文档库 最新最全的文档下载
当前位置:文档库 › 高考一轮总复习函数的定义域与值域

高考一轮总复习函数的定义域与值域

高考一轮总复习函数的定义域与值域
高考一轮总复习函数的定义域与值域

函数的概念及表示

考点1 函数的定义域

1、函数12

log (32)y x =-的定义域是

( )

A .[1,)+∞

B .23(,)

+∞ C .23[,1] D .2

3(,1]

2、设函数?????≥--<+=1

,141

,)1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为( )

A 、(][]10,02, -∞-

B 、(][]1,02, -∞-

C 、(][]10,12, -∞-

D 、[)[]10,10,2 - 3、函数)13lg(13)(2++-=

x x

x x f 的定义域是 ( )

A.),3

1(+∞- B. )1,3

1

(- C. )31,31(- D. )3

1,(--∞

4、设()x x x f -+=22lg ,则??

?

??+??? ??x f x f 22的定义域为 ( )

A. ()()4,00,4 -

B. ()()4,11,4 --

C. ()()2,11,2 --

D. ()()4,22,4 --

5、设,0.(),0.

x e x g x lnx x ?≤=?>?则1

(())2g g =__________

6、若函数a

ax ax y 1

2+

-=的定义域是R,求实数a 的取值范围

7、若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )4

1

(-?x f 的定义域

8、已知已知f(x)的定义域为[-1,1],求f(x 2

)的定义域.

9、已知f(2x -1)的定义域为[0,1],求f(x)的定义域.

考点2 函数的值域

1、求下列函数的值域(简单函数的值域)

(1) y=3x+2(-1≤x ≤1) (2))

(3x 1x

32

)(≤≤-=x f (3) x x y 1+=(记住图像) (4))(3x 132)(x

≤≤??

? ??=x f

(5)())

(2x 13)(x

≤≤=x f (6))(2x 1log )(2

1≤≤?

??

? ?

?=x x f 2、求下列函数的最大值、最小值与值域(二次函数在区间上的值域) ①142+-=x x y ; ②]4,3[,142∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;

3、求函数x x y 3124-+=的值域.

4、求函数x x y -+=12 的值域 .

5、求函数[])1,0(239∈+-=x y x x 的值域.

6、求函数x

x y 2231+-??

? ??= 的值域.

7、求函数2

1

+-=

x x y 的值域. 8、求函数133+=x x

y 的值域.

9、函数1

1

22+-=x x y 的值域.

10、函数11

++

=x

x y 的值域. 11、求函数)1(1

2

22->+++=

x x x x y 的值域.

12、求函数2

21

2

+++=x x x y 的值域.

13、设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为

1

2

,则a = A .2 B .2 C .22 D .4 14、若函数()y f x =的值域是1[,3]2,则函数1

()()()

F x f x f x =+

的值域是( )

A .1[,3]2

B .10[2,]3

C .510[,]23

D .10[3,]3

15、已知函数y=13x x -++的最大值为M ,最小值为m ,则

m

M

的值为( ) (A)

14

(B)

12

(C)

22

(D)

32

16、设a 为实数,函数.)(23

a x x x x f +--=

(1)求函数的值域. (2)求)(x f 的极值.

(3)当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.

17、设函数()3

2

()f x x bx cx x R =++∈,已知()()()g x f x f x '=-是奇函数.

(Ⅰ)求b 、c 的值.

(Ⅱ)求()g x 的单调区间与极值.

18、已知a 为实数,))(4()(2

a x x x f --=

(1)若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值; (2)若)(x f 在(—∞,—2]和[2,+∞)上都是递增的,求a 的取值范围.

19、已知 0≥a ,函数f(x) = ()

x

ax x e 22-

(1) 当x 为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在[ -1,1]上是单调函数,求a 的取值范围.

求函数的定义域和值域的方法

解:求函数的定义域的常用方法 函数的定义域是高考的必考内容,高考对函数的定义域常常是通过函数性质或函数的应用来考查的,具有隐蔽性,所以在研究函数问题时必须树立“函数的定义域优先”的观念。因此掌握函数的定义域的基本求解方法是十分重要的。下面通过例题来谈谈函数的定义域的常见题型和常用方法。 一,已知函数解析式求函数的定义域 如果只给出函数解析式(不注明定义域),其定义域是指使函数解析式有意义的自变量的取值范围(称为自然定义域),这时常通过解不等式或不等式组求得函数的定义域。主要依据是:(1)分式的分母不为零,(2)偶次根式的被开方数为非负数,(3)零次幂的底数不为零,(4)对数的真数大于零,(5)指数函数和对数函数的底数大于零且不等于1,(6)三角函数中的正切函数y=tanx ,{x ︱x ∈R 且 x ≠2 k π π+ , k ∈z }和余切函数y=cotx ,{x ︱x ∈R 且 x ≠k π,k ∈z }等。 例题一 求下列函数的定义域: (1) y=2)0+㏒(x —2)x 2 (2) 解:(1)欲使函数有意义,须满足 2≠0 x —1≥0 x —2>0 解得:x >2 且 x ≠3 ,x ≠5 x —2≠1 ∴ 函数的定义域为(2,3)∪(3,5)∪(5,+∞) x ≠0 (2) 由已知须满足 tanx ﹥0 解得: k π ﹤x ﹤2 k π π+ (k ∈z ) x ≠2 k π π+ -4﹤x ﹤4 16—x 2 ﹥0 ∴ 函数的定义域为(-π,2 π - )∪(0, 2 π )∪(π,4) 二,复合函数求定义域 求复合函数定义域应按从外向内逐层求解的方法。最外层的函数的定义域为次外层函数的值域,依次求,直到最内层函数定义域为止。多个复合函数的求和问题,是将每个复合函数定义域求出后取其交集。 例题二(1)已知函数f (x )的定义域为〔-2,2〕,求函数y=f (x 2-1)的定义域。 (2)已知函数y=f (2x+4)的定义域为〔0,1〕,求函数f (x )的定义域。 (3)已知函数f (x )的定义域为〔-1,2〕,求函数y=f (x+1)—f (x 2-1)的定义域。 (4)已知函数y=f (tan2x )的定义域为〔0, 8 π 〕,求函数f (x )的定义域。 分析:(1)是已知f (x )的定义域,求f 〔g (x )〕的定义域。其解法是:已知f

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? ? 一、?求函数的解析式? (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2 +=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(2 2+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法

例1.已知 :23)1(2 +-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 65)(6)1(5)1(22+-=++-+=x x x f ,x x 所以 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(2 2-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。 解:设x t 11+=,则1≠t ,1 1-=t x ,代入已知得 t t t t t f 21)1(1111 )(222-=--=-??? ??-= ∴ )1(2)(2≠-=x x x x f 注意:1、使用换元法要注意t 的范围限制,这是一个极易忽略的地方。

函数定义域与值域经典类型总结 练习题 含答案

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。

求函数的定义域与值域的常用方法完整版

求函数的定义域与值域 的常用方法 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值? 一、求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2 )0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y = )0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f , []=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2+-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。 2.换元法 例1.已知:x x x f 2)1(+=+,求f(x); 解:令2)1(,1,1-=≥=+t x t t x 即则 则1)1(2)1()(22-=-+-=t t t t f 所以)1(1)(2≥-=x x x f 例2、已知:11)11(2-=+x x f ,求)(x f 。

函数的定义域和值域映射

函数定义域、值域、解析式、映射 知识点一:求各种类型函数的定义域 类型一: 含有分母和偶次方根 例1 求下列函数的定义域 1. y= 3102++x x 2. y = 类型二: 偶方根下有二次三项式 例2 求下列函数的定义域 1.. 1 ||1 42 -+-=x x y 2.2 3 568 4x x x y ---= 类型三:含有零次方和对数式 例3 求下列函数的定义域(用区间表示) (1)02 )23() 12lg(2)(x x x x x f -+--=; 练习:求下列函数的定义域 1. y=x x -||1 2. 122+--=x x y

3.()f x = 4.)13(log 2+=x y 5. 函数y =1122---x x 的取定义域是( ) A.[-1,1] B.(][)+∞-?-∞-,11, C.[0,1] D.{-1,1} 6. 求函数的定义域。 知识点二:抽象函数定义域 类型一:“已知f(x),求f(…)”型 例1:已知f(x)的定义域是[0,5],求f(x+1)的定义域。 类型二: “已知f(…) ,求f(x)”型 例2:已知f(x+1) 的定义域是[0,5],求f(x)的定义域。 类型三: “已知f(…),求f(…)”型 例3:已知f(x+2)的定义域为[-2,3),求f(4x-3)的定义域。 练习: 1、函数()f x 的定义域是[0,2],则函数(2)f x +的定义域是 ___________. 2、已知函数()f x 的定义域是[-1,1],则(2)(1)f x f x +++的定义域为 ___________.

定义域和值域的求法

定义域和值域的求法 Final revision by standardization team on December 10, 2020.

函数定义域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、抽象函数的定义域 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域 方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。 4.已知()f x 的定义域,求四则运算型函数的定义域 若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。 函数值域求法四种 在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本次课就函数值域求法归纳如下,供参考。 1. 直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

5、函数的定义域和值域答案

函数定义 映射 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →” 函数的概念 1.定义:如果A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈。 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数的值域。 函数与映射的关系与区别 相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对应都具有方向性; (3)A 中元素具有任意性,B 中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素 函数是由三件事构成的一个整体,分别称为定义域.值域和对应法则.当我们认识一个函数时,应从这三方面去了解认识它. 例 函数y =x x 2 3与y =3x 是不是同一个函数?为什么? 练习 判断下列函数f (x )与g (x )是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1 ② f ( x ) = x ; g ( x ) = 2x ③ f ( x ) = x 2;f ( x ) = (x + 1) 2 ④ f ( x ) = | x | ;g ( x ) = 2x 重点一:函数的定义域各种类型例题分析

函数的定义域和值域课件

函数的定义域和值域 学习目标: 1.了解构成函数的要素有定义域、对应法则和值域,会求一些简单函数的值域; 2.通过本节的学习,使学生养成用运动、发展、变化的观点认识世界的思维习惯; 活动方案 活动一(目标:理解函数定义域的概念,复习巩固上一节课的定义域的相关内容,并能 熟练求出一个给定的函数的定义域。) 题型一:简单函数的定义域 巩固检测1.求下列函数定义域: (1)()f x =; (2)21()1f x x = -; 小结:求简单函数的定义域时常考虑哪些因素? 题型二:函数由两个及以上数学式子的和、差、积、商的形式构成时的定义域 求下列函数的定义域: 巩固检测2.(1)y = (2)1()f x x = 小结:此种情况如何求定义域? 题型三:复合函数的定义域 例1.(P24.5)若2 ()f x x x =- (1)此函数的输入值是谁? (2)求(0),(1),(1)f f f x +; (3)函数(1)y f x =+的输入值又是谁?(2)y f x =呢? 例2.求下列函数的定义域: (1)若()y f x =的定义域为]1,4?-?,则2()y f x =的定义域是 。 (2)若函数(1)y f x =+的定义域是]2,3?-?,则(21)y f x =-的定义域 是 。 活动二(目标:理解函数值域的概念,并能熟练准确地求出一个给定的函数的值域。) 阅读课本P23中间关于值域的内容,思考以下问题: (1)函数的值域是怎样定义的? (2)函数的值域与定义中集B 有怎样的包含关系? (3)函数的定义域、值域、对应法则称为函数的三要素,这三者之间的关系怎 样?

函数的定义域与值域

函 数 一、函数定义 1.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 答案:B 二、函数求值 1.已知f (x )=3x 3+2x +1,若f (a )=2,则f (-a )=________. 解析:∵f (x )=3x 3+2x +1, ∴f (a )+f (-a )=3a 3+2a +1+3(-a )3+2×(-a )+1=2, ∴f (-a )=2-f (a )=0. 2.已知函数f (x )=x |x |,若f (x 0)=4,则x 0的值为( ) A .-2 B .2 C .-2或2 D. 2 解析:选B 当x ≥0时,f (x )=x 2,f (x 0)=4,即x 20=4,解得x 0=2. 当x <0时,f (x )=-x 2,f (x 0)=4,即-x 20=4,无解. 所以x 0=2, 3.函数f (x ),g (x )分别由下表给出. 则f (g (1))的值为________;满足f (g (x ))>g (f (x ))的x 的值是________. 解析:∵g (1)=3,f (3)=1,∴f (g (1))=1. 当x =1时,f (g (1))=f (3)=1,g (f (1))=g (1)=3,不合题意. 当x =2时,f (g (2))=f (2)=3,g (f (2))=g (3)=1,符合题意. 当x =3时,f (g (3))=f (1)=1,g (f (3))=g (1)=3,不合题意. 答案:1 2

三、函数定义域 (1)一般函数的定义域求解 1.函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1) B .[0,1] C .(-∞,0)∪(1,+∞) D .(-∞,0]∪[1,+∞) 解析:由题意知,x 2-x >0,即x <0或x >1.则函数定义域为(-∞,0)∪(1,+∞),选C. 2.(2017·贵阳监测)函数y =1-x 2 2x 2-3x -2 的定义域为( ) A .(-∞,1] B .[-1,1] C .[1,2)∪(2,+∞) D.??????-1,-12∪? ???? -12,1 解析:选D 由函数y =1-x 2 2x 2-3x -2得?? ? 1-x 2 ≥0,2x 2-3x -2≠0, 解得? ?? -1≤x ≤1,x ≠2且x ≠-1 2, 即-1≤x ≤1且x ≠-12, 所以所求函数的定义域为??????-1,-12∪ ? ???? -12,1,故选D. 3.函数f (x )= 1-|x -1| a x -1 (a >0且a ≠1)的定义域为____________________. 解析:由??? 1-|x -1|≥0, a x -1≠0 ??? ? 0≤x ≤2,x ≠0 ?0<x ≤2, 故所求函数的定义域为(0,2]. 4.函数f (x )=ln ? ? ???1+1x +1-x 2的定义域为( ) A .(-1,1] B .(0,1] C .[0,1] D .[1,+∞) 解析:选B 由条件知????? 1+1x >0,x ≠0, 1-x 2 ≥0. 即??? x <-1或x >0, x ≠0,-1≤x ≤1. 则x ∈(0,1]. 5.函数f (x )=x +3+log 2(6-x )的定义域是( ) A .(6,+∞) B .(-3,6) C .(-3,+∞) D .[-3,6) 解析:选D 要使函数有意义应满足?? ? x +3≥0, 6-x >0, 解得-3≤x <6.

函数的定义域及值域

函数的定义域及值域 题型一 求函数的定义域 1. 已函数f(x)=x x x -+0 )1(的定义域 2.函数 )3(log 1 3x y -= 的定义域为 3.函数x x y cos lg 252+-=的定义域为 __ 2.抽象函数定义域 1. 函数f(x 2)的定义域为[-1,1],则函数f(x)的定义域 2.设函数 的定义域是[0,1],求的定义域. 3.已知f(x 2)的定义域为[1,2],则y=f()(log 2 1x 的定义域为_______. 3.定义域逆用 1. 已知函数y = 的定义域为R.求实数m 的取值范围; 2. 设f (x )=lg(x 2 -2x +a )的定义域为R ,求a 的取值范围; 3.设函数y = 的定义域为R ,求实数a 的取值范围.

题型二 求函数的值域 1.求下列函数的值域: (1)y = 2x -1 x ∈[1,3] (2) y = -3x +1 x ∈[-1,2] (3)函数f(x)= ax + b x ∈[-1,1] 最大值为2,最小值为-4,求a,b 的值 2. 求下列函数的值域: ⑴y =x 2-5x +6 x ∈[-2,1] ⑵y =x 2-5x +6,x ∈[1,3] ⑶y =x 2-5x +6,x ∈[2,4] (4)y =x 2-5x +6,x ∈[3,5] (5) f(x)= x 2-2ax -2 x ∈[-2,4] 3. x>0 4.函数y =x +x 21-的值域 5.若 求函数的取值范围. 6. 对于任意实数,设函数 是与中较小者,求的最大值 7.已知函数 的值域是,求的值.

高一数学第五讲--函数的定义域与值域

第五讲 函数的定义域与值域 一、知识归纳: (一)函数的定义域与值域的定义: 函数y=f(x)中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。函数值的集合{f(x)│x ∈A}叫做函数的值域。 (二)求函数的定义域一般有3类问题: 1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0; ③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于0 [ 2、复合函数的定义域问题主要依据复合函数的定义,其包含两类: ①已知f[g(x)]的定义域为x ∈(a,b )求f(x)的定义域,方法是:利用a0且a,b≠1,k ∈R)

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的 集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

函数定义域、值域、解析式习题及答案

一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111 y x x = +-+- (4) f(x)= 2 32--x x ; (5) ; (6)f(x)=1+x -x x -2; (7 )0y = (8 )223 y x x =+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、f(x)的定义域为[0,1],求f(x +1)的定义域。 5、已知f(x-1)的定义域为[-1,0],求f(x+1)的定义域。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶31 1x y x -= + ⑷311 x y x -=+ (5)x ≥ (5 )y x =(6)求函数y =-x 2 +4x -1 ,x ∈[-1,3) 的值域

三、求函数的解析式 1、已知函数 2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且 2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、已知f(2x+1)=3x-2,求函数f(x)的解析式。(配凑法或换元法) 5、已知函数f(x)满足1 ()2()f x f x x -=,求函数f(x)的解析式。(消去法) 6、已知()1f x x =+,求函数f(x)的解析式。 7、已知 2 2 11()11x x f x x --=++,求函数f(x)的解析式。 8、已知2 211()f x x x x +=+,求函数f(x)的解析式。 9、已知()2()1f x f x x +-=-,求函数f(x)的解析式。 10、求下列函数的单调区间: ⑴ 2 23y x x =++ 11、函数236x y x -= +的递减区间是

1 函数定义域和值域

第一讲 函数定义域和值域 ★★★高考在考什么 【考题回放】 1.函数f (x )=x 21-的定义域是 ( A ) A .(-∞,0] B .[0,+∞) C .(-∞,0) D .(-∞,+∞) 2.函数) 34(log 1 )(2 2-+-=x x x f 的定义域为 (A ) A .(1,2)∪(2,3) B .),3()1,(+∞?-∞ C .(1,3) D .[1,3] 3. 对于抛物线线x y 42=上的每一个点Q ,点()0,a P 都满足a PQ ≥,则a 的取值范围是 ( B ) A .()0,∞- B .(]2,∞- C .[]2,0 D .()2,0 4.已知)2(x f 的定义域为]2,0[,则)(log 2 x f 的定义域为 ]16,2[ 。 5. 不等式x x m 22 +≤对一切非零实数x 总成立 , 则m 的取值范围是 (,-∞__。 6. 已知二次函数2()f x ax bx c =++的导数为()f x ',(0)0f '>,对于任意实数x ,有()0f x ≥,则(1)(0) f f '的最小值为 。 52 ★★★高考要考什么 一、 函数定义域有两类:具体函数与抽象函数 具体函数:只要函数式有意义就行---解不等式组; 抽象函数:(1)已知)(x f 的定义域为D ,求)]([x g f 的定义域;(由D x g ∈)(求得x 的范围就是) (2)已知)]([x g f 的定义域为D ,求)(x f 的定义域;(D x ∈求出)(x g 的范围就是) 二、 函数值域(最值)的求法有: 直观法:图象在y 轴上的“投影”的范围就是值域的范围; 配方法:适合一元二次函数 反解法:有界量用y 来表示。如02 ≥x ,0>x a ,1sin ≤x 等等。如,2 211x x y +-= 。 换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围。注意三角换元的应用。

函数定义域值域习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01 (21)1 11y x x =+-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311 x y x -= + ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941 x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-

⑼ y = ⑽ 4y = ⑾y x =-6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数 ()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设 ()f x 是R 上的奇函数, 且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y = ⑶ 261y x x =-- 7、函数 ()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( )

函数的图像定义域与值域

知识归纳和梳理: 一、函数图像的变换法则 由函数y f ( x )的图像变换到以下函数图像的法则 1) y f ( x)法则:关于y 轴对称 2) y f (x)法则:关于x 轴对称 3) y f ( x) 法则:关于原点对称 4) y(x) 法则:右边不变,左侧去掉,左边和右边对称 5) y f(x) 法则:上面不变,下面的图像对折上去 6) y(x a)(a0) 法则:左右 7) y(x) b(b0)法则:上下 二、函数的定义域求法 一般函数的定义域求法: 1. y n f (x) (n 为偶数) 则f(x) 0 11 2. y 则f(x) 0 特别y (n为偶数)则f (x) 0 f(x) n f (x) 抽象函数的定义域求法: 1. 若y f (x)的定义域为D ,则y f (g ( x))必须满足g(x) D . 2.若y f (g ( x))的定义域为D,则y f (x)的定义域即为y g(x)在D内的值域。 三、函数的值域求法(初级) : 1、利用基本初等函数的值域; 2、配方法(二次函数或可转化为二次函数的函数); 3、部分分式法、判别式法(分式函数) 4、换元法(无理函数) 第六讲函数的图像、定义域与值域

1 x 2 3x 4 典型例题】: 例 1. 画出下列函数的图像 4) y x 2 2x 3 5) y x 1 2x 2 例 2. 求下列函数的定义域 1) y 1 x x 3 1) y 1 x2 2) y 2x 6 x1 3) y x 2 2 x 3 经典练习 1: 画出下列函数的图像 ( 1) y 1 x1 2) y x x1 3) y 2x 3 x 1 2) f (x)

求函数的定义域与值域的常用方法

函数的定义域与值域的常用方法 (一)求函数的解析式 1、函数的解析式表示函数与自变量之间的一种对应关系,是函数与自变量建立联系的一座桥梁,其一般形式是y=f(x),不能把它写成f(x,y)=0; 2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形; 3、求函数解析式的一般方法有: (1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。 (2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之; (4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式; (5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。 (二)求函数定义域 1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等; 4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域; 5、分段函数的定义域是各个区间的并集; 6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明; 7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域 1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示; 2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C是B的子集;若C=B,那么该函数作为映射我们称为“满射”; 3、分段函数的值域是各个区间上值域的并集; 4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述; 5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集; 6、求函数值域的方法十分丰富,应注意总结; (四)求函数的最值 1、设函数y=f(x)定义域为A,则当x∈A时总有f(x)≤f(x o)=M,则称当x=x o时f(x)取最大值M;当x∈A时总有f(x)≥f(x1)=N,则称当x=x1时f(x)取最小值N; 2、求函数的最值问题可以化归为求函数的值域问题; 3、闭区间的连续函数必有最值。

相关文档
相关文档 最新文档