文档库 最新最全的文档下载
当前位置:文档库 › 可编程智能充电器设计实现分析

可编程智能充电器设计实现分析

可编程智能充电器设计实现分析
可编程智能充电器设计实现分析

- - -.

可编程智能充电器设计与实现

目录

一、系统总体方案设计-------------------2

二、硬件模块方案设计论证---------------3

三、理论分析与设计---------------------6

四、程序设计---------------------------7

五、总结-------------------------------8

六、参考文献---------------------------9

摘要:本系统是基于STC12C5A60S2单片机为控制核心,利用单片机内部PWM脉宽调制产生可用软件控制的充电电源。整个系统控制的过程

中,首先检测电池加入电路后,电池进入充电过程,充电过程分为预

充电过程(涓流充电),恒流充电过程(大电流充电),恒压充电过程

三个过程,其中预充电过程三分钟自动跳入下一过程及恒流充电过

程,当达到系统设定的电压阀值系统自动进入恒压充电过程,由于电

池自身性能因素,当电池两端电压稳定后其电流会慢慢减小,当电流

小到一定值时通过单片机判断充电已完成关断充电电压停止充电。整

个系统具体由恒压电路、恒流电路、电压/电流采集电路、单片机控

制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。关键词:STC12C5A60S2单片机,LED显示,恒压、恒流电路,电流采集电路

1、系统方案总体设计

1.1系统组成部分

整个系统具体由恒压电路、恒流电路、电压/电流采集电路、单片机控制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。电流采集部分通过用LM324运放搭建的减法器电路,以有效、正常放大差模信号,合理抑致共模信号,采集采样电阻两端的电势差,进而得到电路电流值。恒压电路和恒流部分(电路中的电流以小阻值的采样电阻的电压形式使用)都采用低速低功率

高增益的集成四运放LM324构成简单的比较器电路和反馈回路,以实时监控充电电压和反馈电压值来实现相对恒压效应,同时此处反馈回路具有良好的抗共模干扰能力。恒压恒流部分通过二极管IN4148 单向导通特性,进行耦合,实现电路的整体完善控制。如下框图:

1.2系统方案的实施

系统上电开始,通过按键设置充电电压及恒流充电时的电流值(初始化

时没有通过按键设置,系统将默认设置我们认为的最佳值)。初始值设置后,系统将检测是否有电池加入电路,主要通过电压采集口电压值来检测,没有检测到电池红LED灯亮。当有检测到电池后,蓝色LED灯亮,说明系统开始给电

池充电,先给电池小电流110mA充电三分钟,即涓流充电过程持续三分钟,然

后系统自动进入恒流充电过程,大电流快速充电,其中大电流值可以通过按键设置,当检测到电池电压达到一定值后,自动转入恒压充电模式,当电池两端的电压恒定时其电流会慢慢减小,如果检测到电流值小于10mA时系统会将充电电压关断。此时我们可以认为电池充电完成,停止充电。整个过程中两个四

位数码管分别显示检测电流值,电压值。

2、硬件模块方案设计论证

2.1 MCU按键、显示电路方案

选择共阳数码管显示部分通过两片74HC595和单片机连通进行控制,两个

LED直接加到单片机P2.3,P2.2上显示电池充电与否,采用共阳连接,按键同样直接加在两个单片机I/O口上。12单片机P1口的特殊功能,其中P1.3,P1.4是PWM脉宽调节输出口,分别输入系统所需控制电压、控制电流的信号,P1.0、P1.1两口采集电池两端充电电流和电压,并在数码管上显示。

单片机部分仿真图

2.2 PWM电压转换模块及调理(调节)方案

本系统中的DAC转换电路模块由STC12C5A60S2单片机自带的两路脉冲宽度

调制PWM输出进行相应阻容滤波之后得到想要的直流有效电压值,在将此两路有效电压值输入、匹配至模拟功能电路之前还需加一中间缓冲跟随器电路进行阻抗的变换。其中PWM0为提供充电电路恒定电压参考值,PWM1为提供充电电路恒流(限流)充电参考值。两路PWM,一路PWM调节充电电压;另一路PWM 则控制着电流,其是稳定不动的,通过与充电电流实时进行准确比较,以充分实现恒流充电模式,当然在此设计中,绝对恒流是相对而言很难实现的,在控制充电电流X围内有些许小的电流波动还是本系统所能许可的。就此DAC转换方案,相关的电路原理图如下所示。

2.3 ADC 转换模块及调理(调节)方案

系统中的ADC采样电路模块同上也是借助STC12C5A60S2单片机自带

的8路10位高速AD转换器,其处理速度可达250KHZ(25万次/秒)。8路电

压输入型A/D,可以做相关温度检测、电池电压检测、按键扫描、频谱检测

等。其上电复位后P1口为弱上拉型I/O口,用户可以通过软件设置将8路

中的任何一路设置为A/D转换,不需要作为A/D转换使用的口可以继续做为

I/O口使用。STC12C5A60S2系列单片机的ADC是逐次比较型ADC。逐次比

较型ADC由一个比较器和D/A转换器构成,通过逐次逻辑,从最高位(MSB)开始,顺序地对每一输入电压与内置D/A转换器输出进行比较,经过多次比较,使转换所得的数字量逐次逼近输入模拟量对应值。逐次比较型ADC转

换器具有速度高、功耗低等优点。

此电路系统中仅占用其中二路ADC转换;其中一路ADC采样充电电压

值,由模拟充电功能电路输出直流电压值,在其端口再接一中间缓冲电压跟随器电路以进行阻抗变换后将其输入给MCU信号调理电路,并通过显示系

统实时进行显示和监测;另外一路ADC采样充电电压转电流值,在此采样

电路中,优先选用由运放组合而成的减法器电路,将其加至取样电阻两端实时同步采样电压,经运算、变换后便可得出充电电流值的大小。同时,减法器采样电路的巧妙设计也起到正常、有效放大差模信号,合理准确抑制共模信号的作用。依据以上ADC转换方案,其设计电路原理图如下所示。

基于单片机的电动车智能充电器的设计

前言 (4) 第一章充电器原理 (5) 1.1 蓄电池与充电技术 (5) 1.2 密封铅酸蓄电池的充电特性 (5) 1.3 充电器充电原理 (6) 1.3.1 蓄电池充电理论基础 (6) 1.3.2 充电器的工作原理 (8) 第二章总体设计方案 (10) 2.1 系统设计 (10) 2.2 方案策略 (10) 第三章硬件电路设计 (12) 3.1 电路总体设计 (12) 3.2 芯片介绍 (12) 3.2.1 LM358双运放 (12) 3.2.2 UC3842单管开关电源 (13) 3.2.3 EL817光耦合器 (14) 3.2.4 场效应管K1358 (15) 3.3 电动车充电器原理及各元件作用的概述 (16) 3.3.1 充电器原理图 (16) 图3.5 充电器原理图 (16) 3.3.2 各元器件作用概述 (16) 3.4 功能模块电路设计 (17) 3.4.1 第一路通电开始 (17) 3.4.2 第二路UC3842电路 (17) 3.4.3 第三路LM358(双运算放大器)电路 (18) 3.5 电动车充电器改进方案 (21) 3.5.1 增加充满电发声提示电路 (21) 3.5.2 加散热风扇 (22) 第四章总结与展望 (23)

致谢 (25)

电动车智能充电器设计及应用 中文摘要: 本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。这个方案不仅可实现快速充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。 关键词:慢脉冲充电;蓄电池;充电器; Abstract: The design describes the charger to the battery charger of the general principles, from the internal oxygen cycle of valve-regulated battery design concepts starting to study a variety of charging methods for lead-acid battery life implications. For battery charging problems arising in the process, analysis of existing problems in a variety of charging methods, proposed a lead-acid batteries could achieve the Four-slow pulse charge of the intelligent charger design. Control the switching power supply pulse frequency and duty cycle, thus regulating charge current and voltage to achieve the classification of the battery charge with slow pulse. This program not only for fast charging, while reducing analysis of gas, to eliminate sulfide, a balanced charge, thus greatly extending the service life of lead-acid batteries. Key words: slow pulse charge; batteries; charger;

智能型充电器的电源和显示的设计论文

前言 随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。AVR 已经在竞争中领先了一步,被证明是下一代充电器的完美控制芯片。Atmel AVR 微处理器是当前市场上能够以单片方式提供Flash、EEPROM 和10 位ADC的最高效的8 位RISC 微处理器。由于程序存储器为Flash,因此可以不用象MASK ROM一样,有几个软件版本就库存几种型号。Flash 可以在发货之前再进行编程,或是在PCB贴装之后再通过ISP 进行编程,从而允许在最后一分钟进行软件更新。EEPROM 可用于保存标定系数和电池特性参数,如保存充电记录以提高实际使用的电池容量。10位A/D 转换器可以提供足够的测量精度,使得充好后的容量更接近其最大容量。而其他方案为了达到此目的,可能需要外部的ADC,不但占用PCB 空间,也提高了系统成本。AVR 是目前唯一的针对像“C”这样的高级语言而设计的8 位微处理器。C 代码似的设计很容易进行调整以适合当前和未来的电池,而本次智能型充电器显示程序的编写则就是用C语言写的。

第一章概述 第一节绪论 1.1.1课题背景 如今,随着越来越多的手持式电器的出现,对高性能、小尺寸、重量轻的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全的充电。因此需要对充电过程进行更精确的监控,以缩短充电时间、达到最大的电池容量,并防止电池损坏。与此同时,对充电电池的性能和工作寿命的要求也不断地提高。从20世纪60年代的商用镍镉和密封铅酸电池到近几年的镍氢和锂离子技术,可充电电池容量和性能得到了飞速的发展。目前各种电器使用的充电电池主要有镍镉电池(NiCd)、镍氢电池(NiMH)、锂电池(Li-Ion)和密封铅酸电池(SLA)四种类型。 电池充电是通过逆向化学反应将能量存储到化学系统里实现的。由于使用的化学物质的不同,电池有自己的特性。设计充电器时要仔细了解这些特性以防止过度充电而损坏电。 目前,市场上卖得最多的是旅行充电器,但是严格从充电电路上分析,只有很少部分充电器才能真正意义上被称为智能充电器,随着越来越多的手持式电器的出现,对高性能、小尺寸、轻重量的电池充电器的需求也越来越大。电池技术的持续进步也要求更复杂的充电算法以实现快速、安全地充电,因此,需要对充电过程进行更精确地监控(例如对充、放电电流、充电电压、温度等的监控),以缩短充电时间,达到最大的电池容量,并防止电池损坏。因此,智能型充电电路通常包括了恒流/恒压控制环路、电池电压监测电路、电池温度检测电路、外部显示电路(LED或LCD显示)等基本单元。其框图如下:

智能充电器设计参考资料APPlication note

8-bit Microcontrollers Application Note Rev. 8080A-AVR-09/07 AVR458: Charging Lithium-Ion Batteries with ATAVRBC100 Features ? Fully Functional Design for Charging Lithium-Ion Batteries ? High Accuracy Measurement with 10-bit A/D Converter ? Modular “C” Source Code ? Easily Adjustable Battery and Charge Parameters ? Serial Interface for Communication with External Master ? One-wire Interface for Communication with Battery EEPROM ? Analogue Inputs for Reading Battery ID and Temperature ? Internal Temperature Sensor for Enhanced Thermal Management ? On-chip EEPROM for Storage of Battery and Run-Time Parameters 1 Introduction This application note is based on the ATAVRBC100 Battery Charger reference design (BC100) and focuses on how to use the reference design to charge Lithium-Ion (Li-Ion) batteries. The firmware is written entirely in C language (using IAR ? Systems Embedded Workbench) and is easy to port to other AVR ? microcontrollers. This application is based on the ATtiny861 microcontroller but it is possible to migrate the design to other AVR microcontrollers, such as pin-compatible devices ATtiny261 and ATtiny461. Low pin count devices such as ATtiny25/45/85 can also be used, but with reduced functionality.

手机充电器设计报告

手机充电器设计报告 题目:手机充电器设计 指导老师:翟永前 专业班级:电子信心工程专业12级 组别:第六组 组长:曹广振 团队成员:王沛、索彬、赵小芳、曹广振

院系名称:通信信号学院 智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。·C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器

【目录】 一、设计综述 (4) 二、基本方案 (4) 三、软硬件设计 (5) 四、软硬件仿真 (13) 五、测试 (13) 六、设计体会 (14)

一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。 而大部分充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电,这样就使充电时间增长了。 一部好的充电器不但能在短时间内将电量充足,而且还可以对锂电池起到一定的维护作用,修复由于记忆造成的记忆效应,即电池容量下降现象。设计比较科学的充电器往往采用专用充电芯片配合单片机控制的方法。专用的充电芯片可以检测出电池充电饱和时发出的电压变化信号,比较精确的结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,以缩短充电时间,同时能够维护电池,延长电池使用寿命。 另外,比起一般充电器,智能充电器还增加了充电电压的显示,让我们能直观的看到电池的由预充、快充、满充充电阶段,从而加强对电池的维护。 二、基本方案 (一)方案分析 该设计采用逐个功能模块分析再组合的方法来实现方案。1、单片机模块 智能的实现利用单片机控制,经过分析,单片机芯片可以选择Atmel公司的AT89C52,来控制充满电时蜂鸣器报警声,以及通过中断控制光耦器件通电和断电。 2、充电过程控制模块

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件方案

锂离子电池智能充电器硬件的设计 锂离子电池具有较高的能量重量和能量体积比,无记忆效应,可重复充电次数多,使用寿命长,价格也越来越低。一个良好的充电器可使电池具有较长的寿命。利用C8051F310单片机设计的智能充电器,具有较高的测量精度,可很好的控制充电电流的大小,适时的调整,并可根据充电的状态判断充电的时间,及时终止充电,以避免电池的过充。 本文讨论使用C8051F310器件设计锂离子电池充电器的。利用PWM脉宽调制产生可用软件控制的充电电源,以适应不同阶段的充电电流的要求。温度传感器对电池温度进行监测,并经过AD转换和相关计算检测电池充电电压和电流,以判断电池到达哪个阶段。使电池具有更长的使用寿命,更有效的充电方法。 设计过程 1 充电原理 电池的特性唯一地决定其安全性能和充电的效率。电池的最佳充电方法是由电池的化学成分决定的<锂离子、镍氢、镍镉还是SLA电池等)。尽管如此,大多数充电方案都包含下面的三个阶

段: ● 低电流调节阶段 ● 恒流阶段 ● 恒压阶段/充电终止 所有电池都是经过向自身传输电能的方法进行充电的,一节电池的最大充电电流取决于电池的额定容量也能够用1/50C(20mA>或更低的电流给电池充电。尽管如此,这只是一个普通的低电流充电方式,不适用于要求短充电时间的快速充电方案。 现在使用的大多数充电器在给电池充电时都是既使用低电流充电方式又使用额定充电电流的方法,即容积充电,低充电电流一般使用在充电的初始阶段。在这一阶段,需要将会导致充电过程终止的芯片初期的自热效应减小到最低程度,容积充电一般见在充电的中级阶段,电池的大部分能量都是在这一阶段存储的。在电池充电的最后阶段,一般充电时间的绝大部分都是消耗在这一阶段,能够经过监测电流、电压或两者的值来决定何时结束充电。同样,结束方案依赖于电池的化学特性,例如:大多数锂离子电池充电器都是将电池电压保持在恒定值,同时检测最低电

毕业设计_基于MAX1898的智能充电器设计

基于MAX1898的智能充电器设计 在人们日常工作和生活中,充电器的使用越来越广泛。从随身听到数码相机,从手机到笔记本电脑,几乎所有用到电池的电器设备都需要用到充电器。充电器为人们的外出旅行和出差办公提供了极大的方便。 单片机在电池充电器领域也有着广泛的应用,利用它的处理控制能力可以实现充电器的智能化。充电器各类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 1 实例说明 随着手机在世界范围内的普及使用,手机电池充电器的使用也越来越广泛。 本章将通过一个典型实例介绍51单片机在实现手机电池充电器方面的应用。实例所实现的充电器是一种智能充电器,它在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。 实例的功能模块如下。 ●单片机模块:实现充电器的智能化控制,比如自动断电、充电完成报警提示等。 ●充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。 ●充电电压提供模块:采用电压转换芯片将外部+12V 电压转换为需要的+5V电压, 该电压在送给充电控制模块之前还需经过一个光耦模块。 ●C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电的状态给 出有关的输出指示。

2 设计思路分析 要实现智能化充电器,需要从下面两个方面着手。 (1)充电的实现。它包括两部分:一是充电过程的控制;二是需要提供基本的充电电压。(2)智能化的实现。在充电器电路中引入单片机的控制。 2.1 为何需要实现充电器的智能化 充电器实现的方式不同会导致充电效果的不同。 由于充电器多采用大电流的快速充电法,在电池充满后如果不及时停止会使电池发烫,过度的充电会严重损害电池的寿命。一些低成本的充电器采用电压比较法,为了防止过充,一般充电到90%就停止大电流快充,而采用小电流涓流补充充电。 手机电池的使用寿命和单次使用时间与充电过程密切相关。锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比、具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求比较苛刻,需要保护电路。为了有效利用电池容量,需将锂电池充电至最大电压,但是过压充电会造成电池损坏,这就要求较高的控制精度。另外,对于电压过低的电池需要进行预充,充电器最好带有热保护和时间保护,为电池提供附加保护。 一部好的充电器不但能在短时间内将电量充足,而且还可以对电池起到一定的维护作用,修复由于使用不当造成的记忆效应,即容量下降(电池活性衰退)现象。设计比较科学的充电器往往采用专用充电控制芯片配合单片机控制的方法。专用的充电芯片具备业界公认较好的-△V 检测,可以检测出电池充电饱和时发出的电压变化信号,比较精确地结束充电工作,通过单片机对这些芯片的控制,可以实现充电过程的智能化,例如,在充电后增加及时关断电源、蜂鸣报警和液晶显示等功能。充电器的智能化可以缩短充电的时间,同时能够维护电池,延长电池使用寿命。 2.2 如何选择电池充电芯片 目前市场上存在大量的电池充电芯片,它们可直接用于进行充电器的设计。在选择具体的电池充电芯片时,需要参考以下标准。 ●电池类型:不同的电池(锂电池、镍氢电池、镍镉电池等)需选择不同的充电芯片。 ●电池数目:可充电池的数目。 ●电流值:充电电流的大小决定了充电时间。 ●充电方式:是快充、慢充还是可控充电过程。 本例要实现的是手机的单节锂离子电池充电器,要求充电快速且具有优良的电池保护能力,据此选择Maxim公司的MAX1898作为电池充电芯片。

智能充电器设计

摘要 随着便携式电子设备的普及和充电电池的广泛应用,充电器的使用也越来越广泛,但其性能却跟不上电池的发展要求,其电路设计存在较大的缺陷。针对目前市售充电器的技术缺陷,本文应市场需求设计了一款智能镍氢电池充电器。本智能充电器具有检测镍氢电池的状态;自动切换电路组态以满足充电电池的充电需要;充电器短路保护功能;以恒压充电方式进入维护充电模式;充电状态显示的功能。本文充分考虑了国内外的设计方案,在设计中针对市场需求,在功能上进行了适当调整,以满足用户对高性价比的需要。功能适用、价格低廉、电路简化是本设计的重点。 关键词:维护充电、充电电池、智能充电

Abstract Along with the prevalence of the portable devices and cells used widely, chargers are implicated in more fields than before. But the performance of the chargers is far too behind the requirement of the developing cells. With the demerit of the available chargers, this paper designs an intelligent Ni-Mn cells charger. The features of the intelligent charger are depicted as follows, detecting the state of the recharge cells, automatically switching the module of the circuit to meet the demand of the cells, short protection for the charger, maintenance charge module with constant voltage and current, state showing. This paper considers designations from home and abroad fully and adjusts a few functions of the circuit to satisfy the user requirement of high performance-price ratio. The focus of this designation in this paper is proper function, low-cost, and simplified circuit. KeyWords:maintenance charge module、Rechargeable batteries、 intelligent charge

智能充电器的设计(毕业设计方案)

毕业设计附件题目:智能充电器的设计 姓名:王研 学号:2007080303316 学院:信息学院 专业:电子信息工程 指导教师:杨萍 协助指导教师:

2011年5月23日 目录 开题报告 (1) 翻译外文资料及译文 (2) 程序清单和图纸 (3)

北京联合大学毕业设计(论文)开题报告 题目:智能充电器的设计 专业:电子信息工程指导教师:杨萍 学院:信息学院学号:2007080303316 班级:0708030303 姓名:王研 一、课题任务与目的 任务: 针对电动车常用的动力电池的特点,以单片机作为控制芯片,结合国内外现行的各种充电技术和充电器设计方案,设计一款基于单片机控制的智能充电器,以达到最佳的充电效果,使智能充电器具有良好的性能指标,电路简单可靠。 研究目的: 随着能源的日益紧缺和大气污染的加剧,作为新型交通工具的电动车的研究日益受到重视,从我国国情和人们的消费水平出发,电动车具有广阔的发展前景。作为电动车核心部件的电池及其充电器,其性能的优劣,直接影响电动车的质量状况。针对电动车充电技术的要求,为了使电动车充电器获得良好的性能指标,必须寻找最佳的充电模式,我要设计一款基于单片机控制的智能充电器,涓流充电、大电流充电、过充电和浮充电组合起来的充电方式,这种充电方式经理论和实践表明,可达到最佳的效果,使得蓄电池具有较高的使用容量和较长的循环寿命,可满足不同电动车动力电池的复杂充电要求,为提高蓄电池的性能和可靠性提供有效的途径,对环保、节能型电动车和充电器的设计和开发具有重要的意义,同时,研制性能良好的智能充电器,会带来显著的经济效益和良好的社会效益。 二、调研资料情况 1 电动车用电池的现状和发展趋势 电池作为电动车动力来源,目前应用于电动车的可充式二次电池主要有:铅酸(Lead Acid)电池、镍福(Nickel Cadmium)电池、镍氢(Nickel Metal Hydride)电池和锂(Lithium)电池[1]。 (1)镍一氢电池(Ni-MH ) 此类蓄电池的比能量高,寿命长,有较高的比功率,污染轻等优点,被认为

可编程智能充电器设计与实现(1)

可编程智能充电器设计与实现 目录 一、系统总体方案设计-------------------2 二、硬件模块方案设计论证---------------3 三、理论分析与设计---------------------6 四、程序设计---------------------------7 五、总结-------------------------------8 六、参考文献---------------------------9

摘要:本系统是基于STC12C5A60S2单片机为控制核心,利用单片机内部 PWM脉宽调制产生可用软件控制的充电电源。整个系统控制的过程中,首先检测电池加入电路后,电池进入充电过程,充电过程分为预 充电过程(涓流充电),恒流充电过程(大电流充电),恒压充电过程 三个过程,其中预充电过程三分钟自动跳入下一过程及恒流充电过 程,当达到系统设定的电压阀值系统自动进入恒压充电过程,由于电 池自身性能因素,当电池两端电压稳定后其电流会慢慢减小,当电流 小到一定值时通过单片机判断充电已完成关断充电电压停止充电。整 个系统具体由恒压电路、恒流电路、电压/电流采集电路、单片机控 制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。关键词:STC12C5A60S2单片机,LED显示,恒压、恒流电路,电流采集电路 1、系统方案总体设计 1.1系统组成部分 整个系统具体由恒压电路、恒流电路、电压/电流采集电路、单片机控制电路(包括单片机内部A/D采集电路)、及数码管/LED显示电路。电流采集部分通过用LM324运放搭建的减法器电路,以有效、正常放大差模信号,合理抑致共模信号,采集采样电阻两端的电势差,进而得到电路电流值。恒压电路和恒流部分(电路中的电流以小阻值的采样电阻的电压形式使用)都采用低速低功率高增益的集成四运放LM324构成简单的比较器电路和反馈回路,以实时监控充电电压和反馈电压值来实现相对恒压效应,同时此处反馈回路具有良好的抗共模干扰能力。恒压恒流部分通过二极管IN4148 单向导通特性,进行耦合,实现电路的整体完善控制。如下框图:

智能充电器课程设计

目录 第一章概述 (3) 1.1智能充电器 (3) 1.2蓄电池充电器 (3) 第二章蓄电池特性和充电介绍 (4) 2.1蓄电池介绍 (4) 2.2蓄电池充电特性介绍 (5) 第三章智能充电器电路设计介绍 (6) 3.1设计思想 (6) 3.2整体框图 (6) 3.3补充 (6) 第四章智能充电器各部分电路 (7) 4.1电源 (7) 4.2恒流源设计 (8) 4.3涓流源设计 (9) 4.4三五计数器的接入功能 (9) 4.5实际检测 (10) 第五章电路的安装与调试 (11) 5.1仿真电路 (11)

5.2各部分原件仿真参数 (12) 5.3实验总结 (14) 附录 1心得体会 (17) 2仪表器件清单 (18) 3参考文献 (19) 鸣谢 (20)

第一章概述 1.1智能充电器 可充电电池具有较高的性能价格比、放电电流大、寿命长等特点,广泛应用于各种通信设备、仪器仪表、电气测量装置中。但是不同类型的电池如镍镉电池(Nicd)、镍氢电池(NiMH)和锂离子电池具有不同的充电特性和过程。不同的电池应采用不同的充电控制技术。常用的控制技术有:电压负增量控制、时间控制、温度控制、最高电压控制技术等。其中电压负增量控制是目前公认的较先进的控制方法之一。充电时,当测量到电池电压负增量时就可以确定该电池己经充满,从而将充电转变为涓流充电。时间控制预定充电时间,当充电时间达到后,使充电器停止充电或转为涓流充电,这种方法较安全。温度控制法是当电池达到充满状态时,电池温度上升较快,测量电池温度或温度的变化,从而确定是否对电池停止充电。最高电压控制则是根据充电电池的最高允许电压来判断充电状态,这种方法灵活性较好。本文介绍一种智能充电器,能对镍镉电池(Nicd)、镍氢电池(NiMH)和锂离子电池进行充电,并对充电电池具有自动检测能力。 1.2蓄电池充电器 铅酸蓄电池充电器引采用三段式充电,品质优,性能好,充电饱和度高,能够提升蓄电池的使用寿命。需通过通过UL、CE认证,并且符合RoHS指令。 目前,铅酸蓄电池充电器已经发展到第五代,[1]最新升级版充电器是在第四代继电器保护的基础上采用更先进的集成IC电脑芯片控制系统,技术更加先进,充电过程更加智能化;它具有充电电压和电瓶容量范围广、短路自动保护、安全系数高、热量小、效率高、对电瓶无任何损害、体积小重量轻便于安置等特点。是现在市场上最先进的智能充电器。可用作摩托车、电动车、汽车--12V/1Ah-28Ah电瓶、蓄电池的充电;

基于单片机的智能充电器的设计及报告

重庆交通大学电子信息工程07级3班综合电路设计报告 标题:智能充电器的设计 设计者: XXX 学号: XXX 指导教师: XXX 设计时间: 2010 年 5 月 25 日

智能充电器的设计 【摘要】 随着手机在世界范围内的普及,手机电池充电器的使用越来越广泛。充电器种类繁多,但从严格意义上讲,只有单片机参与处理和控制的充电器才能称为智能充电器。 该设计利用51单片机的处理控制能力实现充电器的智能化,在单片机的控制下,具有预充、充电保护、自动断电和充电完成报警提示功能。该设计包括了六个功能模块: ·单片机模块:实现充电器的智能控制,如自动断电,充电完成报警提示。 ·充电过程控制模块:采用专用的电池充电芯片实现对充电过程的控制。 ·光耦模块:控制通电和断电,在电池充满电后及时关断充电电源。 ·充电电压提供模块:将一般家用交流电压经过变压器、电压转换芯片等转换为5V直流电压。 ·电压测试模块:利用AD转换把充电电池两端的电压通过数码管显示出来。· C51程序:单片机控制电池充电芯片实现充电过程的自动化,并根据充电状态给出有关的指示。 【关键字】 单片机、电压转换、MAX1898、智能、充电器 【目录】 一、设计综述 (1) 二、基本方案 (2) 三、软硬件设计 (4) 四、软硬件仿真 (11) 五、测试 (12) 六、设计体会 (13) 七、参考文献 (14) 一、设计综述 手机电池的使用寿命和单次使用时间预充电过程密切相关,锂电池是手机最为常用的一种电池,它具有较高的能量重量比、能量体积比,具有记忆效应,可重复充电多次,使用寿命较长,价格也越来越低。锂电池对于充电器的要求也比较苛刻,需要保护电路,为了有效利用电池容量,须将锂电池充点值最大电压,但是过压充电会导致电池损坏,这就要求较高的充电精度。

智能充电器设计

智能充电器设计 学校:陕西电子科技学院 专业:电子信息科学与技术 姓名:赵淑珍 学号: 1407072141 导师:余建权

摘要 本设计是针对目前大多数充电器只具备充电功能,没有充电监控和智能控制功能而设计的。本设计的智能控制是利用价格比较便宜的51单片机,通过外围电路的AD转换,由MCU对充电状况进行实时监控,实现充电器的智能控制、充电进度显示和充满提示功能,消除一般充电器充满后电路继续工作的缺点。本设计以集成充电管理芯片MAX1898EBU42为充电控制模块,实现充电、过压保护和温度保护等多种保护功能,确保充电的安全进行,采用AT89C52为控制系统的核心,以ADC0832数模转化,采集充电电压的实际状况,以LCD1602液晶显示电压及充电进度,并通过STC89C52对电路进行监视和控制。 本文针对以上设计,采用软硬结合的方式,系统阐述设计思想和设计理念。 本设计通过模拟仿真实验证明,理论可靠,效果明显,具备成为可用产品的条件,是电子产品充电的好帮手。 关键词:AT89C51单片机;MAX1898芯片;智能充电器;ADC0832转换; LCD液晶显示; Abstract In this paper, it designs of the circuit simple, high efficiency and low power consumption smart charger design in system. It is on the basis of integrated charging management chip MAX1898EBU42 to charge control module. It also has some protection functions, for example charging, overvoltage protection and temperature protection. It used AT89C51 as the core of the control system, to achieve full automatically disconnect and alarm to remind users can extend battery life. ADC0832 analog-to-digital conversion, with the acquisition of voltage, through

智能充电器的设计.

智能充电器的设计 智能充电器的设计 电瓶,也叫蓄电池,蓄电池是电池的一种,它的工作原理就是把化学能转化为电能。通常,人们所说的电瓶是指铅酸蓄电池。即一种主要由铅及其氧化物制成,电解液是硫酸溶液的蓄电池。 二、常用的蓄电池分类及特点 1)普通蓄电池;普通蓄电池的极板是由铅和铅的氧化物构成,电解液是硫酸的水溶液。它的主要优点是电压稳定、价格便宜;缺点是比能低(即每公斤蓄电池存储的电能)、使用寿命短和日常维护频繁。 2)干荷蓄电池:它的全称是干式荷电铅酸蓄电池,它的主要特点是负极板有较高的储电能力,在完全干燥状态下,能在两年内保存所得到的电量,使用时,只需加入电解液,等过20-30分钟就可使用。 3)免维护蓄电池:免维护蓄电池由于自身结构上的优势,电解液的消耗量非常小,在使用寿命内基本不需要补充蒸馏水。它还具有耐震、耐高温、体积小、自放电小的特点。使用寿命一般为普通蓄电池的两倍。市场上的免维护蓄电池也有两种:第一种在购买时一次性加电解液以后使用中不需要维护(添加补充液);另一种是电池本身出厂时就已经加好电解液并封死,用户根本就不能加补充液。 三、电瓶的工作原理 它用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用22~28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个铅蓄电池串联成12V的电池组。普通铅蓄电池在使用一段时间后要补充硫酸,使电解质保持含有22~28%的稀硫酸。 四、电瓶的主要用途 铅酸蓄电池产品主要有下列几种,其用途分布如下: 起动型蓄电池:主要用于汽车、摩托车、拖拉机、柴油机等起动

智能充电器设计

由于镍氢电池具有功率密度高、可快速充放电、循环寿命长以及无记忆效应、无污染、可免维护等优点,在便携式电子产品中的应用越来越广泛。如何合理的对镍氢电池进行充电管理是目前电池领域中研究的热门课题。基于这样的背景下我们设计开发了快速智能充电器。 本智能充电器可以同时对1~4节镍氢电池进行充电管理,并根据待充电电池的电压和温度情况,进行合理的充电电流设置。 图1 充电器系统框图 系统结构如图1所示。 硬件设计 1 单片机选择 SH69P48 是一种先进的CMOS 4位单片机。它具有以下特性: 4K 双字节OTP ROM, 253 个半字节RAM空间, 8位定时/计数器, 10位A/D转换器, 8+2位高速PWM 信号输出, 内建振荡器时钟电路, 内建看门狗定时器, 低电压复位功能且支持省电方式以节约电能。10位A/D转换器可以使得Delta-V的检测精度达到 2mV/cell;利用单片机自带的PWM端口结合TL494控制充电电流;用8位定时/计数器进行0.5s定时,在出现坏电池时,LED进行1Hz闪烁指示。系统时钟采用单片机内部的4MHz的RC时钟,降低系统的成本,但由于RC时钟的偏差会比较大,所以0.5s定时会存在误差。内建看门狗定时器可用软件控制以加强单片机的抗干扰能力。在软件出现问题时,可以对单片机进行复位,重新执行程序,防止程序死锁现象的发生。

2 单片机脚位安排 根据功能的要求,对单片机的管脚安排如表2。 3 PWM技术控制充电电流 因单片机的工作频率为4MHz,单片机自带的PWM可以达到的最大频率为15.625 kHz,无法满足对充电电流的控制精度,所以采用了外部硬件PWM与单片机 PWM 进行结合处理的方法。外部PWM控制芯片选择TL494,其PWM频率可以达到200 kHz 以上,对充电的电池可以进行恒流和限压处理。设计时用外部PWM芯片控制充电电流的精度,用单片机自带的PWM去控制TL494电流比较器输入端口上的电压,从而控制总充电电流的大小。

基于51单片机的智能充电器的设计

目录 1.引言 1 1.1课题背景 1 1.2指导思想 2 1.3本设计完成的智能化功能 2 2.单片机的简介 2 2.1单片机的特点 2 2.2单片机的应用 3 2.3单片机应用于充电器实现智能化 3 2.4本设计所用单片机芯片 4 2.4.1管脚定义说明 4 3.锂离子电池介绍及充电芯片MAX1898介绍 6 3.1锂离子电池简介 6 3.1.1锂离子电池基本参数特性 6 3.1.2锂离子电池优缺点7 3.2MAX1898充电芯片8 3.2.1MAX1898的特点及充电芯片的选择理由8 3.2.2MAX1898的引脚构造9 3.2.3MAX1898的充电原理9 4.硬件电路的设计11 4.1主要器件11 4.2电路原理图和说明12 4.3智能充电器的充电过程15 5.软件设计16 5.1程序流程图17 5.2主要程序说明18 6.总结18 参考文献19 附录29 致谢21

基于51单片机的智能充电器设计 熊兴智 (电子与电气工程学院通信工程专业 2006级1班 062312379) 摘要:本设计是选用Maxim公司的MAX1898作为电池充电芯片,使用单片机芯片AT89C52对其进行控制的一款智能充电器的设计。在对锂离子电池的基本参数特性做出介绍的基础上,该充电器的硬件电路包括单片机控制部分、电压转换及光耦隔离部分、充电控制部分。软件设计以C51语言为工具,实现了预充、快充、慢充、断电、报警等智能化充电过程。 关键词:充电器;智能;基于AT89C52单片机;MAX1898 Intelligent Battery Charger Design Based on 51 Single-chip Computer Xiong Xingzhi (College of Electronic and Electric Engineering,communication engineering, Class1 Grade2006, 062312379) Abstract: I choice MAX1898 which is from Maxim Company as the charging chip and use AT89C52 as the charging part to finish the design of an intelligent battery charger. Based on the introduction of the basic parameters and characteristics of lithium battery, the article fully introduces the hardware which includes MCU control part, voltage conversion and coupler isolation part and charge section. I select C51 language as the tool of software designing. This battery charger can fulfill the process of precharging, fast charging, slow charging, cutting off power and alarming. Key Words: battery charger; intelligent; based on AT89C52 single-chip computer;MAX1898 1.引言 1.1课题背景 随着信息技术的高速的发展,信息化正以令人惊叹的速度渗透到各个领域。电池作为一个传统的产业,正经历着前所未有的变革,特别是在通信,动力等领域,对电池有

基于单片机的智能充电器硬件设计_闫艳霞

邮局订阅号:82-946120元/年技术创新 嵌入式与SOC 《PLC技术应用200例》 您的论文得到两院院士关注 闫艳霞:讲师硕士 基金申请人:姜利英;基金资助项目名称:基于BNI融合的传 感器构筑及性能研究;基金颁发部门:国家自然科学基金委; 基金编号:(61002007) 基于单片机的智能充电器硬件设计 Design of intelligent charger based on single-chip microcomputer (郑州轻工业学院)闫艳霞姜利英姜素霞 YAN Yan-xia JIANG Li-ying JIANG Su-xia 摘要:锂离子电池以其诸多优点成为应用最广泛的可充电电池,针对锂离子电池充电器的不足,设计了一种采用单片机控制的智能型充电控制器,系统硬件组成包括单片机电路、充电控制电路、电压转换及光耦隔离电路,该智能充电器实现智能控制预充、快充、满充三个充电进程,判断充电终止状态,能够有效防止锂离子电池的欠充或过充,具有高效安全的充电控制、过压保护和过流保护功能。 关键词:锂离子电池;智能充电器;AT89C51;MAX1898 中图分类号:TN248.4文献标识码:A Abstract:Lithiumion batteries have become the most widely used rechargeable batteries due to their many https://www.wendangku.net/doc/937742382.html,bined with the shortcomings of common chargers,I try to design a type of intelligent battery charger based on microcomputer.The hardware cir-cuits of the system include microcomputer circuit,charge control circuit,voltage transformation and the light pair isolating circuit..It can control both the three charging process which include previous charge,fast charge and full charge,and judge the charge termina-tion state smartly.It aslo can prevent less charged or overcharged of lithium battery effectively,it also has the functions of high secu-rity charge control,over-voltage protection and over-current protection. Keywords:Lithium battery;intelligent battery charger;AT89C51;MAX1898 文章编号:1008-0570(2012)10-0207-02 引言 电池技术的进步要求复杂的充电算法以实现快速、安全的 充电,因此需对充电过程进行更精确的监控(如对充、放电电流、 充电电压、温度等的监控)。同时,对充电电池的性能和工作寿命 的要求也不断地提高。因为锂离子电池有较高的能量比,放电曲 线平稳,自放电率低,循环寿命长,具有良好的充放电性能,可随 充随放、快充深放,无记忆效应,不含镉、铅、汞等有害物质,对环 境无污染,被称为绿色电池,所以锂离子电池得到迅速发展和广 泛的应用。 锂离子电池智能充电控制器是指能根据用户的需要智能 控制充电进程,并且在充电过程中能对被充电电池进行保护从 而防止过电压和温度过高的一种智能化充电控制器,充电器为 充电电池补充能源的静止变流装置,因此其性能的优劣直接关 系到用电系统的安全性和可靠性指标。本文针对锂离子电池的 特点,提出了一种新型的智能充电的设计方案。 1系统设计 1.1锂离子电池充电过程 将锂离子电池的电压曲线分为三段,如图1-1。 图1-1锂离子电池的充电特性 根据锂离子电池充电特性的三段性,充电控制时需采用分 段控制的方式,:进入B—C段之前,电池电量己基本用完,此时采 用恒定的小电流充电。当进入B—C段时,若采用恒流充电,电流 过大会损坏电池,电流过小使充电时间过长,根据电压变化情况 控制充电电流,使电池充电已满,若此时停止充电,电池会自放 电。为防止自放电现象发生,采用浮充维护充电方式,用小电流 进行涓流充电。充电过程中需不断检测电池两端电压,锂离子电 池是以零增量检测为主,时间、温度和电压检测为辅的方式。系 统在充电过程检测有无零增量(△V)出现,作为判断电池已充满 的正常标准,同时判断充电时间、电池温度及端电压,是否已超 过预先设定的保护值作为辅助检测手段。当电池电压超过检测 门限时,系统会检测有无零增量出现,若出现零△V,则认为电池 正常充满,进入浮充维护状态;在充电过程中,系统会一直判断充 电时间、电池温度及端电压是否己到达或超过了充电保护条 件。若其中一个条件满足,系统会终止现有充电方式,进入浮充 维护状态。 1.3锂离子电池智能充电器功能模块 图1-2系统总体框图 锂离子电池对充电器要求较苛刻,需保护电路,为有效利用 电池容量,需将锂离子电池充电至最大电压,但过压充电会造成 电池损坏,这就要求较高的控制精度。另外,对于电压过低的电 池需要进行预充,充电器最好带有热保护和时间保护,为电池提 供附加保护。针对这些应用特点,设计了一种基于单片机 207 --

相关文档
相关文档 最新文档