文档库 最新最全的文档下载
当前位置:文档库 › 结构力学自测题(第八单元)矩阵位移法

结构力学自测题(第八单元)矩阵位移法

结构力学自测题(第八单元)矩阵位移法
结构力学自测题(第八单元)矩阵位移法

结构力学自测题(第八单元)矩阵位移法

姓名 学号

一、是非题(将判断结果填入括弧:以O 表示正确,以X 表示错误)

1、用矩阵位移法计算连续梁时无需对单元刚度矩阵作坐标变换。(

) 2、结构刚度矩阵是对称矩阵,即有K ij =K ji ,这可由位移互等定理得到证明。(

)

3、图示梁结构刚度矩阵的元素K EI l 113

24=/ 。

(

)

EI

l l

EI

21

2

x

y M , θ

附: ???????????????

????????

??????

?---

-

--

--

l

EI l

EI l

EI l

EI l EI l EI l EI l EI l EA l EA l EI l

EI l EI l EI l EI l EI l EI l EI l EA l EA 460

2606120612000002604606120612000002223

23222

3

2

3

4、在任意荷载作用下,刚架中任一单元由于杆端位移所引起的杆端力计算公式为:

{}

[][]

{}

F T K e

e

e

=δ 。

(

)

二、选择题(将选中答案的字母填入括弧内)

1、已知图示刚架各杆EI =常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行

结点位移编号,其正确编号是:

(0,1,2) (0,0,0) (0,0,0)

(0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3)

(1,0,2)

(0,0,0) (0,0,0) (1,0,3) (0,0,0)

(0,1,2)

(0,0,0) (0,3,4)

A.

B.

C.

D.

2

1

3

4 1

2

3 4 1

2 3

4 1 2 3 4 x

y M , θ

( )

2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是:

(

)

A .非对称、奇异矩阵;

B .对称、奇异矩阵;

C .对称、非奇异矩阵;

D .非对称、非奇异矩阵。

3、单元i 、j 在图示两种坐标系中的刚度矩阵相比:

A .完全相同;

B . 第2、3、5、6行(列)等值异号;

C . 第2、5行(列)等值异号;

D .第3、6行(列)等值异号。

(

)

i

j

y

x

i

j

y

x

M , θ

M , θ

4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系:

(

)

A .杆端力与结点位移;

B .杆端力与结点力;

C .结点力与结点位移;

D .结点位移与杆端力。

5、单元刚度矩阵中元素k ij 的物理意义是:

A .当且仅当δi =1时引起的与δj 相应的杆端力;

B .当且仅当δj =1时引起的与δi 相应的杆端力;

C .当δj =1时引起的δi 相应的杆端力;

D .当δi =1时引起的与δj 相应的杆端力。

(

)

6、用矩阵位移法解图示连续梁时,结点3的综合结点荷载是:

A .[]

-ql ql

2 12

T

132

; B .[

]

ql ql

2132

12T

-;

C .[]--ql

ql

2112

12T

; D .[]

ql

ql

2112

12

T

(

)

123

l /2

l

l

ql

2

q

4

ql

l /2

x

y M , θ

7、用矩阵位移法解图示结构时,已求得1端由杆端位移引起的杆端力为{}[]T

F 461--=,则结

点1处的竖向反力Y 1等于:

A .6-;

B .-10;

C .10 ;

D .14 。

(

)

2m

4m

12

3

M 1

Y 20kN/m

1

x

y

M , θ

三、填充题(将答案写在空格内)

1、图示桁架结构刚度矩阵有 个元素,其数值等于 。

2m

3m

3m

A

B

C

D

EA

EA

EA x

y M , θ

2、图示刚架用两种方式进行结点编号,结构刚度矩阵最大带宽较小的是图 。

35

641

2

71

2

34567

(a)

(b)

3、图示梁结构刚度矩阵的主元素K K 1122== , 。

l

l

2EI EI 1

2

x

y M , θ

四、图a 、b 所示两结构,各杆EI 、l 相同,不计轴向变形,已求得图b 所示结构的结点位移列阵

为{}?=-??????ql EI

ql REI ql

EI 343

96192192 T

。试求图a 所示结构中单元①的杆端力列阵。 q

1

2

3

4

(a)ql

2

12

3

4

(b)

② ③

x

y

M , θ

五、图a 所示结构(整体坐标见图b),图中圆括号内数码为结点定位向量(力和位移均按水平、竖

直、转动方向顺序排列)。求结构刚度矩阵[]K 。(不考虑轴向变形)

6m

(0,0,0)

(1,0,3)

(1,0,2)6m

(a)

i i

x y

M , θ

(b)

六、求图示结构的自由结点荷载列阵{}P 。

l

l q

M

x

y

M , θ

七、图a 所示结构,整体坐标见图b ,图中圆括号内数码为结点定位向量(力和位移均按水平、竖

直、转动方向顺序排列)。求等效结点荷载列阵{}P E 。(不考虑轴向变形)

kN m 384kN

(1,0,3)

m /m

14m

36(1,0,2)(b)

(a)

x

y M , θ①

八、已知图示连续梁结点位移列阵{}θ如下所示,试用矩阵位移法求出杆件23的杆端弯矩并画出

连续梁的弯矩图。设q=20kN /m ,23杆的i =??10106

.kN cm 。

{}θ=--????????????

???-365714572286104

....rad

1

2

3

4

q

i

6m

3m

3m

x

y

M , θ

已知图示桁架的结点位

移列阵为

{}[]?=--01726504007 0 2.5677 0.0415 1.0415 1.3673 1.6092 1.6408 0 1.2084 T

.. ,EA =1kN 。试求杆1

4的轴力。

1m

1kN

1m

1m

1

35

2

4

6

x

y

M , θ

1kN

十、试用矩阵位移法解图示连续梁,绘弯矩图。EI=已知常数。

A

B C E I 2 D

10 k N /m 50 20

k N kN . m

6 m

4 m

2 m

E I x

y

M , θ

自测题(第八单元)矩阵位移法

答案

一、 1 O 2 X 3 X 4 X 二、 1 A 2 B 3 B 4 C 5 B

6 C

7 D

三、

1、 1 、 2EA/L

2、 b

3、 i E I l

K i K i === , , 1122124

四、

{}

{}??a ql EI ql EI ql EI =-=--????

?

?1281616343

T

{}

F ql ql ql ql a

=---??????

341434222

T

(7分 )

五、

[]K i =--??????

?

?

?? 1 0 1 8 2 0 2 413/ (10分 )

六、

{}[]

T

/ql +m -/ql -P 12202= (7分 )

七、

{}[] 2 3

42

21

42

E T

1P =-- (7分 )

八、

M M 233242885140??????=-???

?

??.. 42.88

51.40

90

(kN m)

.M ( 7分)

九、

N 1400587=-.kN (7分 )

十、

??????-=??

????????

??????40802

121

3721θθEI EI EI EI ( 4 分 ); ??????-=?

?????6448121EI θθ ( 2 分 )

()

()

?

?

????-=?

??

?????????--=?

?????40163462221121M M M M ( 3 分 )

62

16

40 34

45

kN m

.

M

M 图 ( 3 分 )

本章小结

编码:

整体(结构)编码: 单元码①②③…

结点码ABCD…(1234…) 结点位移(力)码=总码1234… 局部(单元)编码: 杆端码 1 2

(局部坐标系)杆端位移(力)码=局部码)6)...(2)(1(

(整体坐标系)杆端位移(力)码=局部码 )6)...(2)(1(

不同结点:固定端、铰支端、自由端、中间铰、 中间滑动

不同结构:刚架、忽略轴向变形矩形刚架、梁、 连续梁、桁架、组合结构

[]{}{}

P K =?{}

[]{}e

e

F T F ={}

[]{}{}e P

e

e

e

F k

F +?={}[]{}{}e

P e

e e

F k

F +

?={}

[]{}e

e

T ?=

?{}

{}{}e

e

??

?λ{}[]{}

P K 1-=?{}

?

e

F 内力图

[][][][]

T k T

k e

T

e

={}

{}

=

e

P

F {}{}{}

J E P P P +={}

[]{}

e

P T e P

F T

F ={}[]{}e E T e

E P T

P ={}

{}e

P e

E

F P -={}{}

e

P e

E F P -={}{}

{}

E e

e

E P P λ?[]{}[]

K k e

e

λ? 前处理法公式汇总:

[]

[]=

e

k

单元:

刚架单元[]66?k 、梁单元[]44?k 、连续梁单元[]

2

2?k 、桁架单元[]44?k

坐标系:

整体(结构)坐标系、局部(单元)坐标系

转换:

定位:

名称和意义:各矩阵、列阵(向量)、ij

ij ij K k k

结构力学课后解答:第7章__位移法

习题 7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。 (a) (b) (c) 1个角位移3个角位移,1个线位移4个角位移,3个线位移 (d) (e) (f) 3个角位移,1个线位移2个线位移3个角位移,2个线位移 (g) (h) (i) 一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量? 7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。 7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化? 7-5 试用位移法计算图示结构,并绘出其内力图。 (a) 解:(1)确定基本未知量和基本结构 有一个角位移未知量,基本结构见图。 l 7- 32

Z 1M 图 (2)位移法典型方程 11110 p r Z R += (3)确定系数并解方程 i ql Z ql iZ ql R i r p 24031831 ,82 12 12 111= =-∴-== (4)画M 图 M 图 (b) 解:(1)确定基本未知量 1个角位移未知量,各弯矩图如下 4m 4m 4m

7- 34 1Z =1M 图 3 EI p M 图 (2)位移法典型方程 11110 p r Z R += (3)确定系数并解方程 1115 ,35 2p r EI R ==- 15 3502 EIZ -= 114Z EI = (4)画M 图 () KN m M ?图 (c) 解:(1)确定基本未知量 一个线位移未知量,各种M 图如下 6m 6m 9m

结构力学[第八章矩阵位移法]课程复习

第八章矩阵位移法 一、基本内容及学习要求 本章内容包括:矩阵位移法的解题思路,单元刚度矩阵及其坐标变换,直接刚度法(先处理),等效结点荷载以及矩阵位移法应用中的问题。要求会用矩阵位移法计算结构的位移和内力。 通过本章的学习应达到: (1)掌握矩阵位移法的解题思路和步骤,了解矩阵位移法与位移法的内在联系。 (2)建立单元坐标系下的单元刚度矩阵,明确单元刚度矩阵的特性及矩阵元素的物理概念。 (3)弄清坐标变换的含义,形成结构坐标系下的单元刚度矩阵。 (4)借助定位向量,熟练应用直接刚度法(先处理)形成结构刚度矩阵。 (5)计算综合结点荷载。 (6)利用结构刚度方程求解结点位移进而计算杆端内力。 二、学习指导 (一)矩阵位移法的解题思路与步骤 矩阵位移法与位移法的解题思路基本相同,两者的差异仅在于前者从机算考虑,采用矩阵使公式规格化,以适应程序设计的要求,故解题步骤和处理方法都有所不同。为使读者抓住学习要领,现用简例扼要说明两者间的关系。 图8.1所示三跨连续梁承受结点集中力 偶作用。用位移法求解时若将其转化为三根两 端固定梁,按以下步骤直接建立位移法方程。 (1)把三根梁作为三个单元,利用转角位

移方程将其杆端弯矩表示成杆端位移的函数

矩阵位移法和位移法两者比较,求解过程基本相同,关键不同之处在于矩

阵位移法利用了K的组合特性,解算时绕过平衡条件直接建立结构刚度矩阵。下面对此作简要说明,使读者有大致的了解。 位移法通过单元刚度方程,利用平衡条件建立位移法方程,其系数由各单元刚度方程的系数组合而成。矩阵位移法则借助各单元刚度矩阵的元素直接形成结构刚度矩阵,只要把单元刚度矩阵的元素按其附标放到结构刚度矩阵的相应位置(有一方附标为零或两方附标均为零的元素不进入),再将同一位置的元素相加即可,故又称直接刚度法。这一过程归纳为“对号入座、同位相加”,本题按此即得 读者把K的建立过程与式(g)对照,不难发现二者的共同之处,其差别仅在于位移法的处理较为直观,矩阵位移法更加直接却稍嫌繁琐,以分别适应手算和机算的要求。读者了解这些特点,会使学习思路更加清晰。 (二)单元刚度矩阵 应用矩阵位移法必须首先进行单元分析,建立单元杆端力与杆端位移间的关系(单元刚度方程),其目的是找到单元杆端力与杆端位移间的转换矩阵——单元刚度矩阵(以下简称“单刚”)。单刚的形式和元素与所取坐标系关系密切,矩

《结构力学习题集》下矩阵位移法习题及答案 2

第七章 矩阵位移法 一、就是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性与奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 就是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 就是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它就是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义就是变形连续条件与位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数与。 10、矩阵位移法中,等效结点荷载的“等效原则”就是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号就是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,就是: A.非对称、奇异矩阵; B.对称、奇异矩阵; C.对称、非奇异矩阵; D.非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A.完全相同; B.第2、3、5、6行(列)等值异号;

结构力学位移法题与答案解析

超静定结构计算一S移法 —.判断题: Is判断下列结构用位移法计算时基本未知呈的数目。 2、位移法求解结构力时如果Mp图为零,则自由项血一走为零。 3、位移法未知呈的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静走的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二计算题: (2) (3) (1) (6) £/=■ El El EA 2EI 、b EA E/=oc d 4EI一— J E/=oo 2E1 4A7 2EI 4 El

12.用位移法计算图示结构并作〃图,横梁刚度EA -8 ,两柱线刚度/相同。 13、用位移法计算图示结构并作〃图。F/二常数。 14、求对应的荷载集度g。图示结构横梁刚度无限大。已知柱顶的水平位移为512/(3 曰)(T)。 15、用位移法计算图示结构州乍M图。曰=常数。

16、用位移法计算图示结构r求出未知呈,各杆曰相同。 4m 4m 19、用位移法计算图示结构并作〃图。 -2/ 2f q 二i i 20、用位移法计算图示结构并作〃图。各杆日=営数r q = 20kN/m o 6m 4 ------- B 6m 6m R --- k ----- 1 23、用位移法计算图示结构州乍M图。曰=常数。 7T7F 24、用位移法计算图示结构州乍M图。曰=常数。

°^=ZJ 週AV 酔辭圍闕¥觀⑨由、充 。回申Z7阴甘县欲 遍如士星與莎竺园蔑44辛觀⑨由、6 乙 Ic n n M M I Z M f c/i in

38、用位移法计算图示结构并作〃图。曰=常数。 42、用位移法计算图示结构州乍〃图。 43、用位移法计算图示结构州乍〃图。曰=常数。 48、已知0点的位移0,求几

结构力学习题集(下)-矩阵位移法习题及答案

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同;

《结构力学》典型习题与解答

《结构力学》经典习题及详解 一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。) 1.图示桁架结构中有3个杆件轴力为0 。(×) 2.图示悬臂梁截面A 的弯矩值是ql 2。 (×) l l 3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。(√ ) 4.一般来说静定多跨梁的计算是先计算基本部分后计算附属部分。(× ) 5.用平衡条件能求出全部内力的结构是静定结构。( √ ) 6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。(√ ) 7.超静定结构的力法基本结构不是唯一的。(√) 8.在桁架结构中,杆件内力不是只有轴力。(×) 9.超静定结构由于支座位移可以产生内力。 (√ ) 10.超静定结构的内力与材料的性质无关。(× ) 11.力法典型方程的等号右端项不一定为0。 (√ ) 12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。(√) 13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系 数的计算无错误。 (× ) 14.力矩分配法适用于所有超静定结构的计算。(×) 15.当AB 杆件刚度系数i S AB 3 时,杆件的B 端为定向支座。 (×)

二、单项选择题(在每小题的四个备选答案中选出一个正确答案,并将其代号填在题干后面的括号内。不选、错选或多选者,该题无分。) 1.图示简支梁中间截面的弯矩为( A ) q l A . 82ql B . 42ql C . 22 ql D . 2ql 2.超静定结构在荷载作用下产生的内力与刚度(B ) A . 无关 B . 相对值有关 C . 绝对值有关 D . 相对值绝对值都有关 3.超静定结构的超静定次数等于结构中(B ) A .约束的数目 B .多余约束的数目 C .结点数 D .杆件数 4.力法典型方程是根据以下哪个条件得到的(C )。 A .结构的平衡条件 B .结构的物理条件 C .多余约束处的位移协调条件 D .同时满足A 、B 两个条件 5. 图示对称结构作用反对称荷载,杆件EI 为常量,利用对称性简化后的一半结构为(A )。 6.超静定结构产生内力的原因有(D ) A .荷载作用与温度变化 B .支座位移 C .制造误差 D .以上四种原因

《结构力学习题集》-矩阵位移法习题及答案

第八章 矩阵位移法 – 老八校 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2 A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 :

《结构力学习题集》-矩阵位移法习题及标准答案

第八章 矩阵位移法 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( )

二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI 13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2 A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵 [][]K K 22 24 ,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 :

结构力学位移法题及答案

超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1) (2) (3) (4) (5) (6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI=EI= 24442 2、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题: 12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。 2 13、用位移法计算图示结构并作M 图。E I =常数。

l l l/2l/2 14、求对应的荷载集度q。图示结构横梁刚度无限大。已知柱顶的水平位移为 () 5123 /() EI→。 12m12m 8m q 15、用位移法计算图示结构并作M图。EI =常数。 l l l 16、用位移法计算图示结构,求出未知量,各杆EI相同。 4m 19、用位移法计算图示结构并作M图。 q l l

20、用位移法计算图示结构并作M 图。各杆EI =常数,q = 20kN/m 。 6m 6m 23、用位移法计算图示结构并作M 图。EI =常数。 l l 2 24、用位移法计算图示结构并作M 图。EI =常数。 q 29、用位移法计算图示结构并作M 图。设各杆的EI 相同。 q q l l /2/2 32、用位移法作图示结构M 图。 E I =常数。

q l l /2 l /2l 36、用位移法计算图示对称刚架并作M 图。各杆EI =常数。 l l 38、用位移法计算图示结构并作M 图。EI =常数。 q l l l l 42、用位移法计算图示结构并作M 图。 2m 2m 43、用位移法计算图示结构并作M 图。EI =常数。

结构力学位移法解析

第十章位移法 §10-1 概述 位移法——以结点位移(线位移,转角)为基本未知量的方法。 基本概念:以刚架为例(图10-1) 基本思路:以角位移Z1为基本未知量 平衡条件——结点1的力矩平衡 位移法要点:一分一合 ①确定基本未知量(变形协调)基本体系-独立受力变形的杆件 ②将结构拆成杆件-杆件分析(刚度方程-位移产生内力、荷载产生内力) ③将结构杆件合成结构:整体分析——平衡条件——建立方程 §10-2 等截面直杆的转角位移方程 单跨超静定梁——由杆端位移求杆端力——转角位移方程 矩阵形式 一、端(B端)有不同支座时的刚度方程 (1)B端固定支座 (2)B端饺支座 (3)B端滑动支座 二、由荷载求固端力(3*,4,11*,12,19,20) (1)两端固定 (2)一端固定,一端简支 (3)一端固定,一端滑动(可由两端固定导出) 三、一般公式 叠加原理杆端位移与荷载共同作用 杆端弯矩:(10-1) 位移法意义(对于静定、超静定解法相同) 基本未知量-被动(由荷载等因素引起) →按主动计算——位移引起杆端力+荷载的固端力 →结点满足平衡 正负号规则——结点转角(杆端转角) 弦转角——顺时针为正 杆端弯矩 位移法三要素: 1.基本未知量-独立的结点位移 2.基本体系-原结构附加约束,分隔成独立变力变形的杆件体系。 3.基本方程-基本体系在附加约束上的约束力(矩)与原结构一致 (平衡条件)

§10-3基本未知量的确定 角位移数=刚结点数(不计固定端) 线位移数=独立的结点线位移 观察 几何构造分析方法——结点包括固定支座)变铰结点 铰结体系的自由度数=线位移数 ――即使其成为几何不变所需添加的链杆数。 §10-4典型方程及计算步骤 典型方程(10-5、6) 无侧移刚架的计算 无侧移刚架-只有未知结点角位移的刚架(包括连续梁)(△=0) 有侧移刚架计算 有侧移刚架――除结点有位移外还有结点线位移 求解步骤: (1)确定基本未知量:Z i (按正方向设基本未知量)——基本体系, (2)作荷载、Z i = 1 —— ()()01i P i i M M ??==、图 (3)求结点约束力矩:荷载 —— 自由项R Ip ,及ΔJ = 1 —— 刚度系数 k IJ (4)建立基本方程:[k IJ ]{ Z i } + { R Ip } = {0} —— 附加约束的平衡条件 求解Z i (Δi ) (5) 叠加法作i i P Z M M M ∑+= §10-5 直接建立位移法方程 求解步骤: (1)确定基本未知量:Z i (按正方向设基本未知量)——基本体系, (2)写杆端弯矩(转角位移方程) (3)建立位移法方程—— 附加约束的平衡,求解Z i (4) 叠加法作i i P Z M M M ∑+= §10-6 对称性利用 对称结构 对称荷载作用 —— 变形对称,内力对称 (M 、N 图对称,Q 图反对称——Q 对称) 反对称荷载作用 —— 变形反对称,内力反对称 (M 、N 图反对称,Q 图对称——Q 反对称) —— 取半跨 对称结构上的任意荷载 ——对称荷载+反对称荷载

结构力学-第7章 位移法

第7章位移法 一. 教学目的 掌握位移法的基本概念; 正确的判断位移法基本未知量的个数; 熟悉等截面杆件的转角位移方程; 熟练掌握用位移法计算荷载作用下的刚架的方法 了解位移法基本体系与典型方程的物理概念和解法。 二. 主要章节 §7-1 位移法的基本概念 §7-2 杆件单元的形常数和载常数—位移法的前期工作 §7-3 位移法解无侧移刚架 §7-4 位移法解有侧移刚架 §7-5 位移法的基本体系 §7-6 对称结构的计算 *§7-7支座位移和温度改变时的位移法分析(选学内容) §7-8小结 §7-9思考与讨论 三. 学习指导 位移法解超静定结构的基础是确定结构的基本未知量以及各个杆件的转角位移方程,它不仅可以解超静定结构,同时还可以求解静定结构,另外,要注意杆端弯矩的正负号有新规定。 四. 参考资料 《结构力学(Ⅰ)-基本教程第3版》P224~P257 第六章我们学习了力法,力法和位移法是计算超静定结构的两个基本方法,力法发展较早,位移法稍晚一些。力法把结构的多余力作为基本未知量,将超静定结构转变为将定结构,按照位移条件建立力法方程求解的;而我们今天开始学的这一章位移法则是以结构的某些位

移作为未知量,先设法求出他们,在据以求出结构的内力和其他位移。由位移法的基本原理可以衍生出其他几种在工程实际中应用十分普遍的计算方法,例如力矩分配法和迭代法等。因此学习本章内容,不仅为了掌握位移法的基本原理,还未以后学习其他的计算方法打下良好的基础。此外,应用微机计算所用的直接刚度法也是由位移法而来的,所以本章的内容也是学习电算应用的一个基础。 本章讨论位移法的原理和应用位移法计算刚架,取刚架的结点位移做为基本未知量,由结点的平衡条件建立位移法方程。位移法方程有两种表现形式:①直接写平衡返程的形式(便于了解和计算)②基本体系典型方程的形式(利于与力法及后面的计算机计算为基础的矩阵位移法相对比,加深理解) §7-1位移法的基本概念 1.关于位移法的简例 为了具体的了解位移法的基本思路,我们先看一个简单的桁架的例子:课本P225。图7-1和图7-2所示。 (a)(a) (b) (b)

《结构力学习题集》第8章位移法

第8章 位移法 习 题 一、判断题: 1、位移法未知量的数目与结构的超静定次数有关。 ( ) 2、位移法的基本结构可以是静定的,也可以是超静定的。 ( ) 4、位移法典型方程的物理意义反映了原结构的位移协调条件。 ( ) 5、图示结构,当支座B 发生沉降?时,支座B 处梁截面的转角大小为12 ./?l ,方向为顺时针方向,设EI =常数。 ( ) 6、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。 ( ) /2 /2 2l l θ θ C 7、图示梁之EI =常数,固定端A 发生顺时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是-θ/2 。 ( ) 8、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。 ( ) q l 9、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。( ) 10、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。 ( ) 11、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。 ( ) 12、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。

/2 /2 2l l θ θ C 二、填空题: 13、判断下列结构用位移法计算时基本未知量的数目。 (1) (2) (3) (4) (5) (6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI=EI= 24442 第13题 14、位移法可解超静定结构、静定结构,位移法典型方程体现了_______条件。 15、图示梁A 截面的角位移φA = ____________。(杆长l , 荷载作用在中点) 16、图示结构,M AB = __________。 EI =

结构力学之矩阵位移法

第十二章 矩阵位移法 【例12-1】 图 a 所示 连 续 梁 ,EI=常数,只 考 虑 杆 件 的 弯 曲 变 形 。分别用位移法和矩阵位移法计算。 图12-1 解:(1)位移法解 ?基本未知量和基本结构的确定 用位移法解的基本结构如图c 所示。这里我们将结点1处的转角也作为基本未知数,这样本题仅一种基本单元,即两端固定梁。 ?位移法基本方程的建立 ?? ? ?? =+θ+θ+θ=+θ+θ+θ=+θ+θ+θ000333323213123232221211313212111P P P R K K K R K K K R K K K 将上式写成矩阵形式

?? ??? ?????=??????????+??????????θθθ?? ????????0003213213332 31 232221131211P P P R R R K K K K K K K K K ?系数项和自由项 计算(须绘出单位弯矩图和荷载弯矩图) 由图d ,结点力矩平衡条件 ∑=0M ,得 EI K 411=,l EI K 221=,031=K 由图e ,结点力矩平衡条件 ∑=0M ,得 l EI K 212=,l EI l EI l EI K 84422=+=,l EI K 232= 由图f ,结点力矩平衡条件 ∑=0M ,得 013=K ,l EI K 223=,l EI EI EI K 84433=+= 由图g ,结点力矩平衡条件 ∑=0M ,得 81Pl R p -=,2Pl R P -=,03=P R 将系数项和自由项代入位移法基本方程,得 ??? ???????=??????????--+?? ??? ?????θθθ??????????0000118820282024321Pl l EI ?解方程,得?? ????????-= ?? ? ?? ?????θθθ14114162321EI Pl ?由叠加法绘弯矩图,如图h 所示。 (2)矩阵位移法解 ?对单元和结点编号(图a ) 本题只考虑弯曲变形的影响,故连续梁每个结点只有一个角位移未知数。若用后处理法原始结构刚度阵为44?阶;用先处理法结构刚度阵为33?阶(已知角位移04=θ)。下面采用先处理法来说明矩阵位移法计算过程。 单元标准形式为(图b ) )(e k ?? ????=?? ?? ??????=)()()()() (4224e jj e ji e ij e ii e k k k k l EI l EI l EI l EI

结构力学 矩阵位移法 结构动力学 习题

第十章 矩阵位移法 一、判断题: 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 6、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。 7、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 8、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 9、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 10、矩阵位移法既能计算超静定结构,也能计算静定结构。 11、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0)(1,2,0) (0,0,0)(0,0,3) (1,0,2) (0,0,0) (0,0,0)(1,0,3) (0,0,0) (0,1,2) (0,0,0)(0,3,4) A. B. C. D. 2134123412341234 ( ) 二、计算题: 12、用先处理法计算图示结构刚度矩阵的元素133322,,K K K 。 12 3l l 4 l 5EI 2EI EA (0,0,0) (0,0,1) (0,2,3) (0,0,0) (0,2,4)(0,0,0) EI

13、用先处理法计算图示刚架结构刚度矩阵的元素153422,,K K K 。EI ,EA 均为常数。 l ,0) 14、计算图示结构整体刚度矩阵的元素665544,,K K K 。E 为常数。 l l 1 3 4 2A , I A A /222A I , 2A 15、写出图示结构以子矩阵形式表达的结构原始刚度矩阵的子矩阵[][]K K 2224,。 [][]k k 1112 [][] k k 2122 [] k = i i i i i 单刚分块形式为 : 16、已知平面桁架单元在整体坐标系中的单元刚度矩阵,计算图示桁架结构原始刚度矩阵 []K 中的元素,,7877K K EA =常数。,cos α=C ,sin α=S ,C C A ?= S S D S C B ?=?=,,各杆EA 相同。 l [] k EA l i = A B A B D B D A B D -i i ---对称 17、计算图示刚架结构刚度矩阵中的元素8811,K K (只考虑弯曲变形)。设各层高度为h ,各跨长度为l h l 5.0,=,各杆EI 为常数。

同济大学结构力学自测题(第八单元矩阵位移法)附答案

结构力学自测题(第八单元) 矩阵位移法 姓名 学号 一、是 非 题(将 判 断 结 果 填 入 括 弧 :以 O 表 示 正 确 ,以 X 表 示 错 误 ) 1、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。( ) 2、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有 K ij = K ji ,这 可 由 位 移 互 等 定 理 得 到 证 明 。() 3、图 示 梁 结 构 刚 度 矩 阵 的 元 素 K EI l 11324=/ 。 () l l 附: ????????????????????????????? ?--------l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA l EI l EI l EI l EI l EI l EI l EI l EI l EA l EA 460260612061200000260460612061200000222323222323 4、在 任 意 荷 载 作 用 下 ,刚 架 中 任 一 单 元 由 于 杆 端 位 移 所 引 起 的 杆 端 力 计 算 公 式 为 :{}[][]{}F T K e e e =δ 。() 二、选 择 题 ( 将 选 中 答 案 的 字 母 填 入 括 弧 内 ) 1、已 知 图 示 刚 架 各杆 EI = 常 数,当 只 考 虑 弯 曲 变 形 ,且 各 杆 单 元 类 型 相 同 时 ,采 用 先 处 理 法 进 行 结 点 位 移 编 号 ,其 正 确 编 号 是 : (0,1,2) (0,0,0) (0,0,0) (0,1,3) (0,0,0) (1,2,0) (0,0,0) (0,0,3) (1,0,2) (0,0,0) (0,0,0) (1,0,3) (0,0,0) (0,1,2) (0,0,0) (0,3,4) A. B. C. D. 2 1 3 4 1 2 3 4 1 2 3 4 1 2 3 4 ( ) 2、平 面 杆 件 结 构 一 般 情 况 下 的 单 元 刚 度 矩 阵 []k 66?,就 其 性 质 而 言 ,是 : () A .非 对 称 、奇 异 矩 阵 ; B .对 称 、奇 异 矩 阵 ; C .对 称 、非 奇 异 矩 阵 ; D .非 对 称 、非 奇 异 矩 阵 。 3、单 元 i j 在 图 示 两 种 坐 标 系 中 的 刚 度 矩 阵 相 比 : A . 完 全 相 同 ;

结构力学位移法题与答案解析

超静定结构计算——位移法 一、判断题: 1、判断下列结构用位移法计算时基本未知量的数目。 (1)(2)(3) (4)(5)(6) EI EI EI EI 2EI EI EI EI EA EA a b EI= EI= EI= 2 444 2 2、位移法求解结构力时如果P M图为零,则自由项1P R一定为零。 3、位移法未知量的数目与结构的超静定次数有关。 4、位移法的基本结构可以是静定的,也可以是超静定的。 5、位移法典型方程的物理意义反映了原结构的位移协调条件。 二、计算题:

12、用位移法计算图示结构并作M 图,横梁刚度EA →∞,两柱线刚度 i 相同。 2 13、用位移法计算图示结构并作M 图。E I =常数。 l l l /2l /2 14、求对应的荷载集度q 。图示结构横梁刚度无限大。已知柱顶的水平位移为 ()5123/()EI →。 12m 12m 8m q 15、用位移法计算图示结构并作M 图。EI =常数。 l l l l

16、用位移法计算图示结构,求出未知量,各杆EI 相同。 4m 19、用位移法计算图示结构并作M 图。 q l l 20、用位移法计算图示结构并作M 图。各杆EI =常数,q = 20kN/m 。 6m 6m 23、用位移法计算图示结构并作M 图。EI =常数。 l l 2 24、用位移法计算图示结构并作M 图。EI =常数。

l q l 29、用位移法计算图示结构并作M 图。设各杆的EI 相同。 q q l l /2/2 32、用位移法作图示结构M 图。 E I =常数。 q q l l /2 l /2l 36、用位移法计算图示对称刚架并作M 图。各杆EI =常数。 l l

结构力学课后答案第8章矩阵位移法

习 题 8-1 试说出单元刚度矩阵的物理意义及其性质与特点。 8-2 试说出空间桁架和刚架单元刚度矩阵的阶数。 8-3 试分别采用后处理法和先处理法列出图示梁的结构刚度矩阵。 (a) 解:(a )用后处理法计算 (1)结构标识 (2)建立结点位移向量,结点力向量 [] T 44332211 θνθνθνθν=? [] T y M F M F M F M F F 4y43y32y211 =θ (3)计算单元刚度矩阵 ?????? ????????-=????????=222232221 1211462661261226466126122EI 2 1 l l -l l l -l -l l -l l l l - l k k k k k ①①①①① ?? ???? ? ???????-=????????=2 22233332232223 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ②②②②② l l l

?? ???? ? ???????-=????????=2 22234443343323 33 6 3632336 362EI 2 1 l l - l l l - l -l l -l l l -l l k k k k k ③③③③③ (4)总刚度矩阵 ?? ? ?? ????? ?? ? ?????????????=??????????????++=2222222222344433433333223 22222112112 3300003 6 3 6 000 03403003601236000 0 3632600 363186120000 26460 0 0 06126122EI 0 0 00 0 0 4 3 2 1 4 3 2 1 l l -l l l - l - - l l -l l l l - l - - l l -l l -l l l l - -l -- l l -l l l l - l k k k k k k k k k k k k k ③③③ ③②②②②①①①①θ (5)建立结构刚度矩阵 支座位移边界条件 [][]00004311 θ θ θν= 将总刚度矩阵中对应上述边界位移行列删除,得刚度结构矩阵。 ?? ???? ????????=2 22 222 232004 30 6 30 33182EI l l l l l l l l l - l l -l k θ (b)用先处理法计算 (1)结构标识 (2)建立结点位移向量,结点力向量 [][] T T 0 0 0 0 5411==?ννθν

结构力学大作业(矩阵位移法)

矩阵位移法编程大作业 姓名: 学号:

一、编程原理 本程序的原理是基于结构力学矩阵位移法原理,以结构结点位移作基本未知量,将要分析的结构拆成已知节点力—结点力位移关系的单跨梁集合,通过强令结构发生待定的基本未知位移,在各个单跨梁受力分析结果的基础上通过保证结构平衡建立位移法的线性方程组,从而求得基本未知量。 二、程序说明 本程序是计算10个节间距的悬索-拱组合体系主塔顶节点水平位移、主塔底截面弯矩、拱顶节点竖向位移、拱顶截面弯矩和轴力的程序。首先将各杆件的交汇点作为结点,共有20个结点,51个位移,然后根据不同结构单元分别建立单元刚度矩阵,然后转换为整体坐标系下的刚度矩阵,然后将所有杆件的单元刚度矩阵整合成为总体刚度矩阵,在进行整合时连续运用for函数,最终形成51阶的总体刚度矩阵。然后通过对荷载的分析确定出荷载矩阵,直接写进程序。这样就可以把20个结点的51个位移求得,然后再利用各个单元的单元刚度矩阵和所得的位移求得单元杆件的内力。

三、算法流程 建立各单位在局部结构离散化编号进行单元分析坐标系下的单位刚度方程 确定各单位在总体将单元刚度矩阵集合确定综合结点坐标系下的 单元矩阵方程成总体刚度矩阵点荷载矩阵 建立方程利用杆件单元刚度矩阵输出结果 求解位移和所求位移求内力 结束 四、源代码 L=input('输入单节间L:'); EIc=input('主塔的抗弯刚度EIc:'); EAc=input('主塔的抗压刚度EAc:'); EAb=input('悬索和斜索的抗拉刚度EAb:'); EAt=input('吊杆的抗拉刚度EAt:'); EIa=input('拱的抗弯刚度EIa:'); EAa=input('拱的抗压刚度EAa:'); q=input('拱上沿轴向均布荷载集度q:'); T1=[0,1,0,0,0,0; -1,0,0,0,0,0; 0,0,1,0,0,0; 0,0,0,0,1,0; 0,0,0,-1,0,0; 0,0,0,0,0,1;];%主塔的转换矩阵

《结构力学习题集》(下)-矩阵位移法习题及答案 (2)

第七章 矩阵位移法 一、是非题 1、单元刚度矩阵反映了该单元杆端位移与杆端力之间的关系。 2、单元刚度矩阵均具有对称性和奇异性。 3、局部坐标系与整体坐标系之间的坐标变换矩阵T 是正交矩阵。 4、结构刚度矩阵反映了结构结点位移与荷载之间的关系。 5、用 矩 阵 位 移 法 计 算 连 续 梁 时 无 需 对 单 元 刚 度 矩 阵 作 坐 标 变 换。 6、结 构 刚 度 矩 阵 是 对 称 矩 阵 ,即 有K i j = K j i ,这 可 由 位 移 互 等 定 理 得 到 证 明 。 7、结构刚度方程矩阵形式为:[]{}{}K P ?=,它是整个结构所应满足的变形条件。 8、在直接刚度法的先处理法中,定位向量的物理意义是变形连续条件和位移边界条件。 9、等效结点荷载数值等于汇交于该结点所有固端力的代数和。 10、矩阵位移法中,等效结点荷载的“等效原则”是指与非结点荷载的结点位移相等。 11、矩阵位移法既能计算超静定结构,也能计算静定结构。 二、选择题 1、已知图示刚架各杆EI = 常数,当只考虑弯曲变形,且各杆单元类型相同时,采用先处理法进行结点位移编号,其正确编号是: 2、平面杆件结构一般情况下的单元刚度矩阵[]k 66?,就其性质而言,是: A .非对称、奇异矩阵; B .对称、奇异矩阵; C .对称、非奇异矩阵; D .非对称、非奇异矩阵。 3、单元i j 在图示两种坐标系中的刚度矩阵相比: A .完全相同; B .第2、3、5、6行(列)等值异号; C .第2、5行(列)等值异号; D .第3、6行(列)等值异号。 4、矩阵位移法中,结构的原始刚度方程是表示下列两组量值之间的相互关系: A .杆端力与结点位移; B .杆端力与结点力; C .结点力与结点位移; D .结点位移与杆端力 。 5、单 元 刚 度 矩 阵 中 元 素 k ij 的 物 理 意 义 是 : A .当 且 仅 当 δi =1 时 引 起 的 与 δj 相 应 的 杆 端 力 ; B .当 且 仅 当 δj =1时 引 起 的 与 δi 相 应 的 杆 端 力 ; C .当 δj =1时 引 起 的 δi 相 应 的 杆 端 力 ; D .当 δi =1时 引 起 的 与 δj 相 应 的 杆 端 力。 三、填充题 1、图示结构用矩阵位移法计算时(计轴向变形)未知量数目为8个。

相关文档
相关文档 最新文档