程,先设出来,然后根据条件列出方程(组)求解未知数。 例1 求与x 轴相切,圆心在直线x 30=-y 上,且截直线0=-y x 得弦长为72的圆的方程。 练习1求与双曲线1342 2 =-y x 有共同的渐近线,且过点(2,32)的双曲线标 准方程。 思考:若改为共焦点,又该如何设方程? 二.直译法 就是把动点所满足的题设条件直接给表示出来,从而得到其横、纵坐标之间的关系式。 例2.若N M ,为两个定点且MN =6,动点P 满足PM ?PN =0 则P 点的轨迹是( ) A 圆 B 椭圆 C 双曲线 D 抛物线 思考:求轨迹与轨迹方程的区别? 练习2.设O 为坐标原点,P 为直线1=y 上动点,OP //OQ ,OP ?OQ =1,求Q 点的轨迹方程。

三.定义法 就是由曲线的定义直接得到曲线方程。 例3.已知动圆M 与圆1C :2)4(22=++y x 外切,与圆2C :2)4(22=+-y x 内 切,求动圆圆心M 的轨迹方程。 练习3 设双曲线)0,0(12222>>=-b a b y a x 的两焦点为1F ,2F 。点Q 为双曲线左支 上除顶点外的任一点,过1F 作21QF F ∠的平分线的垂线,垂足为P ,则P 点的轨 迹是( ) A 椭圆的一部分 B 双曲线的一部分 C 抛物线的一部分 D 圆的一部分 总结:用定义法来求解的题,其过程都很简便,快捷。 练习4 已知圆422=+y x ,过点)0,4(A 做圆的割线ABC ,求弦BC 的中点的轨迹方程。 法一: 思考:还有其他方法吗? 法二: 交轨法:就是在求两动曲线交点轨迹方程时,联立方程组消去参数,得到交点的轨迹方程。在求交点问题时常用此法。 法三: 总结: 求解方程时要注意不要漏解或增解。主要注意两方面。一:题设中某些隐含条件。二:方程的变形是否为等价变换。

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x =·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

求曲线方程的常用方法

求曲线方程的常用方法 曲线方程的求法是解析几何的重要内容和高考的常考 点. 背景,不同的结构特征,选用不同的思路和方法, 才能简捷明快地解决问题.下面对其求法 进行探究. 1定义法 求曲线方程时,如果动点轨迹满足已知曲线的定义, 则可根据题设条件和图形的特点, 恰当 运用平面几何的知识去寻求其数量关系, 再由曲线定义直接写出方程, 例1如图,点A 为圆形纸片内不同于圆心 C 的定点,动点M 在圆周 上,将纸片折起,使点 M 与点A 重合,设折痕 m 交线段CM 于点N 现 . . . . 2 2 2 将圆形纸片放在平面直角坐标系 xOy 中,设圆C : (X + 1) + y = 4a (a >1) , A (1,0),记点N 的轨迹为曲线 E (1)证明曲线E 是椭圆,并写出当a = 2时该椭圆的标准方程; (2)设直线I 过点C 和椭圆E 的上顶点B,点A 关于直线I 的对称点为点 Q 若椭圆E 的离心 ???I NC + I NA = I NC + I NM = I CM = 2a >2, ? N 的轨迹是以C 、A 为焦 点,长轴长为 2a ,焦距为2的椭圆. 当a = 2时,长轴长为 2a = 4,焦距为2c = 2, 2 2 ?椭圆的标准方程为X 4+ 3 =1- 2 2 X y ⑵设椭圆的标准方程为 a + b = 1 ( a >b >0). ???离心率 e € 1,字,??? !e 2 <4, 2 2 由(1)知:a — b = 1.又 q — 1,0),耳0 , b ), ???直线I 的方程为二1+ b = 1,即卩bx —y + b = 0. 设Qx , y ) ,???点Q 与点A (1,0)关于直线I 对称, 占 b =- 1, 4b 消去X 得y =乔T 求曲线方程时,应根据曲线的不同 率e € 1 ,字,求点Q 的纵坐标的取值范围. 2' 解(1)依题意,直线 m 为线段AM 的垂直平分线, 这种方法叫做定义法.

材料力学A_(梁弯曲变形的描述,挠曲线近似微分方程,积分法和.

例题例题 5-14 F M §5 梁的弯曲例题例题 5-14 F §5 梁的弯曲 F b h N 一弯曲钢梁,截面为矩形,两端各加力F,使其平直地与刚性平面MN接触,已知梁的E,l,b,h,及,求:(1)F力多大可将梁压平?(2)压平时梁中的最大正应力。 31 解:曲梁压平产生弯曲变形,梁中产生弯曲应力。压平后与刚平面接触——地面对梁有均布支持力q。 F 由平衡条件得: F q ql 例题例题 5-14 F §5 梁的弯曲例题例题 5- 梁的弯曲均布载荷简支梁 2F l N 的弯曲挠曲线为:若曲梁变形前的弯曲 l q F N 对均布载荷简支梁:形状恰好为此形状,则F力刚好可使该曲梁压平。 ql l2 l3 5ql 4 压平时,中 提高弯曲强度和刚度的措施 1.提高梁的强度的措施根据支座位置(1)合理安排梁的 受力,降低梁中最大弯矩分散载荷

思考题:如何找出支座最合理的位置?答案:令 M max 35 36 (M (M 6 (2 梁的合理截面放置方向:尽量使弯曲截面系数Wz较大 (3 等强度梁使所有横截面上的最大正应力相同或近似相同等高变宽(矩形常数等宽变高(矩形例如汽车上使用的叠板弹簧: b P 2 P 2 截面形状 z 37 38 汽车的叠板弹簧吊车用鱼腹梁 P 2.提高梁的刚度的措施梁的弯曲变形(1)减小M(x (2)减小跨度 车床的车刀架伸臂: P 39 (3)选择合理截面,增大 Iz (4)注意各种钢材的E 值相差不大! 40 工程实例: 橱窗+外伸雨蓬: 该实例的力学模型:受集中力+均布载荷的悬臂梁: q L P 钢筋应在的位置钢筋实际位置: 原设计雨蓬根部发生折断分析雨蓬倒塌的原因? 41 造成上部拉应力强度不够! 42 7 作业

求曲线轨迹方程的常用方法

高考数学专题:求曲线轨迹方程的常用方法 昕 省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下:(1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程 的方法就称为直接法,直接法求轨迹经常要联系平面图形的性 质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系 数法求解.这种求轨迹方程的方法称为定义法,利用定义法求方 程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法. (4)参数法:若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方 程,消去参数来求轨迹方程. (5)几何法:根据曲线的某种几何性质和特征,通过推理列出等式求轨迹方程,这种求轨迹的方法叫做几何法.

(6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+= (x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点 所以∠OBC= 90?, 则B 在以OC 为直径的圆上, 故B 点的轨迹方程是2211()24 x y -+=(x ≠0). 法三:(代入法) 设A (1x ,1y ),B (x ,y ),

求曲线方程的基本方法--坐标法

求曲线方程的基本方法——坐标法 借助坐标系研究几何图形的方法叫做坐标法.用坐标法研究几何图形的知识形成了一门叫做解析几何的学科. 平面解析几何研究的主要问题是: (1)根据已知条件,求出表示平面曲线的方程; (2)通过方程,研究平面曲线的性质. 例1 设A 、B 两点的坐标是(10)(10)-,,,,若1MA MB k k =- ,求动点M 的轨迹方程. 解:设M 的坐标为()x y ,,M 属于集合{}|1MA MB P M k k ==- . 由斜率公式,点M 所适合的条件可表示为 1(1)11 y y x x x =-≠±-+ ,整理后得 221(1)x y x +=≠±. 下面证明221(1)x y x +=≠±是点M 的轨迹方程. (1)由求方程的过程可知,M 的坐标都是方程221(1)x y x +=≠±的解; (2)设点1M 的坐标11()x y ,是方程221(1)x y x +=≠±的解, 即221111(1)x y x +=≠±,221111(1)y x x =-≠±,11 11111 y y x x =--+ , ∴111M A M B k k =- . 由上述证明可知,方程221(1)x y x +=≠±是点M 的轨迹方程. 点评:所求的方程221x y +=后面应加上条件1x ≠±. 例2 点M 到两条互相垂直的直线的距离相等,求点M 的轨迹方程. 解:取已知两条互相垂直的直线为坐标轴,建立直角坐标系,如图1所示. 设点M 的坐标为()x y ,,点M 的轨迹就是到坐标轴的距离相等的点的集合{}|P M MR MQ ==,其中Q R ,分别是x 轴、y 轴上的过点M 的垂线的垂足. 因为点M 到x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,所以条件MR MQ =可写成x y =, 即0x y ±=.①

求曲线方程的几种常用方法

求曲线方程的几种常用方法 宜君县高级中学 马卫娟 已知动点所满足的条件,求动点的轨迹方程是平面解析几何的一个重要题型。下面就通过实例介绍几种求曲线方程的常用方法。 一.直接法:即课本中主要介绍的方法。若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点的坐标为(x,y),再根据命题中的已知条件,研究动点形成的几何特征,运用几何或代数的基本公式、定理等列出含有x,y 的关系式,从而得到轨迹方程。 例1.在直角△ABC 中,斜边是定长2a(a>0),求直角顶点C 的轨迹方程。 解法一:以AB 所在直线为x 轴,线段AB 的中垂线为y 轴建立直角坐标系(如图所示)则有:A(-a,0)、B(a,0),设动点C 的坐标为(x,y) 则满足条件的点C 的集合为}/{2 2 2 AB BC AC C P =+= 所以( )( ) ()2 2 2 2 2 2 22)()(a y a x y a x =+-+++ 即222a y x =+ 因为当点C 与A 、B 重合时,直角△ABC 不存在,所以轨迹中应除去A 、B 两点,既a x ±≠。 故所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 解法二:如解法一建立直角坐标系,设A(-a,0)、B(a,0)、C(x,y) ∵A C ⊥BC ∴1-=?BC AC K K ∴ 1-=-? +a x y a x y (1)

化简得:2 22a y x =+(2) 由于a x ±≠时,方程(1)与(2)不等价, 所以所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 解法三:如解法一建立直角坐标系,则:A(-a,0)、B(a,0),设C(x,y) 连接CO ,则有:AB CO 2 1= 所以 a a y x =?= +22 12 2 即2 2 2 a y x =+ 轨迹中应除去A ,B 两点(理由同解法一) 故所求点C 的轨迹方程为2 2 2 a y x =+()a x ±≠。 说明:利用直接法求曲线方程的一般步骤 (1) 建立适当的直角坐标系,用(x,y)表示曲线上任意点M 的坐标; (2) 写出适合条件P 的点M 的集合P={M\p(m)}; (3) 用坐标表示条件P(M),列出方程f(x,y)=0; (4) 化方程f(x,y)为最简形式; (5) 证明以化简后的方程的解为坐标的点都是曲线上的点。(此步骤常省略不写,但一定要注意所求方程中所表示的点是否都在曲线上,注意特殊点)。 直接法是求曲线方程的基本方法。本例虽给出了三种解法,但实质上都是利用等量关系,直接求出轨迹方程。 二 .中间变量法(相关点法) 如果所求轨迹上的动点P(x,y)与已知曲线上的动点M(x,y)相互制约,

平面解析几何中---求轨迹方程的常用方法 (专题汇编含答案)

平面解析几何中---求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足 ,sin 4 5sin sin C A B = +求点C 的轨迹。 【变式】:已知圆 的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

求曲线方程的常用方法

求曲线方程的常用方法 曲线方程的求法是解析几何的重要内容和高考的常考点.求曲线方程时,应根据曲线的不同背景,不同的结构特征,选用不同的思路和方法,才能简捷明快地解决问题.下面对其求法进行探究. 1.定义法 求曲线方程时,如果动点轨迹满足已知曲线的定义,则可根据题设条件和图形的特点,恰当运用平面几何的知识去寻求其数量关系,再由曲线定义直接写出方程,这种方法叫做定义法. 例1 如图,点A 为圆形纸片内不同于圆心C 的定点,动点M 在圆 周上,将纸片折起,使点M 与点A 重合,设折痕m 交线段CM 于点 N .现将圆形纸片放在平面直角坐标系xOy 中,设圆C :(x +1)2+y 2= 4a 2 (a >1),A (1,0),记点N 的轨迹为曲线E . (1)证明曲线E 是椭圆,并写出当a =2时该椭圆的标准方程; (2)设直线l 过点C 和椭圆E 的上顶点B ,点A 关于直线l 的对称点为点Q ,若椭圆E 的离心 率e ∈??????12,32,求点Q 的纵坐标的取值范围. 解 (1)依题意,直线m 为线段AM 的垂直平分线, ∴|NA |=|NM |. ∴|NC |+|NA |=|NC |+|NM |=|CM |=2a >2, ∴N 的轨迹是以C 、A 为焦点,长轴长为2a ,焦距为2的椭圆. 当a =2时,长轴长为2a =4,焦距为2c =2, ∴b 2=a 2-c 2=3. ∴椭圆的标准方程为x 24+y 23=1. (2)设椭圆的标准方程为x 2a 2+y 2 b 2=1 (a >b >0). 由(1)知:a 2-b 2=1.又C (-1,0),B (0,b ), ∴直线l 的方程为x -1+y b =1,即bx -y +b =0. 设Q (x ,y ),∵点Q 与点A (1,0)关于直线l 对称,

最新(高中数学)定义法求轨迹方程

定义法求轨迹方程 教学目标: 知识目标 通过本课的学习,增强运用圆锥曲线的定义解决问题的意识,综合运用平面几何的知识,进行几何等量关系的转换,理解“定义法”求轨迹方程的意义及解决问题的基本思路。 能力目标 用运动的观点理解曲线。培养学生观察、类比、推理的分析能力和抽象、概括的思维能力;培养学生数学的转化思想、数形结合思想,使学生养成仔细审视、全方位考虑问题的良好习惯。掌握从特殊?一般?特殊的认知规律。 情感目标 创设问题情景,激发学生观察、分析、探求的学习热情,强化学生的参与意识。 教学重点:“定义法”求曲线轨迹方程。灵活运用题设条件,确定动点所满足的等量关系,结合 圆锥曲线的定义确定曲线的类型。 教学难点:理解轨迹的完备性与纯粹性,并能准确地运用。(完备性是指符合条件的点都要在轨 迹上,不能遗漏;纯粹性是指轨迹上的所有点都符合条件,没有“假冒”。) 教学过程: 问题: 1、请你分别说出四种圆锥曲线的定义 圆的定义 椭圆的第一定义 双曲线的第一定义 圆锥曲线的统一定义 2、思考并回答: (1)已知)3,2(A 且7||=PA ,则点P 的轨迹是 圆 (2)已知?ABC 的一边BC 的长为6,周长为16,则顶点A 的轨迹是什么?(椭圆,除去与BC 边共线的两个顶点。) (3)若 4||||)0,5(),0,1(=--MB MA B A 且 则点M 的轨迹是 双曲线右支 (4)过点(2,3)且与y 轴相切的圆的圆心的轨迹是什么?(抛物线) 小结引出课题:灵活、准确地运用定义,为解决圆锥曲线的一些问题带来很大的方便。本课,我们重点讨论利用定义法求曲线的轨迹方程的问题。 定义法求轨迹方程的含义:先由题设条件,根据圆锥曲线的定义能确定曲线的形状后,直接写出曲线的方程。 例1:已知圆C :09162 2=-++x y x 及圆内一点P (3,0),求过点P 且与已知圆内切的圆的圆心M 的轨迹方程。 1、分析:(1)圆C 的半径与圆心坐标可定。 (2)两圆内切可得:外圆半径=内圆半径+连心距。 (3)动点M 满足的等量关系:| MC | + | MP | = 10>| PC | (4)由定义可确定动点M 的轨迹为以P 、C 为焦点的椭圆。 2、演示动画,使抽象问题具体化。 3、学生口述解题过程。 4、板演解题过程。

求曲线方程常用方法例析.

求曲线方程常用方法例析 河北省 杨新兰 求动点轨迹方程的基本思想方法的实质是形数对应、形数结合与转化的一个具体的应用.根据动点的不同的运动性质和规律,采用不同的解题方法.下面举例介绍求曲线方程的几种常用方法. 一、条件直译法 如果动点运动的规律就是一些几何量的等量关系,这些条件简单、明确,易于表达,可以把这些关系直接译成含“x ,y ”的等式.此类解法适合较简单的问题. 例1 如图,已知动点M 到定点A(1,0)与定直线l :x = 3的距离之和等于4,求动点M 的轨迹方程. 解:设M(x ,y)是轨迹上任意一点,作MN ⊥l 于N ,则|MA|+|MN| = 4,即 -|x -3|. 当3≤x ≤7 -x ,即y 2=-12(x -4) (3≤x ≤4); 当-1≤x <3 +1,即y 2= 4x (0≤x <3). ∴动点M 的轨迹方程2212(4),(34),4.(03).y x x y x x ?=--≤≤??=≤

换成x ,y ,就得到原动点的轨迹. 例2 过定点A(a ,b)任作互相垂直的两直线1l 与2l ,且1l 与x 轴交于M 点,2l 与y 轴交于N 点,求线段MN 中点P 的轨迹方程. 解:设M(x 1,0),N(0,y 1),P(x ,y),由题意得 ??? ????==.2,211y y x x ? ???==.2,211y y x x ① ∵1l ⊥2l ,∴ (x 1-a)2+b 2+(y 1-b)2+a 2= x 21+y 21,化简得:2ax 1+2by 1 -a 2-b 2= 0 .② ① 代入②得:2ax +2by -a 2-b 2= 0 . 评析:此解法在求轨迹方程时应用广泛,并多与定比分点坐标分式相结合. 三、参数法 有时很难直接找出动点的横、纵坐标之间的关系,此时若借助中间变量(参数),使x 、y 之间建立直接联系,然后再从所求式子中消去参数,这便得动点的轨迹方程. 例3 已知经过点P(4,0)的直线1l ,经过Q(-1,2)的直线2l ,若1l ⊥2l ,求1l 与2l 交点C 的轨迹方程. 解:设动点C 的坐标为(x ,y),设1l 、2l 的斜率为1k 、2k , 则1k =4 y x - (x ≠4),2k =21y x -+(x ≠-1). 由1l ⊥2l ,有1k 2k =-1, ∴4y x -·21 y x -+=-1,(x ≠4,x ≠-1). 整理得:x 2+y 2-3x +2y -4 = 0,① 当x = 4或x =-1时,方程①有解. ①C 的轨迹方程为:x 2+y 2-3x +2y -4 = 0.

相关文档
相关文档 最新文档