文档库 最新最全的文档下载
当前位置:文档库 › 特征值和法 (1)

特征值和法 (1)

特征值和法 (1)
特征值和法 (1)

4.2 程序源代码

maxlmta:

function [w,lmta,CI,RIn,flag]=maxlmta(A)

RI=[0,0,0.58,0.90,1.12,1.24,1.32,1.41,1.45,1.49,1.51];

%将A的每一列向量归一化

Asum=sum(A);

n=length(A);

for j=1:n

for i=1:n

Wij(i,j)=A(i,j)./Asum(1,j);

end

end

%将Wij按行求和

Wij=Wij';

Wi=sum(Wij);

Wi=Wi';

%将Wi归一化

W=sum(Wi);

w=Wi./W;

%计算lmta

lmta=sum(1/n*(A*w)./w);

%计算CR

RIn=RI(1,n);

CI=(lmta-n)/(n-1);

CR=CI/RIn;

%判断一致性检验

if CR<0.1

disp('通过一致性检验')

flag=1;

else

disp('不能通过一致性检验')

flag=0;

end

AHP:

function AHP()

%参数赋予初值

numprilay = 0;

numevepri = 0;

m = 0;

n = 0;

i = 1;

lmta2 = 0;

CI2 = 0;

RI2 = 0;

lmta3 = 0;

CI3 = 0;

RI3 = 0;

lmta4 = 0;

CI4 = 0;

RI4 = 0;

lmtap = 0;

CIp = 0;

RIp = 0;

%初始化各个参数

numprilay=input('输入准则层层数:');

n=numprilay;

while n>0

m=input(['输入第',num2str(i),'准则层准则数:']);

numevepri=[numevepri,m];

n=n-1;

i=i+1;

end

numevepri=numevepri(1,2:numprilay+1); %除去第一个无意义元素

numpla=input('输入方案层数方案数:');

%初始化第1准则层对目标层的成对比较矩阵并检验一致性,若不通过需重新输入flag1=0;

while flag1~=1

if numprilay>=1

A1=input('输入第1准则层对目标层的成对比较矩阵:');

[w1,lmta1,CI1,RI1,flag1]=maxlmta(A1);

if flag1==0

disp('重新输入')

end

end

end

%若存在第2准则层,计算其各个参数

关于特征值与特征向量的求解方法与技巧

关于特征值与特征向量的求解方法与技巧 摘 要:矩阵的初等变换是高等代数中运用最广泛的运算工具,对矩阵的特征值与特征向量的求解研究具有一定意义。本文对矩阵特征值与特征向量相关问题进行了系统的归纳,得出了通过对矩阵进行行列互逆变换就可同时求出特征值及特征向量的结论。文章给出求解矩阵特征值与特征向量的两种简易方法: 列行互逆变换方法与列初等变换方法。 关键词: 特征值,特征向量; 互逆变换; 初等变换。 1 引言 物理、力学、工程技术的许多问题在数学上都归结为求矩阵的特征值与特征向量问题,直接由特征方程求特征值是比较困难的,而在现有的教材和参考资料上由特征方程求特征值总要解带参数的行列式,且只有先求出特征值才可由方程组求特征向量。一些文章给出了只需通过行变换即可同步求出特征值及特征向量的新方法,但仍未摆脱带参数行列式的计算问题。本文对此问题进行 了系统的归纳,给出了两种简易方法。 一般教科书介绍的求矩阵的特征值和特征向量的方法是先求矩阵A 的特征方程()0A f I A λλ=-=的全部特征根(互异) ,而求相应的特征向量的方法则是对每个i λ 求齐次线性方程组()0i I A X λ-=的基础解系,两者的计算是分离的,一个是计算行列式,另一个是解齐次线性方程组, 求解过程比较繁琐,计算量都较大。

本文介绍求矩阵的特征值与特征向量的两种简易方法, 只用一种运算 ——矩阵运算, 其中的列行互逆变换法是一种可同步求出特征值与特征向量的方法, 而且不需要考虑带参数的特征矩阵。而矩阵的列初等变换法, 在求出特征值的同时, 已经进行了大部分求相应特征向量的运算, 有时碰巧已完成了求特征向量的全部运算。两种方法计算量少, 且运算规范,不易出错。 2 方法之一: 列行互逆变换法 定义1 把矩阵的下列三种变换称为列行互逆变换: 1. 互换i 、j 两列()i j c c ?,同时互换j 、i 两行()j i r r ? ; 2. 第i 列乘以非零数()i k kc , 同时第i 行乘11i c k k ?? ?? ? ; 3. 第i 列k 倍加到第j 列()j i c kc +, 同时第j 行- k 倍加到第i 行 ()i j r kr -。 定理1 复数域C 上任一n 阶矩阵A 都与一个Jordan 标准形矩阵 1212,,....r k k kr J diag J J J λλλ? ? ???????? ??? ? ?? ?? ? ? ? ?? ? ?=相似, 其中 111110...0001...00..................000...1000...0ki ki J λλλλ?? ?? ?? ??=????????称为Jordan 块, 12r k k k n ++ +=并且 这个Jordan 标准形矩阵除去其中Jordan 块的排列次序外被矩阵A 唯一确定, J 称为A 的Jordan 标准形。 定理2 A 为任意n 阶方阵, 若T A J I P ?? ????????→ ? ????? 一系列列行互逆变换其中

特征值解法

《结构动力学》大作业 结构大型特征值问题的求解 0810020035 吴亮秦 1振动系统的特征值问题 1.1实特征值问题 n 自由度无阻尼线性振动系统的运动微分方程可表示为: []{}[]{}()M u K u F t += (1.1) 其中,{}u 是位移向量,[]M 和[]K 分别是系统的质量矩阵和刚度矩阵,都是n 阶正定矩阵,()F t 是激励向量。 此系统的自由振动微分方程为 []{}[]{}0M u K u += (1.2) 设其主振型为: {}{}sin()u v t ω?=+ (1.3) 其中,{}v 为振幅向量,ω为圆频率,?为初相位。将(1.3)代入自由振动微分方程(1.2), 得: []{}[]{}K v M v λ= (1.4) 其中2 λω=,(1.4)具有非零解的条件是 ()[][]det 0M K λ-= (1.5) 式(1.4)称为系统的特征方程,由此可以确定方程的n 个正实根1{}n i i λ=,称为系统的特征值,1{}n i i ω=称为系统的固有频率,{}i v (i=1,2,…..n )为对应于特征值的特征向量或称为系统的振型或模态。 因为[]M 矩阵正定,则[]M 有Cholesky 分解: [][][]T M L L = (1.6) 其中,[]L 是下三角矩阵。引入向量{}x 满足:{}[]{}T x L v =,则: 1 {}([]){}T v L x -= (1.7) 代入(1.4),得: ([][]){}0I P x λ-= (1.8) 其中,( ) 1 1 [][][][] T P L K L --=,式(1.8)称为标准实特征值问题。 1.2复特征值问题 多自由度阻尼自由振动系统的运动方程为如下二阶常系数微分方程组: []{()}[]{()}[]{()}0 M x t C x t K x t ++= (1.9) 其中 []M ,[]C ,[]K 分别是n 阶的质量、阻尼和刚度矩阵,{()}q t 是n 维可微向量函数。用分离变量法,设{()}{}t x t e λφ=,其中{}φ是与时间t 无关的常向量,λ为待定参数。将

43多项式方法求特征值问题

4.3多项式方法求特征值问题 4.3.1 F-L 方法求多项式系数 我们知道,求n 阶方阵A 的特征值就是求代数方程 0||)(=-=I A λλ? (4.3.1) 的根。)(λ?称为A 的特征多项式。上式展开为 n n n n p p p ++++=--.....)(2211λλλλ? (4.3.2) 其中n p p p ,...,21为多项式)(λ?的系数。 从理论上讲,求A 的特征值可分为两步: 第一步 直接展开行列式|I A λ-|求出多项式)(λ?; 第二步 求代数方程0)(=x ?的根,即特征值。 《 对于低阶矩阵,这种方法是可行的。但对于高阶矩阵,计算量则很大,这种方法是不适用的。这里我们介绍用F-L (Faddeev-Leverrier )方法求特征方程(4.3.2)中多项式)(λ?的系数。由于代数方程求根问题在第2章中已经介绍,所以本节中解决特征值问题的关键是确定矩阵A 的特征多项式)(λ?,所以称这种方法为多项式方法求特征值问题。 记矩阵A=n n ij a ?)(的对角线元素之和为 nn a a a trA +++=...2211 (4.3.3) 利用递归的概念定义以下n 个矩阵:),....,2,1(n k B k = ???????????????-=-=-=-==----),(................),(...............),(),(,11112231121I p B A B I p B A B I p B A B I p B A B A B n n n k k k n n k k trB n p trB k p trB p trB p trB p 11312133221 1===== (4.3.4) 可以证明,(4.3.4)式中,,...,2,1,n k p k =即是所求A 的特征多项式)(λ?的各系数。用()式求矩阵的特征多项式系数的方法称为F-L 方法。相应特征方程为: 0).....()1(2211=-------n n n n n p p p λλλ (4.3.5) 而且可证矩阵A 的逆矩阵可表示为 )(1111I p B p A n n n ----= (4.3.6) ? 例1 求矩阵 ??????????=324202423A

特征值和特征向量的性质与求法

特征值和特征向量的性质与求法 方磊 (陕理工理工学院(数学系)数学与应用数学专业071班级,陕西汉中 723000)” 指导老师:周亚兰 [摘要] :本文主要给出了矩阵特征值与特征向量的几个性质及特征值、特征向量的几种简单求法。 [关键词]:矩阵线性变换特征值特征向量

1 特征值与特征向量的定义及性质 定义1:(ⅰ)设A 是数域p 上的n 阶矩阵,则多项式|λE-A|称A 的特征多项式,则它在 c 上的根称为A 的特征值。 (ⅱ)若λ是A 的特征值,则齐次线性方程组(λE-A) X =0的非零解,称为A 的属于特征值λ的特征向量。 定义2:设α是数域P 上线性空间v 的一个线性变换,如果对于数域P 中的一数0λ存在一个非零向量ξ,使得a ξ=0λξ,那么0λ 成为α的一个特征值而ξ称为α的属于特征值0λ的一个特征向量。 性质1: 若λ为A 的特征值,且A 可逆,则0≠λ、则1-λ 为1-A 的特征知值。 证明: 设n λλλ 21为A 的特征值,则A =n λλλ 21ο≠ ∴λi≠0(i=1、2…n) 设A 的属于λ的特征向量为ξ 则ξλξi =?A 则λ1 -A ξ=ξ即有 1 -A ξ=1 -λ ξ ∴1 -λ 为1 -A 的特征值,由于A 最多只有n 个特征值 ∴1 -λ 为1 -A ξ的特征值 性质2:若λ为A 的特征值,则()f λ为()f A 的特征值 ()χf =n n a χ +1 0111 1x a x a x a n n +++-- 证明:设ξ为A 的属于λ的特征向量,则A ξ=λξ ∴ ()A f ξ=(n n A a +E a A a A a n n 011 1+++-- )ξ = n n A a ξ+ 1 1--n n A a ξ+… +E a 0 ξ =n n a λξ+1 1--n n a λ+…+E 0a ξ =()λf ξ 又ξ≠0 ∴ ()λf 是()A f 的特征值 性质3:n 阶矩阵A 的每一行元素之和为a ,则a 一定是A 的特征值

求矩阵特征值算法及程序

求矩阵特征值算法及程序简介 1.幂法 1、幂法规范化算法 (1)输入矩阵A 、初始向量)0(μ ,误差eps ; (2)1?k ; (3)计算)1()(-?k k A V μ; (4))max (,) max ()1(1)(--??k k k k V m V m ; (5)k k k m V /)()(?μ; (6)如果eps m m k k <--1,则显示特征值1λ和对应的特征向量)1(x ),终止; (7)1+?k k ,转(3) 注:如上算法中的符号)max(V 表示取向量V 中绝对值最大的分量。本算法使用了数据规范化处理技术以防止计算过程中出现益出错误。 2、规范化幂法程序 Clear[a,u,x]; a=Input["系数矩阵A="]; u=Input["初始迭代向量u(0)="]; n=Length[u]; eps=Input["误差精度eps ="]; nmax=Input["迭代允许最大次数nmax="]; fmax[x_]:=Module[{m=0,m1,m2}, Do[m1=Abs[x[[k]]]; If[m1>m,m2=x[[k]];m=m1], {k,1,Length[x]}]; m2] v=a.u; m0=fmax[u]; m1=fmax[v]; t=Abs[m1-m0]//N; k=0; While[t>eps&&k

m0=m1; m1=fmax[v]; t=Abs[m1-m0]//N; Print["k=",k," 特征值=",N[m1,10]," 误差=",N[t,10]]; Print[" 特征向量=",N[u,10]]]; If[k ≥nmax,Print["迭代超限"]] 说明:本程序用于求矩阵A 按模最大的特征值及其相应特征向量。程序执行后,先通过键盘输入矩阵A 、迭代初值向量)0(μ、精度控制eps 和迭代允许最大次数max n ,程序即可给出每次迭代的次数和对应的迭代特征值、特征向量及误差序列,它们都按10位有效数输出。其中最后输出的结果即为所求的特征值和特征向量序列。如果迭代超出max n 次还没有求出满足精度的根则输出迭代超限提示,此时可以根据输出序列判别收敛情况。 程序中变量说明 a:存放矩阵A ; u:初始向量)0(μ和迭代过程中的向量)(k μ及所求特征向量; v:存放迭代过程中的向量)(k V ; m1:存放所求特征值和迭代过程中的近似特征值; nmax:存放迭代允许的最大次数; eps:存放误差精度; fmax[x]: 给出向量x 中绝对值最大的分量; k:记录迭代次数; t1:临时变量; 注:迭代最大次数可以修改为其他数字。 3、例题与实验 例1. 用幂法求矩阵???? ? ??---=9068846544 1356133A 的按模最大的特征值及其相应特征向量,要求误差410-

乘幂法求特征值及特征向量

#include #include #define NUMBER 20 #define epsilon 0.001 main() { double A[NUMBER][NUMBER],X[NUMBER],G[NUMBER]; int n; int i,r,j,k; double XK[NUMBER],Y[NUMBER]; double m; double h; printf("\n gui fan hua cheng mi fa qiu ju zhen zhu te zheng zhi ji te zhen xiang liang:"); printf("\n shu ru ju zhen de wei shu n="); scanf("%d",&n); printf("\n xian zai shu ru ju zhen A:"); for(i=1;i<=n;i++) { printf("\n qing shu ru a%dl--a%d%d xi shu:",i,i,n); for(j=1;j<=n;j++) scanf("%lf",&A[i][j]); } for(i=1;i<=n;i++) X[i]=1; for(;;) { m=0; h=0; for(i=1;i<=n;i++) if(m

43多项式方法求特征值问题

4.3多项式方法求特征值问题 4.3.1 F-L 方法求多项式系数 我们知道,求n 阶方阵A 的特征值就是求代数方程 0||)(=-=I A λλ? (4.3.1) 的根。)(λ?称为A 的特征多项式。上式展开为 n n n n p p p ++++=--.....)(2211λλλλ? (4.3.2) 其中n p p p ,...,21为多项式)(λ?的系数。 从理论上讲,求A 的特征值可分为两步: 第一步 直接展开行列式|I A λ-|求出多项式)(λ?; 第二步 求代数方程0)(=x ?的根,即特征值。 对于低阶矩阵,这种方法是可行的。但对于高阶矩阵,计算量则很大,这种方法是不适用的。这里我们介绍用F-L (Faddeev-Leverrier )方法求特征方程(4.3.2)中多项式)(λ?的系数。由于代数方程求根问题在第2章中已经介绍,所以本节中解决特征值问题的关键是确定矩阵A 的特征多项式)(λ?,所以称这种方法为多项式方法求特征值问题。 记矩阵A=n n ij a ?)(的对角线元素之和为 nn a a a trA +++=...2211 (4.3.3) 利用递归的概念定义以下n 个矩阵:),....,2,1(n k B k = ???????????????-=-=-=-==----),(................),(...............),(),(,11112231121I p B A B I p B A B I p B A B I p B A B A B n n n k k k n n k k trB n p trB k p trB p trB p trB p 11312133221 1===== (4.3.4) 可以证明,(4.3.4)式中,,...,2,1,n k p k =即是所求A 的特征多项式)(λ?的各系数。用(4.3.4)式求矩阵的特征多项式系数的方法称为F-L 方法。相应特征方程为: 0).....()1(2211=-------n n n n n p p p λλλ (4.3.5) 而且可证矩阵A 的逆矩阵可表示为 )(1111I p B p A n n n ----= (4.3.6) 例1 求矩阵 ??????????=324202423A

PCA(协方差矩阵和奇异值分解两种方法求特征值特征向量)

PCA(协方差矩阵和奇异值分解两种方法求特征值特征向量) 2015-12-30 10:43 1157人阅读评论(0) 收藏举报 分类: 模式识别(1) 1.问题描述 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在大多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。盲目减少指标会损失很多信息,容易产生错误的结论。 2.过程 主成分分析法是一种数据转换的技术,当我们对一个物体进行衡量时,我们将其特征用向量 (a1,a2,a3,...an)进行表示,每一维都有其对应的variance(表示在其均值附近离散的程度);其所有维的variance之和,我们叫做总的variance;我们

对物体进行衡量时,往往其特征值之间是correlated 的,比如我们测量飞行员时,有两个指标一个是飞行技术(x1),另一个是对飞行的喜好程度(x2),这两者之间是有关联的,即correlated的。我们进行PCA (主成分分析时),我们并没有改变维数,但是我们却做了如下变换,设新的特征为(x1,x2,x3...,xn); 其中 1)x1的variance占总的variance比重最大; 2)除去x1,x2的variance占剩下的variance比重最大; .... 依次类推; 最后,我们转换之后得到的(x1,x2,...xn)之间都是incorrelated,我们做PCA时,仅取(x1,x2,....xk),来表示我们测量的物体,其中,k要小于n。主成分的贡献率就是某主成分的方差在全部方差中的比值。这个值越大,表明该主成分综合X1,X2,…,XP信息的能力越强。如果前k个主成分的贡献率达到85%,表明取前k个主成分基本包含了全部测量指标所具有的

矩阵的特征值与特征向量的求法

摘要:首先给出了求解矩阵特征值和特征向量的另外两种求法,然后运用特征值的性质讨论了矩阵合同、相似的充要条件,以及逆矩阵的求解等相关问题. 关键词:矩阵的特征多项式,特征值,特征向量,对角矩阵,逆矩阵

Abstract:Firstly,it is given matrix eigenvalues and eigenvectors of two other methods, then with the properties of eigenvalue the contract of matrix discussed,we deeply discuss the sufficient and necessary conditions for the similar matrix contract, and the inverse matrix of the related problem solving. Keywords:matrix characteristic polynomial, eigenvalue, eigenvector, diagonal matrices, inverse matrix

目录 1 前言 (4) 2 矩阵的特征值和特征向量的求法 (4) 2.1 矩阵的初等变换法 (4) 2.2 矩阵的行列互逆变换法 (6) 3 矩阵特征值的一些性质及应用 (7) 3.1 矩阵之间的关系 (7) 3.1.1 矩阵的相似 (7) 3.1.2 矩阵的合同 (7) 3.2 逆矩阵的求解 (8) 3.3 矩阵相似于对角矩阵的充要条件 (8) 3.4 矩阵的求解 (9) 3.5 矩阵特征值的简单应用 (10) 结论 (11) 参考文献 (12) 致谢 (13)

相关文档
相关文档 最新文档