文档库 最新最全的文档下载
当前位置:文档库 › 国外在手术室通风系统方案方面的实验研究

国外在手术室通风系统方案方面的实验研究

国外在手术室通风系统方案方面的实验研究
国外在手术室通风系统方案方面的实验研究

国外在手术室通风系统方案方面的实验研究

本文运用所运用气流模型和微粒跟踪法来比较采用不同的通风系统在手术区以及后台上沉积污染物的危险性。所讨论的通风系统设计包括了通常使用的散流器类型,尤其是常规的、层流的、无吸入式或置换式散流器(我们习惯上称做送风天花)。此外,考虑的换气次数从15到150次/h不等。房间的设备布局得到了由医生和工程师组成的专家组的认可,代表了最先进的手术室设计方案。在此研究中考虑的颗粒的类型主要是大小约10微米的皮屑。微粒从房间内的三个不同的来源释放出来,代表了可能的微粒生长源,并且跟踪它们的运行轨迹以判断它们是否会撞击到手术区或后台。研究结果以列表的方式给出,本文只提供有关结论。其中碰撞的百分数最小的方案即表示是最合适的通风系统。结果显示能提供层流状态的通风系统是最佳的选择,虽然在设计这种系统时也有需要注意的地方。如果散流器布置的尺寸合适,从层流散流器阵列出风的迎面风速0.15~0.18m/s已足够大。

任何外科手术都存在术后感染的危险,对某些手术,例如关节置换,这种风险可能更为严重。术后感染受多种因素的影响:患者因素(对传染的感病性)、手术区因素(手术区的热烟羽1作用)、房间因素(手术室的洁净度)、通风空调系统因素(换气次数以及气流流向)等。目前普遍认为:就引起感染的细菌的而言,它的来源主要是皮屑或颗粒(woods,1986)。上述这些微粒直径大都为十微米的量级,而且是从医护人员和患者的暴露的皮肤上脱落下来的。因此本研究仅考虑这样的污染源。

各国对于手术室的空调系统都制定有相应的标准。例如在德国,手术室的设计标准为D IN1946/4(德国工业标准),最新的版本更新于1999年。这项标准中涉及到了手术室设计中的一些细节问题。送风出口温度的设定应使室内回风温度保持在22℃~26℃。

1.热烟羽:由于热作用而产生的上升气流间。房间实际送风量的确定取决于以下两个因素:空气传播微生物的相对浓度和受保护区域的污染系数或比率。规范中特别列出了两类手术室:A型这类手术室要求通风系统为置换式,即层流。它们对除菌的要求较高。B型这类手术室要求通风系统为混流式或置换式。它们对除菌的要求较高。然而,即使对于任何给定的的手术环境,受保护区域污染系数不仅仅和送风系统有关,而且还受其它一些参数的影响(尤其是送风量本身:手术室最小送风流量只能由实验确定)。DIN 4799(1990)年有关实验方法的内容中规定:手术室面积必须为25-60平方米,高度不得低于3米。

ASHRAE《手册》(1999年)建议:气流从天花板进入房间,向下流动经过面墙上几个的排风口排出可能是微生物浓度控制在可接受的水平最有效的气流组织形式。《手册》还

建议手术室温度应维持在17℃~26℃,并且保持相对正压。送风口应设置于天花板,排风或回风口应在接近地面部位而且至少设置两个。建议选择单向型散热器,避免使用高诱导天花板散流器或侧墙散流器。对全新风系统建议采用换气率为15次/h,对回风系统为25次/h。此外,虽然一般认为这是最洁净的通风系统,但现有的有关该系统的数据还是互相矛盾的。尤其是层流系统,一般认为它能够使房间保持较低的再生物浓度,但有时也有人,例如Salvati等人(1982),批评它的感染率高于较常规的通风系统。Lewis(1993)提出的理论认为层流系统会对手术区造成冲击。然而这似乎是基于采用的高速层流送风系统:Sc hmidt(1987)描述了一个层流系统,它的速度至少为(0.45m/s)。

以上文章的观点都是基于实验结果而得出的。但是,一项新的技术――计算流体力学(C FD)(有时也称作气流模型)已被证明在方案选择,包括对房间气流参数和污染物扩散的研究方面,功能强大而且非常有效(Ziang et al. 1995;Haghighat et al. 1994)。另外,CFD模拟计算可以有多种输出的方式,例如可输出有关参数在房间内具体分布的有用的细节及总体影响。因此,本研究采用CFD为主要研究手段。主要考虑两个目标区域:手术区和后台。考虑后一个目标区域的理由是,一旦皮屑落到后台上,很容直接污染手术器具。

研究目的:

本文所介绍的研究的主要目的是:运用先进的数值模型和经验数据来评价一些房间参数在降低手术区和后台感染危险中的作用。如:

·通风流量

·散流器的类型和位置

·送风温度

·排风位置

·给定相同的参数,评价各通风系统清除微粒的效果。

·为一个通用的手术室设计方法提供一个建筑学和工程应用的工具。

研究方法:

目前,基于CFD建立起来的气流模型已经相当成熟,可以求解基本的Navier-Stlkes 方程形式的质量、动量、能量守恒方程。

瞬变值+对流值-扩散项=源项

其中:

气流模型用数万甚至数十万个单元组成的网格来描述房间的几何形状、热和污染源以及空气本身,采用数值计算的方法求解N-S方程组(不详述)。以及相应空间离散化,把手术室分割为许多单元。在此项研究中,运用有限容积法将方程离散化并求解。

运用迭代法求解离散方程组,经反复迭代后,使其每个单元的结果符合质量、动量、能量守恒原理。这样,就可以描绘房间内任何区域的气流状况,同时也可以表示出空气的其它参数(如温度)的分布。计算过程如下:

·计算流体速度场、温度场、湍流参数的分布。

·规定释放一定数量微粒的源的位置。注意微粒并不是连续释放的,它们只是在分析的起始时刻(即t=0秒)从源的位置被释放。

执行计算程序求出每一个微粒从初始时刻到3600秒的运动轨迹。分析的输出结果包括:

·经通风设备排出房间的微粒的百分比随时间的变化。

·在总的计算时间(3600秒)内,落在所设定的目标(手术区或后台台面)上的微粒的百分比。注意:由于落在手术区或后台上的微粒数量很少,所以只计算出总数,没有必记下随时间的变化情况。

基本模型情况

一个典型手术室的布局,如医护人员的数量、灯光、仪器、工作台、患者等,作为CF D模拟的基本模型。在研究的初始阶段,一个由医生和工程师组成的专家组一致同意了这个典型手术室的布局。考虑到象气瓶等物品会影响手术室内大型设备的移动,限制手术台的布置,并且清洗困难,所以没有将其列入其中。专家组还认为手术室应更多地转向从天花板接入气体管线,因为这样的管道不会对气流造成明显的障碍。其他重要的设备,象C-ar m2,也没有列入其中,原因是专家组认为它不属于手术室“典型设备”。

2.专用X光机

现在认识到,这些设备会影响手术室内气流和温度的分布,它们应该在将来的研究中加以考虑。在上述模型的基础上,对送排风口的位置、送风温度、换气次数等参数共采用9种不同方案,进行了计算计算分析比较。

结论

1.具有相同换气次数的方案在由通风系统除去微粒的百分比方面表现出显著的不同。

2.大幅度增加换气次数的做法可以很有效地除去微粒,但是这并不一定意味着碰撞所关心表面的微粒的百分比将持续减小。

3.来自主源或护士源的微粒撞击手术区的百分比相当低,还不到1%。这是由于手术区引起的热烟羽相对占主导地位而造成的。仅当微粒在手术区附近释放时,特别是从手术源释放,其撞击手术区的百分比才变得较大。

4.在手术源/手术区分析中,每小时换气次数不如通风系统的设计重要。特别地,每小时换气次数为20次的方案与每小时换气次数为150次的方案比较,其碰撞手术台的微粒的百分比相对较低。

5.在提供层流状态的系统中,排风位置采用高低结合的方案比仅采用低位或高位的效果要好。不过,其差异并没有大到不能选用低位或高位系统的程度。

6.就污染控制而言,提供层流流动状态的系统是手术室通风系统的最佳选择,因为它们使撞击手术区的微粒所占百分比最小。不过需要注意层流散流器组的尺寸大小的选择。如果层流散流器组的尺寸大小选择正确,在层流装置中,层流散流器组的面速度选择为(0.15 m/s~0.18m/s)就足够了。

进一步讨论散流器组的大小问题可以看到,通风系统设计中考虑的主要因素是控制手术室的中心地区。特别是房间中间的手术灯及的术人员代表房间中部的一个很大的发热密度。微粒可以被这些散热物体产生的浮升气流捕获,在这一区域通风失去了对微粒的控制。不过,如果采用层流型系统,微粒将改为由将要排出室外的气流带动。于是理想的情况是,散流器组的尺寸应当足够大,以便能够覆盖主要散热物体。

7.此外,另一个因素是由手术区产生的热烟羽,如果不是层流状态不够强,致使微粒能逆着热烟羽而撞向手术区,这是Lewis(1993)着重指出的危险,那么热烟羽应当满足以下保护手术区。

讨论

Mass:如果内部负荷更高,我们是否应推荐采用更低的送风温度?

Farhad Memarzadeh:如果制定的标准要求排风温度相等,那么送风温度将自动降低。一般情况下,关键之处在于中心热烟羽(对微粒)的控制。如果送风温度不能随着负荷降低。那么热烟羽可能失去控制,至少在某种程度上会这样。

Leon Kloostra,Chief Engineer,Titus,Richardson,Tex.:①直接设置在手术台上方的手术室的灯给我们以什么影响?②即便有最好的气流设计以及将无影灯直接设置在手术台上方,空气传播的感染还是会增加吗?

Memarzadeh:①手术室灯将仍是中心热烟羽的组成部分。若要产生较大的效果,它们似乎必须被移到中心区域外部。②可能对感染率有一些影响,不过这取决于气流对手术室灯与其周围物体之间的相互作用的反应的方式。这些影响可能是不利的,也可能是有益的。

Nicholas Smilanich,President,Sensrt Development Corporation,Rock Rive r,Ohio:①模型可用于挥发性有机化合物(VOC)的分布状态吗?②模型也可用于真菌及霉菌吗?

Memarzadeh:①关于挥发性有机化合物,其不大可能影响到手术区。此外,房间内不大可能有存放挥发性有机化合物。②关于真菌和霉菌,它们的大小跨越很大的范围。例如,青霉菌大小为3~5微米,黑霉病菌达到75微米。这个模型将在某种程度上是可以适用的,尺寸越大的颗粒越容易撞向手术区或沉积在房间内。尺寸较小的颗粒不容易碰撞落下。

Scott M.Fanning,P.E.,Principla,Fanning,Fanning and Associates,Inc.,Lubb ock,Tex:你的报告显示采用低回风有利于限制创伤部位的感染。为优化灭菌控制请您详细指出回风格栅的数量和位置。

Memarzadeh:采用高位和低位排风混合使用的方案可使外科手术区的感染率降为最低,所以这种方案优于只用低位排风的方案,尽管差异相对较小。至于排风口的最佳位置及数量,需要对更多的方案进行计算以便确定这些值,因为本研究关于这方面的算例还不够多。

防排烟工程施工方案

防排烟工程施工方案 防排烟系统简介 本工程防排烟系统包机械排烟系统及正压送风系统。 1、地下室防排烟系统: 1)、地下一至四层车库均设机械排风兼排烟系统,并同时辅以机械送风或车道自然补风方式。所有地下车库设有机械排风机平时作通风换气用,火灾时自动切换成排烟用途,换气数为6次/小时。各系统吸入口前设常开排烟防火阀,在280℃时防火阀熔断关闭,并联锁关闭相应的排烟风机。 2)、变电所,配电室设机械排烟兼平时排风系统,设计排量为60m3/h.㎡,补风量大于排烟量的50%。 3)、大于50㎡的备用间和部分设备间设机械排烟系统和火灾补风系统,排烟量为60m3/h.㎡,补风量大于排烟量的50%。 4)、长度大于20m的内走道设机械排烟和火灾补风系统,排烟量为60m3/h.㎡,补风量大于排烟量的50%。 5)、柴油发电机房采用气体灭火系统,设置平时通风系统,火灾时该系统关闭,待发电机房灭火后开启该系统排除房间内有毒气体。 1、裙房防排烟系统: 1)、裙房一至四层大空间商场按面积不大于500㎡划分防火分区,设置竖向排烟系统,排烟风机设于裙房屋面。水平排风道利用空调水平回风管,空调回风管上设置70℃防烟防火阀及280℃排烟防火阀分别同空调机组和竖向排烟道相连接。平时280℃排烟防火阀关闭,空调风经回风管进入空调机组。火灾时280℃排烟防火阀开启,并联锁关闭70℃防烟防火阀,烟气经排烟防火阀进入竖向排烟风道排出裙房屋面室外。排烟量按最大防火分区120 m3/h.㎡设置,补风方式为自然补风。 2)、净空高度大于等于12m和小于12m但不满足自然排烟条件的中庭、自动扶梯上空设机械排烟,排烟量按其体积的6次/h换气次数设计,排烟风机设于裙房屋面。 3)、裙房五至十二层SOHO办公区,长度超过60m有对外可开启外窗的的内走道,上部设常闭电动排烟口。排烟口的位置距最远点不超过30m,且与附近的安全出口沿走道方向相邻之边缘之间的最小水平距离不小于 1.5m,排烟量为60 m3/h.㎡。排烟风机按最大防烟分区120 m3/h.㎡排烟量选取,位置设于九层和十三层。 3、塔楼防排烟系统: 1)、塔楼内走道排烟纵向分为2段,5至36层为一段、38至68层为一段。每段设2个排烟系统,排烟风机分别设于37层和塔楼屋顶。 2)、所有防烟楼梯间及其前室或合用前室、消防电梯前室,均设机械加压送风系统。系统分三段加压,风机分别置于21层、37层和屋顶层。 防排烟系统施工范围 1、通风机、风口、风管、各类防火阀等供应及安装。 2、施工图纸上已经设计及完成本工程所需要的其他内容。 3、系统调试。 防排烟系统设备安装 1、所有设备到现场必须进行开箱检查。根据供货合同和设备装箱单清点数

通风系统优化方案

通风系统优化方案 平禹煤电公司一矿 编制:陈占旭 2009年5月8日

一、矿井概况 平禹一矿位于禹州市北9km,郑平公路两侧。井田西起小王庄断层,东至315勘探线,北至二1煤层露头及魏庄断层为界,南到黑水河断层、肖庄断层,即-800m水平,东西长8km,井田面积10.5km2。 平禹一矿始建于1969年,1976年10月投产。设计生产能力60万吨/年,经过多次技术改造,2005年实际生产能力达100万吨/年,矿井二1、二3两层煤。主采二1煤层,煤厚0.99—12.55m,平均5.69m,一般4.0---7.0m,井田西北有一条封闭型的断层,造成局部瓦斯富存量较大,在开采过程中,由于二1、二3煤层间距较小,易出现未采煤层瓦斯释放到开采煤层的现象;二3煤层较薄平均厚度在1.8m左右。 矿井为低瓦斯矿井。 平禹一矿,地质构造处于白沙向斜的东北部。矿区北、西、南三面环山,为一向东南开阔的“箕形”向斜汇水盆地。多次受水灾的危害,造成矿井巷道普遍压力大,巷道变形快,有效通风断面小,通风阻力大,维护周期短。目前矿井正处于东区水灾复矿阶段。 矿井运输、回风大巷、采区上、下山及车场采用砌硂、U型钢、裸巷、锚喷、锚网、工字钢等多种支护形式,由于受压力和顶板(顶板破碎严重)条件影响,巷道变形较大,

一定程度上影响通风。 矿井目前的通风系统为中央边界抽出式,主要通风机为FBCDZNo26型对旋式,一台使用,一台备用,转速740r/min,风机叶片安装角度为-9/-9o,配用电机功率为2*355KW,两条立井进风和一条斜井进风,一条并联回风斜井:1、新鲜风流由副井(主井)进入主石门、东西大巷,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。2新鲜风流由明斜井进入三采区,经采区运输上山供给各采面、掘进工作面,乏风流经采区轨道上山进入采区回风巷,经风井由主要通风机抽出地面。掘进工作面采用局部通风机压入式通风。 二、矿井通风系统优化改造的必要性 平禹一矿目前总进风量为5416m3/min,总回风量5703m3/min(风速为9.70 m3/s,超过最高允许风速8m3/s),风机房水柱记读数为3000Pa。主石门的供风量为3547m3/min(风速为6.03m3/s,接近最高风速8m3/s),明斜井的供风量为1869m3/min(风俗为3.80m3/s)。 东翼实际进风量为2629m3/min。设计风量为(各地点)1160*(通风系数)1.2+300(一采区下车场至明斜井之间避免出现盲巷和风路絮乱情况)=1692m3/min。目前有效用风地点为2个扒修工作面(三皮带下山扒修需风量为

通风防排烟工程施工方案

通风防排烟工程施工方案

一、工程简介: 本工程施工范围为D1—D9公租楼及D组团车库的通风防排烟系统安装。1、D组团车库建筑面积:34679.68㎡;停车位:988辆;共2层,高度8.1米;负一层层高为4.2米,负二层层高为3.9米。每层楼分七个防火分区,各防火分区分别设置排风及送风系统。排风系统兼作事故排烟系统,送风系统兼作事故补风系统。 2、D8,D9号楼建筑面积:46113.48㎡;建筑层数:32F;建筑高度:99.9M。 3、D6号楼,D-5商业建筑面积:24056.66㎡;建筑层数:32F;建筑高度:98.1M; 4、D5号楼,D-4商业建筑面积:25135.57㎡;建筑层数:32F;建筑高度:98.1M; 5、D4号楼,D-2商业,D-3商业建筑面积:25847.02㎡;建筑层数:32F;建筑高度:98.1M; 6、D2,D3号楼建筑面积:46303.83㎡; 建筑层数:32F;建筑高度:97.8M 7、D1,D7号楼建筑面积:21640.31㎡;其占地面积:719.69㎡; D1—D9公租楼楼梯间每隔一层设一个正压风口,失火时全部开启;前室每层设一个正压风口,失火时开启失火层及其上下相邻层。加压风机设在塔楼屋面或架空楼层,由消防中心控制开启其加压风机。D-2~D-5商业区域分别设置排风兼排烟系统。

二、施工程序与工艺流程: 1、施工程序 2、防排烟安装工艺流程图 预留预埋

3、施工要点 该分项工程的要点如下: ①风管制作; ②风管系统安装; ③防排烟工程安装; ④单机试运转、设备试运转及联合调试。 三、施工方法 1、风管制作 (1)风管管材选择及连接方式: 风管选材表 螺栓规格(mm)

实验室通风系统设计方案说明

实验室通风系统设计方案说明

水质监测站实验室设施改造方案 (一)通风系统 一、工程概况: 大楼共5层,实验室设于3、4、5楼。根据实验室资质认定和国家实验室认可的要求,对使用多年的通风系统进行更新改造。实验室 内通风柜的布置和数量规格见附件1(实验室设施改造平面图)及附 表1(通风柜规格一览表)。 二、总体要求: 1、根据实验室通风量的要求将通风系统切分为若干个子系统,每个子 系统应充分考虑实验室功能区域的要求以及实验室实际空间情况,根 据现场情况,拟将实验室排风工程分为11个子系统,子系统分别编号 为S1、S2、S3、S4、S5、S6、S7、S8、S9、S10、S11。排风系统考虑 防止雨水倒灌,每个子系统具体情况见附表2(通风子系统一览表)。 通风系统切分的方案可变动,但必须更优化方可。 2、根据每个实验室的通风要求和实验要求,充分考虑美观、 实用、降噪、防震等要求,设计实验室通风系统。整体改造 不得影响实验室检测要求。 3、施工过程应采取防震、防尘措施,避免实验室检测器材受到 污染。实验室内严禁吸烟。 4、施工方案应充分考虑工期问题,总体上现场工期应控制在十五天以 内,以免影响检测工作。 三、设计依据: 通风系统的设计应符合: (1)《通风与空调工程施工质量验收规范》(GB50243-2002) (2)《简明通风设计手册》 (3)《暖卫、通风、空调技术手册》 (4)《城市区域环境噪声排放标准》

(5)《机械工业环境保护设计规范》(JBJ 16-2000) (6)《中华人民共和国机械行业通风柜标准》 (7)水质监测站提供资料。 *四、设计参数: 1.实验室的通风换气次数取每小时8-20次。 2.支管内风速取6-12m/s,干管内风速取8-14m/s。 3、排毒柜的柜门高度为35-40cm时,柜门的表面风速为0.5m/s-0.8 m/s。 系统压力划分应符合国家有关规定。 五、通风系统设计要求: *1、风机选型:实验室通风系统风机全部采用玻璃钢风机,要求耐腐蚀、 寿命长、性能稳定、维护方便、噪声低。 *2、管材要求:本系统风管采用PVC管材或玻璃钢管材,风管采用矩形 管材,安装时风管的上测紧靠建筑物的横梁。风管板材厚度应大于6mm。 *3、噪声要求:根据国家有关标准,应安装消音装置,屋顶通风系统的 噪声须控制在65dB以下,实验室通风柜的噪声应控制在55dB以下。 4、减震要求:风机采取减振措施,加装橡胶减振器,风机进风口安装 减振软接头,风机底座为水泥基础,水泥基础的高度根据现场情况可做 适当调整,在条件允许的情况下风机基础高度不小于20cm。 5、安装要求: *1)风管固定应采用耐腐蚀材料,安装位置和方式应便于维修 和维护。 2)风机出口的风管管径只能变大,不能变小,出风口要安装杂物网, 偏向上出风时须增加风雨帽,采取措施防止风倒流。 3)外墙为200厚空心粘土砖,风管穿墙时需要考虑墙体渗漏处理问题。 4)每台通风柜与风管连接均应考虑电动调风阀,通风柜停止运行时, 电动风阀关闭,防止实验室交叉污染。 6、变频系统要求:采用智能变频控制系统,根据系统中通风柜开启的 数量自动跟踪、调节系统风量;通风柜等通风设备加装电动调风阀和手

矿井通风系统调整方案及措施

Xxxx矿通风系统调整方案及措施二〇一三年十二月五日

矿井通风系统调整方案及安全技术措施会审意见表会审地点:会审时间: 部门意见签名日期通风科 防突科 生产技术科 机电运输科 安全监察科 调度室 机电矿长 掘进矿长 生产矿长 安全矿长 总工程师

Xxx矿通风系统调整方案及措施 我矿通风系统调整方案集团公司已批复,根据集团公司批复意见结合实际情况,对矿井通风系统调整方案及安全技术措施进行了补充完善。经矿研究决定年月日进行矿井通风系统调整。 一、组织措施 为保证通风系统调整工作的顺利进行,特成立工作领导小组。 组长: 副组长: 成员: 指挥部设在调度室。 (一)具体分工 1、负责通风系统调整工作的统一部署和协调。 2、负责井下通风系统调整工作 3、负责地面通风系统调整工作,。 4、负责通风系统调整措施的落实及调整前后的检查验收工作,。(二)调整前准备工作 1、通风队负责提前构筑所需通风设施,为矿井通风系统调整做好准备; 2、通风队负责在xxx上车场提前安装两组局部通风机和连接风筒,经过调试具备运行条件,为xxx底抽巷、xxx上付巷局部通风系统调整做好准备; 3、机电部门负责把主扇风机搬迁到位,经过调试具备运行条件; 4、机电部门负责提供xxx上车场局部通风机的专线电源。 5、负责老副井井口、井底的封闭工作,具备风井使用的条件;负责拆除xx回风下山上、下段内所有电气设备(风机专线除外)。

(三)调整期间工作安排 按矿井通风系统进行调整方案,通风队对需调整的通风设施、局部通风机配备专人,每组设施、风机配备2名,并落实到责任人;通风科安排人员对系统调整后进行一次全面测风。 (四)调整之后安全验收工作 通风系统调整之后,由安全监察科、通风科组织对井下通风系统即通风设施、局部通风及各采掘工作面风量情况进行验收,确保安全可靠、符合规程规定要求。二、通风系统调整前、后安排专人测定各地点风量、瓦斯 (五)通风系统调整前、后,对井下各地点进行风量、瓦斯测定。分工如下: (测风员)、(瓦检员)--xx运输下山、xx轨道下山、xx回风下山、总回 (测风员)、(瓦检员)--xx上付巷、xx运输下山下段、xx轨道下山下段、11回风下山下段 (测风员)、(瓦检员)--xx上车场、xx底抽巷、xx回风下山下段(xx上车场下侧) (瓦检员)-- xx变电所、泵房 二、通风系统调整方案 (一)调整方案: 1、调整风井。将主扇风机搬迁到新风井(老副井),老副井改为专用风井,报废原风井。 2、调整矿井通风系统。通风系统调整后新副井、主井进风,老副井回风,11采区实现两进一回,即:xx运输下山上、下段和xx轨道下山上、下段进风,xx回风下山上、下段回风。

防排烟系统施工方案与技术措施

防排烟系统施工方案与技术措施 本工程涉及专业较多,为圆满实现工程的工期、质量目标,一方面,我们在施工方案上要充分发挥我公司的专业技术优势、机械化施工优势,在项目部的统筹组织下,细化作业工序,合理搭配,进行立体交叉作业,合理的安排工作面;另一方面,运用系统论的概念和方法,编制施工工艺流程、分部分项工程的施工方案和技术保证措施,通过加强工序管理,建立严密、高效的管理体系,优化组合、动态管理,实现从施工准备、物料供应到工程施工安装的全程质量管理,使质量管理工作制度化、标准化。机械防排烟系统包括:正压送风系统和排烟系统。 1、施工条件: (1)管道的密闭套管在土建模板封闭前进行安装。 (2)明装托、吊管道必须在车库的结构顶板完成后进行。 (3)管道安装在结构完成后墙面未装修前进行进行,应有明确的标高线。 2.工艺流程: 施工准备→风管及部件制作→风管及部件安装→风管漏光、漏风检查→管道防腐→单机试运转→系统联合试运转调试。 3、风管及部件制作: ①、风管及部件选用的材料符合设计和规范要求。 ②、风管及部件的几何尺寸,外观质量符合设计和规范要求。 ③、风管及部件法兰的规格、型号符合设计和规范要求,且风管法兰具有互换性。 ④、风管及法兰的防腐符合设计和规范要求。

4、风管及部件的安装: ①、支、吊架的安装间距,要符合规范要求。固定要垂直、牢固,以保证施工质量和美观的要求。 ②、风管及部件安装过程中不得有使风管及部件发生变形或使风管截面减少的操作行为。③、风管法兰的垫料厚度宜为3-5mm。 ④、管道的安装,应按自下而上、先里后外、先大后小的原则,按设计及规范的要求进行。保证横平竖直。 ⑤、管道穿墙、过楼板处,应加套管,管道连接件及接口部位不应置于套管内。穿墙套管长度不得小于墙厚。套管与管道的间隙,应采用不燃材料填塞密实。 ⑥、对所安装完毕的敞开管口需进行临时封堵,以防建筑垃圾、砂浆等灌入。 5、风机及系统组件、配件、其他设备安装: 风机、系统组件、配件及其他设备安装施工前,应对系统采用的其他设备、材料进行现场检查,并应符合设计和规范要求。风机的安装,应符合现行国家标准《机械设备安装工程施工及验收规范》GB50231、《压缩机、风机、泵安装工程施工及验收规范》GB50275的有关规定。风机与风管连接处应设置柔性连接管,柔性连接管不得作变径。风管阀门安装位置、方向应正确;阀内应清洁、无堵塞、无渗漏;阀门的执行器应有明显的启闭标志,且不得有妨碍其动作的障碍物。消声器的安装位置、高度符合规范要求;静压箱的安装位置、规格尺寸满足设计要求。消声器和消声弯头应单设支架,其重量不得由风管承受。 6、系统的漏风和漏光检测: 管道安装完毕后,应进行漏光和漏风检测。漏风量、漏光量满足设计和规范要求。 7、系统调试: 系统安装完毕后,应进行系统性能调试。系统调试的内容包括:单机试运转、联合试

(完整版)防排烟系统施工方案

防排烟系统施工方案 通风管道制作 1. 选料 风管和部件的板材应按设计要求选用,各系统的板材厚度应符合设计要求,制作前,首先检查所用材料必须有产品合格证明材质证明,若无上述文件,不得使用。 钢板应为优质板,不得有锈斑;外观上无氧化物和针孔、麻点、起皮等缺陷。 其他辅材不能因具有缺陷导致产品强度的降低或影响使用效能。 接到加工单后,负责加工制作的责任师必须预先计算分析所需材料的数量,材料部门严格把关,确保节约材料。 2. 下料 严格遵守设计图纸及国标相应的规定。板材在下科前必须进行校平。弯头、 异径管等零部件必须采用联合角咬口。做好材料的节约工作,做到大料不小用,整料不零用,利用边角料加工小的零部件。 3. 剪切 剪切前进行下料复核,以免有误。复核后,接线形状采用机械剪板机,电 动手剪及手动手剪进行剪切。剪切过程中要仔细、认真、不得跑线。剪切后,在咬口前进行剪口倒角,倒角必须用专用倒角工具,以免出现误差。

4. 咬口 风管的咬口需按规定进行,圆形风管采用单平咬口,圆形风管部件采用单立咬口,矩形风管角咬口采用联合角咬口及接扣式咬口,拒形风管弯头、异径管等部件必须采用联合角咬口。咬口不得出现半咬口及胀裂等清况,以免成型后的风管漏风。对管径大的风管,需进行拼接,拼接缝要求平整,单节风管尽量减少拼接缝。 5. 折方 咬口后的板料进行折方,首先需核对折方线,确认无误后进行折方,折方的关键是位置正确、角度准确,尤其对变径弯头及变径三通等零部件的折方角度必须准确以免影响管径。 6. 成型 风管成型前,应检查下料、咬口折方等工序是否无误,核对下料的几何尺寸是否正 确。风管合口必须用木制榔头及木制打板,以免损坏镀锌层。风管合口必 须打实、打严以免漏风,且四边平齐 7. 铆接 风管与角钢法兰连接,管壁厚度< 1.5mm ,采用翻边柳接;铆接部位应在法兰外侧,管壁厚度>1.5mm ,采用沿风管周边将法兰满焊。矩形风管边长大于等于630mm

实验室通风设计步骤和实验室通风设计方案

实验室通风设计步骤和实验室通风设计方案 实验室通风设计采用以下步骤和方案: 1、实验室通风采用全新风系统,通风柜的排气不在室内循环。由于实验室要求房间相对其他辅助区域为负压。所以实验室的新风量设计为排风量的70﹪-80﹪。另外20﹪-30﹪的新风送至实验室辅助房间、办公、管理用房、内走道等,再由门窗缝隙补充到房间。 2、实验室根据工艺要求和功能布置选择一定数量的通风柜,有的还兼有部分局部排风罩。通常校核下来换气次数远远大于10次,一般在20-30次以上,满足换气次数要求。但是此换气次数是按照通风柜最大开启面积计算的通风量,资料和经验表明100台通风柜99%的时间只有18个或更少的人在使用。故还应校核通风柜最小开启面积时的通风量和换气次数,若小于换气次数要求,则增加综合排风系统。 3、通风柜的风量平衡可以采用定风量控制系统,即排风量恒定,送风量和门窗缝隙补充风量恒定。此方法适用于最大排风量满足最小换气次数要求的实验室。 4、对于排风量远大于最小通风量要求的房间还可以采用两段式通风控制系统保证风量平衡,即根据通风柜的位移信号,排风机、送风机有2种送风工况,低风量工况应用于维持最小换气次数的要求,节约能耗。此情形药检所采用了变风量控制系统。通风柜风量变化时,排风量也会相对变小,此时要求放置在屋顶的排风机随着通风柜柜门的位置变化而变频,降低风量,保证通风柜面风速恒定。同时自控系统改变全新风风机的频率,降低风量,维持负压平衡。变风量系统可以降低系统能耗。系统最大、最小换气次数接近则考虑采用定风量系统,使得系统简单,降低初投资。 实验室通风系统除上文所述对通风柜有特殊要求外,对其他设备和控制系统也有一定的要求和标准。通风柜的选择除满足排风和捕捉能力外,还要注意需要根据调节门移动而立即改变风量,维持表面风速的恒定。笔者建议系统风量的测定和控制以柜门位移为信号而不是测定表面风速来测定。实验室压力控制和最小通风量的控制除了设备选型因素以外,通风系统设计和控制系统是关键因素,要保证系统的反应时间要足够短(<1秒),通风系统不平衡会导致通风柜排风和捕捉能力散失,气流流出实验室,建筑物内压力不稳定。 以上由人和净化提供

矿井通风系统调整方案

马幺坡矿业马幺坡煤矿 矿井通风系统调整方案及安全技术措施 二○一六年十一月三十日

矿井通风系统调整方案及安全技术措施 1、矿井现状 马幺坡煤矿按照黔能源审[2016]36号批准的《关于马幺坡矿业马幺坡煤矿开采方案设计(变更)的批复》进行矿井建设,即:改造新施工的回风斜井为副斜井;将原设计的副斜井、行人斜井(经改造后为平硐)在接近地表位置通过联络巷沟通合并改造作回风井;主斜井不变;将原设计四个井筒(主斜井、副斜井、回风斜井、行人斜井)为三个井筒(主斜井、副斜井、回风平硐);首采工作面位于M8煤层运输上山1段东侧+1345.0m标高至+1328.8m标高之间;10802接替掘进工作面位于M8煤层1#回风上山1段、2段西侧+1320m标高至+1310m标高之间;采区主要硐室,集中布置于副斜井与1#回风上山1段之间的巷道中,巷道标高+1292.6m标高至+1287.7m标高之间。 截止至2016年11月30日止,矿井除10802接替掘进工作面尚未竣工外,其他井巷工程改造已基本完成,具备矿井通风系统调整条件。 2、目前矿井通风概况 矿井目前的通风方式为中央分列抽出式通风,三个井筒进风(主斜井、原副井、新风井),一个井筒回风,矿井总进风量3172.2m3/min (见通风系统示意图图1) 二采区回风斜井主扇风机技术参数如下表(表1):

二采区回风斜井现排风量4285m3/min,风压为2345Pa。矿井总进风量4115m3/min,其中一采区主斜井进风1895m3/min,二采区副斜井进风2150m3/min,可以满足二采区矿井目前各个用风地点的风流情况见下表(表2)。

矿井通风系统调整优化方案及安全技术措施

×××××煤矿 矿井通风系统调整方案及安全技术措施 措施名称:矿井通风系统调整方案及安全技术措施 编制人:×××× 矿长:×××× 编制单位:×××安技科 编制时间:2013年6月29日

安全技术措施审批意见表

矿井风量调整方案及安全技术措施 因+500水平巷道即将贯通形成通风回路,为确保全矿井通风可靠,对井下采掘工作面以及主要通风巷的风量进行重新分配和调整,为使整个调风工作能顺利进行,特制定具体实施方案以及相关管理措施,请有关单位和部门遵照执行: 一、计划调风日期:预计贯通日期为2013年7月5日,巷道贯通后应立即停止井下作业,构筑通风设施,调整通风系统。 二、采掘工作面风量计算: (一)、采煤工作面风量计算: 1、按瓦斯(或二氧化碳)涌出量计算 ①按瓦斯涌出量计算 回采工作面回风流中瓦斯的浓度不超过0.75%的要求计算: Q采=q瓦采×K采/c 式中:q瓦采—回采工作面绝对瓦斯涌出量,m3/min; K采—采面瓦斯涌出不均衡通风系数。通常机采工作面取1.2~1.6;炮采工作面取1.4~2.0; K采=1.5。 c—回采工作面正常生产时工作面及回风流中允许的最大瓦斯浓度, c取0.75%。 根据兵团发改委对我矿2011年《矿井瓦斯等级鉴定结果》的批复,矿井绝对瓦斯涌出量为0.41m3/min,且相对瓦斯涌出量为1.82m3/t,属低瓦斯矿井。 则:Q采=q瓦采×K采/c=0.41×1.5/0.75%=82 m3/min ②按二氧化碳涌出量计算 回采工作面回风流中二氧化碳的浓度不超过1%的要求计算: Q采=q采×KCO2/c

式中:Q采—回采工作面实际需要风量,m3/min q采—回采工作面回风巷风流中二氧化碳的平均涌出量m3/min。 Kco2涌出不均衡通风系数—通常机采工作面取1.2~1.6;炮采工作面取1.4~2.0;水采工作面取2.0~3.0, Kco2=1.5。 c—回采工作面正常生产时工作面及回风流中允许的最大二氧化碳浓度,c取1%。 根据兵团发改委对我矿2011年《矿井瓦斯等级鉴定结果》的批复,二氧化碳绝对涌出量为0.83 m3/min,二氧化碳相对涌出量为3.63m3/t。 则:Q采=q采×KCO2/c=0.83×1.5/1%=124.5 m3/min 2、按工作面进风流温度计算需风量 采煤工作面应有良好的气候条件,其气温与风速的关系应符合下表的要求: 工作面空气温度与风速对应表 长壁工作面实际需要风量,按下式计算: Q采=60×V采×S采×K采 式中:Q采—采煤工作面需要风量,m3/min; V采—采煤工作面适宜的风速,v=1.0m/s; S采—采煤工作面的平均面积,s=7.4㎡ 平均断面积可按最大和最小控顶时有效断面的平均值计算; K长—采煤工作面长度风量系数,按下表取:

防排烟系统施工方案模板

防排烟系统施工方案 ( 一) 防排烟风管系统施工方案 施工说明 风管材料及安装: 1、防排烟管道材质为镀锌钢板风管, 板厚按<<通风与空调工程施工质量验收规范>>( GB50243- ) 系统执行。 2、所有水平或垂直风管必须设置必要的支、托、吊架, 其构造形式由安装单位在保证牢固可靠的原则下根据现场情况选定。保温风管的支吊架设在保温层外部, 且不得损坏保温层。支吊架不得设置在风口、风阀、自控机构、检查门、风量测定孔处; 吊杆不得直接吊在风管法兰上。所有安装在竖井内的风管, 必须先安装风管, 后砌竖井。防火阀必须单独配置支吊架, 安装位置应与设计相符, 阀体上的箭头必须与气流方向一致。 3、调节阀、蝶阀等调节配件的操作手柄应置于便于操作的部位, 在阀门的操作机构一侧应有不小于250mm的净空以利检修, 阀门设置在吊顶( 或墙体) 内侧时, 需在阀门的检查口和操作机构下面开检查口, 尺寸不小于600x600mm。防火阀和排烟阀安装前应检验其外观质量, 确认合格后再安装, 安装后应检验其动作的灵活性, 其阀板应启闭灵活。竖井内必须先安装风管, 后砌竖井。 4、风管穿越防火墙时, 穿越管采用2mm钢板, 不燃柔性材料封堵, 并在吊顶上开设600x600检查孔。 5、所有靠梁安装的风管, 凡图中未注标高者, 应尽量贴主梁

安装。 6、风管间连接采用法兰连接, 法兰垫片的厚度宜为3~5mm, 法兰垫片的材料采用不燃材料。 设备及安装 1、设备基础均待设备到货核对尺寸无误后方能施工.所有通风及空调机房应在设备安装完毕后再砌墙. 2、由于建筑装修设计尚未到位, 风管和风口仅为走向示意图, 凡与建筑装修相关的空调通风配件( 如送、回风口) 等, 应在建筑装修设计完成并与暖通专业设计方协调后, 再进行采购, 以免造成差错和浪费。 3、所有设备基础应待设备到货后且核对其地脚螺栓尺寸无误后, 方可浇注施工。基础表面必须平整, 平面找平误差应符合该设备的要求。 消声隔振 1、所有水泵、风机等运转设备均设减振基础。 2、通风机组进出口设柔性短管。 3、送/排风机组等吊装式安装采用减振吊架, 落地式安装式采用弹簧减振器。 调试与验收 系统连续运行24小时以上,并对系统进行全面检查调整,考核各项指标并作书面记录.

实验室空调与通风设计方案

实验室空调与通风设计方案 概况:某大学校区农生组团建筑面积约137 200 m2,建筑高度58.5m,地上14层,地下1层,是由国家实验室主楼、动科院、生工与食品学院、环资学院、农学院各实验楼组成的一个连体建筑群(实验室建筑面积占总建筑面积一半)。 一、工程设计特点 (1)农生组团为一个建筑群,空调系统按学院划分:①主楼(国家实验室)为集中冷热源、半集中式空调系统。办公室和普通实验室采用风机盘管加新风系统,洁净实验室采用全空气系统。②其他学院为自带冷热源的半集中式空调系统,新风集中处理;办公室采用集中新风加分体空调;普通实验室采用集中新风加变制冷剂流量空调系统。洁净实验室采用单元式直接蒸发空调机组(新风集中处理)。 (2)洁净实验室净化空调有多种形式:①全新风净化空调系统设三级过滤,采用顶送风下排风,排风出口设净化处理装置。②循环风空调箱通过送风管,再经过ULPA过滤器或HEPA过滤器将空气送入洁净室,气流向下送入洁净间,再经竖直回风夹道进入吊顶回风。空气多次进入循环风空调箱过滤,使用不同类型的中高效过滤器,提供了节约成本和使用能源的选择。 (3)根据甲方提供的实验室洁净度、实验内容、污染性以及房间正负压特性设计排风系统,并按类别排放废气。每个实验室的排风系统为独立系统,排风柜补风采用室外风,减少了空调负荷。 (4)严格执行国家环境保护法,对有可能对环境造成污染的排风在排放前进行过滤处理,按排出气体的成分采取吸附、过滤、净化处理,使排出气体有害成分低于国家环保卫生要求。 (5)采用DDC数字控制系统,提高楼宇智能化。 设计参数与空调冷热负荷(一级标题) 表1 主要房间的室内空调供暖设计参数及通风换气参数见表1。 表1主要房间的室内空调供暖设计参数及通风换气参数 特殊实验室的(恒温恒湿,无菌,冻干,超净台)温湿度按校方要求,换气次数为10~25 h- (无菌操作间按万级,超净台按百级)。对温、湿度无工艺要求时室温为20~26℃,相对湿度小于70%。 空调负荷:主楼冷负荷6 616 kW,热负荷2 043 kW;动物学院实验楼冷负荷3 200 kW,热负荷1 550 kW;农学院实验楼冷负荷4 060 kW,热负荷2 230 kW;环资学院实验楼冷负荷2 940 kW,热负荷l 600 kW。 蒸汽用量:负担主楼空调换热用量约3.5t/h,用于所有空调机组加湿用量约2.9t/h,合计约6.4 t/h。 二、空调系统设计 (1)主楼(国家实验室)空调系统按办公区域与实验室区域划分,一层报告厅采用双风机全空气系统,其他房间均采用风盘加新风空调系统,每层按区域设两个新风系统;十二层使用功能相同且空气无污染的六间光室的新风机组为带热回收的机组。对有洁净度要求的实验室另设有带三级过滤的吊装或立式洁净空调机组。其他三个学院实验楼考虑与主楼冷热源机组距离较远,且运行时间各不相同,空调系统包括新风处理机均采用变制冷剂流量变频多联机和直接蒸发系统,新风机组每层分区设两台;同样对有洁净度要求的实验室另设有带三级过滤的吊装或立式直接蒸发式沽净空调机组;小开间办公室采用分体式空调机组。所有实验室的冷藏室、冷冻室均设置了拼装式冷库。所有新风机组、变制冷剂流量变频机组、拼装冷库室外机均安装在屋顶。 (2)洁净实验室空调采用带有两级过滤的净化空调机组,粗效过滤器用易清洗更换的合成纤维过滤器,中效过滤器集中设置在空调机

矿井通风系统调整方案及措施

编号:AQ-JS-00495 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 矿井通风系统调整方案及措施Adjustment scheme and measures of mine ventilation system

矿井通风系统调整方案及措施 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 我矿通风系统调整方案集团公司已批复,根据集团公司批复意 见结合实际情况,对矿井通风系统调整方案及安全技术措施进行了 补充完善。经矿研究决定年月日进行矿井通风系统调整。 一、组织措施 为保证通风系统调整工作的顺利进行,特成立工作领导小组。 组长: 副组长: 成员: 指挥部设在调度室。 (一)具体分工 1、负责通风系统调整工作的统一部署和协调。 2、负责井下通风系统调整工作 3、负责地面通风系统调整工作,。

4、负责通风系统调整措施的落实及调整前后的检查验收工作,。 (二)调整前准备工作 1、通风队负责提前构筑所需通风设施,为矿井通风系统调整做好准备; 2、通风队负责在xxx上车场提前安装两组局部通风机和连接风筒,经过调试具备运行条件,为xxx底抽巷、xxx上付巷局部通风系统调整做好准备; 3、机电部门负责把主扇风机搬迁到位,经过调试具备运行条件; 机电部门负责提供xxx上车场局部通风机的专线电源。 负责老副井井口、井底的封闭工作,具备风井使用的条件;负责拆除xx回风下山上、下段内所有电气设备(风机专线除外)。 (三)调整期间工作安排 按矿井通风系统进行调整方案,通风队对需调整的通风设施、局部通风机配备专人,每组设施、风机配备2名,并落实到责任人;通风科安排人员对系统调整后进行一次全面测风。 (四)调整之后安全验收工作

防排烟系统施工组织设计

消防排烟系统 施 工 组 织 设 计 (方案) 南京高科消防机电工程公司靖江分公司 2013年4月25日 目录

一、工程概况 二、施工方案编制依据 三、工程施工范围 四、工程施工管理 五、工程施工准备 六、施工方案与施工技术保证措施 七、质量与安全保证措施 八、工程进度保证措施 九、临时用电安全保证措施 十、冬、雨季施工措施 十一、服务承诺 一、工程概况: 本工程为住宅小区,由高层住宅及地下车库组合成高层住宅。

1.工程名称:康兴安置5标 2.工程地点:靖江市 3.建设单位:靖江市华阳建设有限公司 4. 设计单位:苏州市建设规划建筑设计院 5. 监理单位:南京新华泰建设工程项目管理有限公司 二、施工方案编制依据: 本方案编制依据工程施工图,参照相关的规范、标准、图集等进行编制。 1、《建筑设计防火规范》; 2、《高层民用建筑设计防火规范》; 3、《通风与空调工程施工质量验收规范》; 4、《机械设备安装工程及验收规范》; 5、《安装工程分项施工工艺手册》; 6、《建筑安装工程质量检验评定标准》; 7、《施工现场临时用电安装技术规范》; 三、工程施工范围 本工程按照设计单位的工程施工图,机械防排烟系统的工作内容包含所有正压送风、排烟系统相关的管道、设备的采购、安装等。 四、工程施工管理 为确保本工程能按期竣工,保证整体工程的质量达到优良,根据本工程的特点和我方的管理模式,本工程拟采用以我方本部为依托、由专门的项目经理部负责施工的管理方式。 (一)人事管理、财务管理及技术支持,由我方本部负责;商务管理、材料管理,由项目经理部协助公司本部进行;施工及施工管理由项目经理部负责。

通风系统专项整治实施方案

通风系统专项整治实施方案 按照《省人民政府关于强化煤矿瓦斯防治攻坚进一步加强煤矿安全生产工作的意见》(黔府发〔2020〕3号)、《国家煤矿安监局关于开展“一通三防”专项监察的通知》(煤安监监察〔2020〕2号)以及《贵州煤矿安监局省能源局关于印发贵州省煤矿“一通三防”全覆盖专项监察实施方案的通知》(黔煤安监办函〔2020〕31号)要求,为推动煤矿优化通风系统,提高煤矿通风系统防灾抗灾能力,制定本方案。 一、整治时间及对象 (一)整治时间:2020年3月至12月。 (二)整治对象:全省正常生产建设煤矿。 二、工作目标 通过深入排查全省煤矿通风系统存在的缺陷和突出问题,严厉打击煤矿通风系统不完善、不可靠仍然组织生产作业等重大违法行为,推动煤矿构建“系统合理、设施完好、风量充足、风流稳定”的通风系统,提升煤矿通风系统可靠性、合理性、稳定性,提高煤矿通风系统防灾抗灾能力,为防止煤矿安全生产事故提供系统保障。 三、整治内容及责任分工

(一)整治内容。一是机构制度不健全。机构设置、人员配备不到位,通风安全生产责任制、操作规程和管理制度不健全等。二是通风系统不完善。采区进回风巷未贯穿整个采区,存在一段进风一段回风,采掘工作面违规串联通风、无风、微风、循环风作业;突出煤层采区没有独立回风系统、未实现分区通风,准备采区突出煤层掘进巷道回风经过有人作业的其他采区回风巷,突出煤层揭煤前系统未独立,掘进工作面进风侧未安设至少两道联锁的正向风门和两道反向风门等。三是设备设施不完好。矿井未安装2套同等能力主通风机和主通风机监测系统,通风设施质量和构筑位置不符合要求,掘进工作面风机不能满足“三专两闭锁”和“双风机、双电源”且自动切换规定等。四是通风管理不到位。未按规定进行主要通风机性能测试、通风阻力测定和矿井通风能力核定,井下各用风地点风量、风速不能满足要求,主要通风机、防爆门和反风设施未按规定检查,仪器仪表未按规定检验。五是技术资料不全,通风系统图等图纸不符合实际,没有通风值班记录、测风记录、通风情况旬报和月报等,未按规定制定计划停风安全技术措施和调风安全技术措施,未按规定召开通风工作例会。六是瓦斯超限作业、瓦斯超限未按规定停电撤人、停风区中瓦斯浓度或者二氧化碳浓度超过3%时未制定安全排放瓦斯措施经矿总工程师批准后实施。 (二)责任分工。由省能源局、贵州煤矿安监局牵头组织开

防排烟系统风机吊装施工方案

防排烟系统风机 安装\吊装方案 工程项目: 中国重庆人力资源服务产业园一期工程建设单位:重庆人力资源和社会保障局建设办 编制人员:罗聪 技术负责:罗聪 项目经理:张勇 报送日期: 2014.04 重庆建工集团股份有限公司

防排烟系统风机安装/吊装方案 一、工程概况 该工程位于渝北区两路组团F标准分区F58-1/02,F59-1/02地块,总建筑面积约202347平方米,包含1#、2#、3#楼。 1#楼由9层主楼与5/6层副楼,以及2层地下建筑组成,一层及以上为档案和办公,负一、负二层为车库与设备用房,建筑高度为38.5米。2#楼由14层主楼与7/12层副楼,以及1层地下建筑组成,一层及以上为档案和办公,负一层为车库与设备用房,建筑高度为58.5米。1#、2#楼共有防排烟风机、排风机、送风机、正压送风机共85台。 3#楼由21层塔楼、5层裙楼以及2层地下建筑组成。负一层为车库、餐厅与设备用房,负二层为车库与设备用房,一层为专业技术人员国家级继续教育基地、服务中心,二层为国家级继续教育基地、人才交流中心,三、四层为继续教育教室等、五层以上为专业技术人员国家级继续教育基地产业办公,建筑高度为97.9米。3#楼共有防排烟风机、排风机、送风机、正压送风机共104台。 二、通风防排烟施工说明及参考规范、图集 1、消声隔振 (1)、风机座地安装时底部与素混凝土基础间均垫以橡胶块,进、出口风管均采用200mm防火软接。 (2)、吊装的风机进出机房处与运转设备相连接的管道均须采用减振支吊架,与风机连接处的风管均采用防火软接。

2、风机安装前应检查电机接线正确无误,通电试验,叶片转动灵活、放线正确,机械部分无摩擦、松脱,无漏电及异常声响。 3、风机落地安装的基础标高、位置及主要尺寸、预留洞的位置和深度应符合设计要求;基础表面应无蜂窝、裂纹、麻面、露筋;基础表面应水平。 4、风机安装应符合下列规定: 1)、风机安装位置应正确,底座应水平; 2)、落地安装时,应固定在减震底座上,底座尺寸应与基础大小匹配,中心线一致,隔振底座与基础之间应按设计要求设置减震装置; 3)、风机吊装时,吊装及减震装置应符合设计及产品技术文件的要求。 5、参考规范、图集: (1)、GB50738-2011 通风与空调工程施工规范 (2)、12K101-1 轴流通风机安装 (3)、05K102_风机安装图集 三、风机安装 1、风机搬运 整体出厂的风机搬运和吊装时,绳索不得捆绑在转子和机壳上盖或轴承上盖的吊耳上。风机搬运时,要注意保护风机外壳油漆。 2、风机吊装 (1)方案(一) 方案(一)中,风机吊机固定于顶板或梁上,采用10mm厚钢板作

实验室通风系统

实验室通风与舒适性空调系统的通风设计要求不同,主要目的是提供安全、舒适的工作环境,减少人员暴露在危险空气下的可能。在实验室装修之前首先应该做好其通风系统的规划。那么解答实验室通风系统应该怎样设计? (1)实验室根据工艺要求和功能布置选择一定数量的通风柜,有的还兼有部分局部排风罩。通常校核下来换气次数远远大于10次,一般在20-30次以上,满足换气次数要求。但是此换气次数是按照通风柜最大开启面积计算的通风量,资料和经验表明100台通风柜99%的时间只有18个或更少的人在使用。故还应校核通风柜最小开启面积时的通风量和换气次数,若小于换气次数要求,则增加综合排风系统。 (2)实验室通风采用全新风系统,通风柜的排气不在室内循环。由于实验室要求房间相对其他辅助区域为负压。所以实验室的新风量设计为排风量的70﹪-80﹪。另外20﹪-30﹪的新风送至实验室辅助房间、办公、管理用房、内走道等,再由门窗缝隙补充到房间。

(3)通风柜的风量平衡可以采用定风量控制系统,即排风量恒定,送风量和门窗缝隙补充风量恒定。此方法适用于最大排风量满足最小换气次数要求的实验室。 (4)对于排风量远大于最小通风量要求的房间还可以采用两段式通风控制系统保证风量平衡,即根据通风柜的位移信号,排风机、送风机有2种送风工况,低风量工况应用于维持最小换气次数的要求,节约能耗。此情形药检所采用了变风量控制系统。通风柜风量变化时,排风量也会相对变小,此时要求放置在屋顶的排风机随着通风柜柜门的位置变化而变频,降低风量,保证通风柜面风速恒定。同时自控系统改变全新风风机的频率,降低风量,维持负压平衡。变风量系统可以降低系统能耗。系统最大、最小换气次数接近则考虑采用定风量系统,使得系统简单,降低初投资。 通风系统除上文所述对通风柜有特殊要求外,对其他设备和控制系统也有一定的要求和标准。通风柜的选择除满足排风和捕捉能力外,还要注意需要根据调节门移动而立即改变风量,维持表面风速的恒定。

矿井通风系统调整方案及安全技术措施标准版本

文件编号:RHD-QB-K9570 (解决方案范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 矿井通风系统调整方案及安全技术措施标准版 本

矿井通风系统调整方案及安全技术 措施标准版本 操作指导:该解决方案文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时进行更好的判断与管理。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 第一节矿井概况 一、矿井采掘概况 根据20xx年11月29日山西省国土资源厅为该矿最新下发的采矿许可证,批准开采15-3号煤层,批准生产规模为900kt/a,批准井田面积 6.5071km2。矿井采用主斜井副立井及回风立井开拓方式。井下现有一个生产采区:即151采区。其中布置一个15103回采工作面,一个15105备采面,两个工作面均采用U型全风压通风方式,一个掘进工作面,15106运输顺槽。

二、矿井通风系统情况 矿井采用中央并列式通风方式,主扇工作方法为机械抽出式,全矿井有两个进风井(主斜井和副立井)和一个回风立井。地面回风井安装有两台FBCDZ-8-No23(2×250KW)型主要通风机,一台运转,一台备用。叶片安装角度为0°,配用 YBF2450-8型电机(功率250kW×2,电压 660V,转数740r/min)。目前矿井总进风量为4021m3/min,矿井总回风量为4065m3/min。 第二节通风系统调整方案 由于矿井停产、冬季井下供暖要求及通风管理需要,为确保矿井通风系统安全可靠,需要对井下各用风地点风量进行重新分配和调整。通过调节矿井主要通风机的性能参数,使矿井总进风量减少。为了确保风量调整工作顺利进行特制订此方案。

相关文档
相关文档 最新文档