文档库 最新最全的文档下载
当前位置:文档库 › 探究果胶酶的最适用量实验报告

探究果胶酶的最适用量实验报告

探究果胶酶的最适用量实验报告

探究果胶酶的最适用量实验报告

一、实验目的:探究果胶酶最适用量。

二、实验原理:果胶酶能够分解果胶,瓦解植物的细胞壁及胞间层。使得浑浊的果汁变

澄清。

三、材料用具:35mL苹果泥、2%的果胶酶溶液、10mL量筒4个、漏斗7个、滤纸10

张、试管16只、玻璃棒4根、简易榨汁机1台。

四、实验步骤:

1、制备苹果泥:将200g苹果洗净后,不去皮,切成小块,放入榨汁机,手动榨汁。

2、分别对7只试管进行编号为1~7,另7只编号为甲~庚。

3、分别量取苹果泥5mL于1~7号试管中,再分别量取1、1.5、2、2.5、3、3.5、

4mL的2%果胶酶溶液倒入甲~庚中,用蒸馏水调节体积相同。

4、将甲试管中果胶酶溶液倒入1试管中,余下试管用同样方法处理。最后将温度

保温7分钟。

5、将每组用滤纸过滤出果汁,并观察澄清度(做好记录)。

五、实验结果:

【A~H为果汁澄清度从大到小】

六、实验结论:用量为1.5mL的果胶酶溶液产生果汁的最为澄清。

七、实验反思:因苹果泥制备所耽误的时间过长,导致实验时间增长。且因为在过滤果

汁之前没有用沸水浴将所有试管中的果胶酶高温失活,导致实验结果有一定的误差。

柑橘皮果胶的提取实验

实验果胶的提取 一、目的要求 1.学习从柑橘皮中提取果胶的方法。 2.进一步了解果胶质的有关知识。 二、实验原理 果胶物质广泛存在于植物中,主要分布于细胞壁之间的中胶层,尤其以果蔬中含量为多。不同的果蔬含果胶物质的量不同,山楂约为6.6%,柑橘约为0.7~1.5%,南瓜含量较多,约为7%~17%。在果蔬中,尤其是在未成熟的水果和果皮中,果胶多数以原果胶存在,原果胶不溶于水,用酸水解,生成可溶性果胶,再进行脱色、沉淀、干燥即得商品果胶。从柑橘皮中提取的果胶是高酯化度的果胶,在食品工业中常用来制作果酱、果冻等食品。 三、实验器材 恒温水浴、布氏漏斗、抽滤瓶、玻棒、尼龙布、表面皿、精密pH试纸、烧杯、电子天平、小刀、真空泵、 柑橘皮(新鲜)。 四、实验试剂 1.95%乙醇、无水乙醇。 2.0.2 mol/L盐酸溶液 3.6 mol/L氨水 4.活性炭 五、操作步骤 1.称取新鲜柑橘皮20 g(干品为8 g),用清水洗净后,放入250 mL烧杯中,加120 mL水,加热至90 ℃保温5~10 min,使酶失活。用水冲洗后切成3~5 mm大小的颗粒,用50 ℃左右的热水漂洗,直至水为无色,果皮无异味为止。每次漂洗都要把果皮用尼龙布挤干,再进行下一次漂洗。 2.将处理过的果皮粒放入烧杯中,加入0.2 mol/L的盐酸以浸没果皮为度,调溶液的pH 2.0~2.5之间。加热至90 ℃,在恒温水浴中保温40 min,保温期间要不断地搅动,趁热用垫有尼龙布(100目)的布氏漏斗抽滤,收集滤液。 3.在滤液中加入0.5%~1%的活性炭,加热至80 ℃,脱色20 min,趁热抽滤(如橘皮漂洗干净,滤液清沏,则可不脱色)。 4.滤液冷却后,用6 mol/L氨水调至pH 3~4,在不断搅拌下缓缓地加入95%酒精溶液,加入乙醇的量为原滤液体积的1.5倍(使其中酒精的质量分数达50%~60%)。酒精加入过程中即可看到絮状果胶物质析出,静置20 min后,用尼龙布(100目)过滤制得湿果胶。 5.将湿果胶转移于100 mL烧杯中,加入30 mL无水乙醇洗涤湿果胶,再用尼龙布过滤、挤压。将脱水的果胶放入表面皿中摊开,在60~70 ℃烘干。将烘干的果胶磨碎过筛,制得干果胶。

植物染色体制片与观察实验报告

植物染色体制片与观察实验报告(洋葱组) 姓名:蔡梦雅 1230170010 同组成员:曹鉴云陈锦容刘艳马彦霞 一、中文摘要:染色体(Chromosome),是细胞内具有遗传性质的物体,易被碱性染料染成深色,又叫染色质。其本质是脱氧核甘酸,是细胞核内由核蛋白组成、能用碱性染料染色、有结构的线状体,是遗传物质基因的载体。这里我们用洋葱染色体作为代表使用压片法制片并且进行观察。 二、关键词:染色体洋葱压片法 三、引言:洋葱(onion)是百合科(Liliaceae)葱属中以肉质鳞片和鳞芽构成鳞芽的2年生草本植物,其学名为Allium cepa L,染色体数为2n=2x=16。由表1和图1可见,洋葱的8对染色体中,有7对(第1~7对)染色体,臂比在1·01~1·70之间,为中部着丝点染色体,1对(第8对),臂比为4·74,为近端部着丝点且带随体的染色体;依据STEB-BINS[4]的核型分类标准,洋葱的染色体核型在遗传进化上属较古老的2A型。100多年来有关染色体与染色体组结构功能的研究一直是生命科学最活跃的研究领域之一,现今人们完成基因组测序后回到对染色体上进行基因定位和作图,因此有关染色体的研究在基因组合功能基因组时代都有重要意义,陈瑞阳教授历时25年的研究完成的《中国主要植物染色体研究》对我国2834种植物染色体数目进行了报道,完成了1045种植物的核型分析,积累了宝贵的染色体基础数据创建了我国植物染色体研究信息平台。研究染色体进化与生物进化的有不可分割的关系,国际对染色体的化学成分,DNA含量,碱基组成和以染色体数目、形态、结构、大小等为特征的核型进化与物种形成和演化关系的研究,为揭示生物进化趋势提供染色体方面的科学资料,总的来说对染色体的研究在各类学科领域内都有着重要的意义。国内外对洋葱的研究主要在其成分和药用方面,在细胞遗传上张自力和陈瑞阳等对洋葱的C带显示法进行过研究,田秋元等对洋葱的核型分析及有关制片方法进行了探讨。植物根尖的分生细胞的有丝分裂,每天都有分裂高峰时间,此时把根尖固定,经过染色和压片,再置放在显微镜下观察,可以看到大量处于有丝分裂各时期的细胞核染色体。我们设计了不同的实验方案探究如何制作优良的植物染色体玻片,掌握染色体技术。 四、材料与方法: 1.取材 洋葱(Aillum cepa)的鳞茎 2.实验器具和药品 2.1器具 a.载玻片 b.盖玻片 c.烧杯 d.量筒 e.培养皿 f.滤纸 g.玻璃棒 h.镊子i.手术刀 2.2药品 a.0.1mol/L醋酸钠溶液 b.0.25%秋水仙素 c.冰醋酸 d.无水乙醇 e.1mol/LHcl f.纤维素酶 g.果胶酶 h.卡宝品红 2.3试剂配制 卡诺固定液:用3份无水酒精,加入1份冰醋酸(现配现用)。 酸解液:一份无水乙醇与一份1mol/L 盐酸1:1进行配制。 酶解液:用0.4g的纤维素酶和0.15g的果胶酶溶解在20ml蒸馏水里。

农产品贮藏与加工实验报告

《农产品贮藏与加工》 综合性实验报告 1.香蕉催熟生理 2.果汁果酱加工 3.面包蛋糕制作 学院:农学院 班级: 2012级青年农场主班 学号: 12101705 姓名:永吉 组别:第五组 指导教师:董明

2015年 5 月 《农产品贮藏与加工》 综合性实验报告 实验一香蕉催熟生理 一、实验目的与要求 1.1 实验目的 1.1.1理解乙烯利催熟香蕉的原理; 1.1.2熟悉香蕉催熟的处理流程,掌握商业化催熟香蕉的方法与技巧; 1.1.3观察香蕉催熟过程中的变化,学习香蕉催熟过程中含糖量、果肉硬度、果皮颜色、呼吸强度等各种理化性质的检测方法,并认知其变化规律; 1.1.4掌握基本根据甜度、硬度、颜色、呼吸强度等各种理化性质评价香蕉等果蔬品质的能力。 1.2 实验要求 1.2.1分组独立完成香蕉催熟全过程; 1.2.2检测香蕉的呼吸强度、果皮颜色、果肉硬度和含糖量; 1.2.3每两天检测一次数据,预约开放实验室。 二、实验原理 香蕉是典型的呼吸跃变型水果,乙烯是与呼吸高峰出现密切相关的植物激素。果实组织代释放的乙烯,对果实成熟具有刺激和反馈调节自身合成的作用。乙烯利是一种人工合成的植物生长调节剂,其化学成分为2-氯乙基磷酸,微酸性。乙烯利与水或含羟基的化合物反应释放出乙烯,植物体含有一种称为乙烯受体的糖蛋白,乙烯与其受体结合后进一步通过代然后起生理作用,如加速果实的呼吸,促进有机酸和淀粉向可溶性糖转化,从而促进香蕉的成熟。[1]

香蕉是典型的呼吸跃变型水果,从树上采下的香蕉是绿色的,质地坚硬,含有单宁,味涩,必须经过一段时间的贮存与后熟作用,使果体中的叶绿素转化为胡萝卜素,果皮由绿转黄;香蕉中含淀粉转化为糖,生涩转变为香甜,才能销售和食用。同时为了使果实后熟程度一致,在短时间供应黄熟可食香蕉上市,必须进行人工催熟。因此催熟处理是香蕉贮藏保鲜过程中的一个重要技术环节,直接影响香蕉上市品质。[2] 三、实验设计 3.1 供试原料 10kg香蕉,产,未成熟,青色 催熟剂-香蕉专用催熟剂 3.2 实验仪器 GT-2000型多功能CO2气体分析仪 3051H红外果蔬呼吸测定仪 多可必(TOKEBI) 2000手持料理棒(搅拌机) GY-4型数显台式式水果硬度计 FA1004N民桥分析天平 BSA2201-CW赛多利斯天平 日本Atago爱宕PAL-1数显糖度计 CR-400色差计日本柯尼卡 玻璃棒,切菜板、刀等工具 3.3 催熟处理方法步骤 取下香蕉包装盒盖,打开包装袋,将一小包香蕉专用催熟剂放入一盒香蕉的中心位置。在透明包装袋两侧用手指抠两个稍大的洞,取出一根香蕉供第一次检测,然后将包装袋口系好,盖上包装盒。 3.5 检测容与方法 3.5.1香蕉的呼吸强度的测定将之前取出备用的香蕉不任何处理放入GT-2000型多功能CO2气体分析仪的玻璃瓶中,盖上瓶盖轻轻旋转使其密封,开始测定香蕉呼吸强度,记录稳定两分钟不变的数据。 3.5.2 取出香蕉用CR-400色差计日本柯尼卡测定香蕉果皮不同位置的色泽,记录L、a、

果胶含量的测定方法二

果胶的测定(方案一): 黄晓钰,刘邻渭等.食品化学综合实验[M].中国农业大学出版社. 2002.158~159 实验原理:果胶经水解,其产物——半乳糖醛酸可在强酸环境中与咔唑试剂产生缩合反应,生成紫红色化合物,其呈色深浅与半乳糖醛酸含量成正比,由此可进行比色定量 测定果胶。 实验试剂:1.化学纯无水乙醇或95%乙醇。 2.精制乙醇:取无水乙醇或95%乙醇1000ml,加入锌粉4g,硫酸(1:1)4ml, 至于衡温水浴中回流10h,用全玻璃仪器蒸馏,馏出液每1000ml加锌粉和氢 氧化钾各4g,并进行蒸馏。 3. 0.15%咔唑乙醇溶液:称取咔唑g,溶于精制乙醇并定容至100ml。 4.半乳糖醛酸标准溶液:先用水配置成浓度1 g/L的溶液,再配制成浓度分别为 (0、10mg/L、20 mg/L、30 mg/L、40 mg/L、50 mg/L、60 mg/L、70mg/L)的 系列半乳糖醛酸标准溶液。 5.优级纯浓硫酸。 操作方法:1样品处理: 总果胶提取:(鲜样)研磨新鲜样品50g,放入1000ml烧杯中,加入L HCl 400mL,放置沸水浴中加热1h,加热时应随时补充蒸发损失的水分。冷却后, 移入500ml容量瓶,定容摇匀,过滤,滤液待用。(干样)磨细的干燥样品 5g,置于250ml三角烧瓶,加入L HCL 150ml,装上冷凝器,与沸水浴中加热 回流1h,取出冷却甚至室温,用水定容至200ml,摇匀,过滤,滤液待用。 水溶性果胶提取:新鲜样品应尽量研磨碎,干燥的样品应磨细后过60目筛。 样品中存在有果胶酶时,为了顿化酶的活性,可以加入适量热的95%乙醇, 是样品溶液的乙醇最终浓度约为70%,然后于沸水浴中沸腾回流15min,使果 胶酶钝化,冷却过滤后,以95%乙醇洗涤多次,再用乙醚洗涤,以除去全部 糖类、脂类及色素,最后风干除去乙醚。 2果胶提取:水溶性果胶的提取:将样品研碎,新鲜样品标准称取30~50g,干 燥样品准确称取5~10g至于250ml烧杯,加入150ml水。加热至沸腾,并保 持此状态1h。加热过程随时填补蒸发损失的水分。取出冷却,将杯中物质移 入250ml容量瓶,用水洗涤烧杯,洗液并入容量瓶,最终定容至刻度,摇匀 过滤,记录滤液体积。 3标准曲线制作:取试管8支,各加入12ml浓硫酸,置冰水浴中冷却后,分别 将各种浓度的半乳糖醛酸2ml 徐徐各加入试管中,充分混匀后,再置冰水浴 中冷却,然后置沸水浴中加热10min,迅速冷却至室温,各加入1ml %咔唑试 剂,摇匀,与室温下静置30min,用0好使观众的溶液调仪器零点,在530nm 波长下测定各管溶液的A530nm值,以A为横坐标,半乳糖醛酸浓度为纵坐标 绘制标准曲线。 4测定:取果胶提取液用水稀释至适量浓度(含半乳糖醛酸10~70mg/L)。移 取12ml 冰水冷却的浓硫酸加入试管中,然后加入2ml 样品稀释液,充分混 合后,至于冰水冷却。取出后在沸水浴中加热10min,冷却至室温,加入1mL % 咔唑试剂,摇匀,于室温下静置30min,用空白试剂调零,在530nm波长下 测定A530nm值,与标样对照,求出样品果胶含量。 计算:

果胶酶实验报告

实验报告 果胶酶在果汁生产中的作用 一.实验目的 1.探究不同温度对果胶酶活性的影响; 2.探究不同 ph 对果胶酶活性的影响; 3.探究果胶酶的用量对果汁生产的影响。 二.实验原理 1.果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清 度与果胶酶的活性大小成正比。 2.果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下 降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。 三.实验材料与用具 苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1.制备果汁选取一个中等大小的苹果( 约 200g) 洗净后,不去皮,切成小块,放入榨 汁机中,加入约 200ml 水,榨取 2min,制得苹果泥。量取一定体积的苹果泥, 不同条件下处理后,用滤纸进 行过滤即可得到果汁; 2.取9支试管编号并分别加入等量的果汁和果胶酶; 3.将9支试管分别放入30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、70℃的水 浴锅中保温10分钟; 4.过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1.制备果汁; 2.取5支试管编号并分别加入等量的果汁和果胶酶; 3.将5支试管放入40℃恒温水浴锅中加热; 4.待试管内温度稳定后在5支试管分别加入ph分别为5、6、7、8、9的盐酸溶液; 5.恒温保持10min; 6.过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、 7mg、8mg、9mg,配制成相等体积的水溶液,取等量放入9支试管中,并编号1~ 9。; 2.在9支试管中加入等量的苹果汁; 3.将上述试管放入恒温水浴加热一段时间。 4.将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5.恒温水浴约20分钟 6.过滤后测量果汁的体积 四.实验结果 五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计 二、实验报告 篇三:果胶的实验报告

果酒果醋实验报告

课程学号姓名分数 国产50L发酵罐的使用 实验目的:了解发酵罐的使用方法以及调节控制参数 实验材料:国产50L发酵罐 实验1 发酵罐蒸汽灭菌系统及反应系统的使用(1)蒸汽灭菌系统的介绍 ①高温高压蒸汽对发酵罐的灭菌操作 ②高温高压蒸汽对发酵罐夹套的灭菌操作 (2)发酵罐罐体反应系统的介绍 ①发酵罐发酵参数的设定操作 ②发酵罐进样、接种和排污的操作 实验2 发酵罐使用前的清洗和各项参数的设定 ①发酵罐罐体发酵前先用5%的NaOH清洗,然后用蒸馏水清洗至中性 ②发酵罐发酵温度、时间、pH值、搅拌时的转速等参数的设定 芦柑果酒、果醋酿造条件的探讨 实验目的:了解并掌握芦柑汁的防褐变和澄清处理的原理及方法;了解果酒果醋的基本过程 实验3 芦柑汁的防褐变和澄清处理 一.材料与仪器:新鲜芦柑;偏重亚硫酸钠;果胶酶;柠檬酸C 6H 8 O 7 〃H 2 O;碳 酸氢钠NaHCO 3 ;JYZ-A560榨汁机;PL-203电子天平器等。 二.实验步骤:选取个头饱满,色泽均一的芦柑,剥开,分离果皮、肉、瓤,除籽、榨汁,向果汁中添加适量偏重亚硫酸钠静臵1h,然后再分别用 8、16、32层纱布过滤。 三.实验方案: (1)研究不同偏重亚硫酸钠添加量对芦柑汁褐变程度的影响,得出最适的偏重亚硫酸钠添加量。

课程学号姓名分数(2)分别研究果胶酶添加量、pH、温度、时间对芦柑汁澄清效果的影响,优化果胶酶的作用条件。 四.测定方法:(1)果汁澄清度的测定采用分光光度法(2)果汁可溶性固形含量(%)的测定采用折光法(3)果汁中果胶物质的定性检测采用酒精法(4)pH的调定 实验4 芦柑果酒发酵条件探讨 一.实验材料与试剂:新鲜芦柑;酿酒高活性干酵母;白砂糖;偏重亚硫酸钠 Na 2S 2 O 5 ;碳酸氢钠;柠檬酸C6H8O7〃H2O;果胶酶。 二.实验仪器:JYZ-A560榨汁机;烧杯;玻璃棒;纱布;PL-203电子天平;HH-4数显恒温水浴锅;温度计;量筒;广口瓶;液封管等。 三.测定方法:温度计;pH测定:pH计;可溶性固形物的测定:手持糖量计。四.工艺流程: 复合果胶酶 ↓ 芦柑→预处理→榨汁→添加偏重亚硫酸钠→过滤→酶解→静臵澄清→调整糖度→调整pH→酒精发酵→过滤→装罐→杀菌→成品 ↑ 安琪酵母 五.实验步骤 1原料处理 选用成熟度高、无腐烂、个头饱满、色泽均一的新鲜芦柑为原料,剥开,分离果皮、肉、瓤,尽量去除籽、白皮层和囊衣。 榨汁:采用榨汁机对处理后的芦柑进行榨汁。 防褐变处理:按照0.05g∕L的偏重亚硫酸钠添加量,将其加入榨得的芦柑果汁中,用玻璃棒搅拌均匀,防止芦柑汁发生褐变。 过滤:将芦柑汁分别经4层、8层、16层、32层纱布过滤。

《苹果酒酿造工艺实验》实验报告

《苹果酒酿造工艺实验》实验报告 专业:姓名:学号: 一、实验目的 为了培养我们实验研究能力和理论联系实际能力,了解果酒酿制原理,学习苹果酒酿制技术,提高我们的动手能力,把学到的书本知识运用到实际操作中,并加深我们对书本上理论知识的理解和运用,用实验室的简单操作来模拟工厂里大批量的生产,有利于我们进入工作岗位后能更快的适应生产。具体目的如下: 1、了解苹果原料的预处理及苹果汁防氧化方法,熟悉苹果榨汁 的方法、亚硫酸的使用及榨汁机的使用; 2、研究外加酶制剂辅助酶解对苹果酿造品质的影响; 3、掌握果酒活性干酵母的活化方法及接种方案,熟悉苹果酿造 工艺参数及检测方法; 4、通过发酵过程各种参数的变化,了解苹果酒酿造的动态变化 规律; 5、熟悉倒瓶的操作,明确倒瓶的作用,了解补加SO2的作用及 添加量的控制,了解后发酵及陈酿的工艺过程及作用等。 二、原理 苹果酒是以苹果为主要原料,经破碎,压榨,低温发酵,陈酿而成的水果酒。苹果酒为低度酒,含有较丰富的营养,适量饮用可舒筋活络,增进身体健康。苹果酒是一种低度含酒精果汁饮料,融合了啤

酒与果汁的优点,口感清醇,营养丰富。它采用上等苹果为原料,通过低温发酵,自然老熟的工艺酿造而成。它包含苹果与生物发酵所产生的双重营养成分,人体所需的氨基酸,以及苹果酒特有的果类酸;能够帮助人体代谢,维持平衡。苹果中还含有钙,镁等众多矿物质及微量元素能维持人体内的酸碱平衡。 苹果酒酿造工艺流程: 新鲜苹果→分选→清洗→切片、破碎榨汁→果汁处理→静 ↑↑↑ 异Vc钠亚硫酸(苹果酸)果胶酶、白砂糖 置→分离→发酵→倒瓶→补加 SO2 →陈酿→调配→澄清 ↑↑↑ 皂土下胶酵母 16℃,约40天→过滤→催熟→过滤→装瓶→贮酒→成品 ↑ 70℃,10min 三、实验原料、仪器、药品 原料:苹果等 仪器:1000ml的锥形瓶2个、保鲜膜、移液管、电炉、250ml锥形瓶若干、玻璃棒、胶头滴管、榨汁机

果胶提取实验报告1

桔皮中果胶提取技术的试验分析 【摘要】酸浸提法提取果胶具有快速、简便、易于控制、提取率较高等特点,用盐酸浸提、乙醇沉淀法进行了从桔皮中提取果胶的工艺试验。用单因素试验进行工艺参数的优化,其适合的工艺条件是:液料质量比为20;浸提液pH值为2;浸提温度为90℃。 关键词:桔皮果胶提取工艺工艺参 引言:果胶是一种亲水性植物胶,属于多糖类物质,广泛存在于高等植物的根、茎、叶、果的细胞壁中。通常人们所说的果胶系指原果胶、果胶和果胶酸的总称,是一种高分子聚合物,分子量介于20 000-400 000之间。其基本结构是D一吡喃半乳糖醛酸,以1,4甙链连接成的长链,其中部分半乳糖醛酸被甲醇酯化 [1]。 胶凝剂、增稠剂、稳定剂和乳化剂,随着功能性多糖的开发研究,果胶作为水溶性膳食纤维,越来越受到重视。应用必定会越来越广泛[2-4]。我国是柑桔的主要产地,柑桔皮中果胶含量可达10%~30%。从桔皮中提取果胶不仅有极大的工业价值,而且对综合开发、利用柑桔资源,提高原材料利用率,减少环境污染,有重要的实际意义[2,4,6]。果胶的提取一般有酸提取法、离子交换法、微生物法和微波加热处理法等方法[5-9],由于酸提取法具有快速、简便且提取率高的优点,国内外大多采用此法。果胶分离沉淀主要有乙醇沉淀法和盐析法。国内主要采用乙醇沉淀法,而国外多用盐析法或不经沉淀直接喷雾干燥。针对我国情况而言,对乙醇沉淀法已有大量研究,而本实验也是在总结

别人成果的基础上进行对比以及提取工艺条件的优化。 1材料与方法 1.1 材料 桔皮采用成熟新鲜、无病虫果害的晚熟蜜桔,人工取皮,在40℃下干燥,粉碎至1~3 mm,待用。 盐酸、乙醇、氢氧化钠、无水氯化钙、冰醋酸和甲基红,均为化学纯。1.2 果胶提取方法 果胶提取工艺为:原料→洗涤→失活→干燥→粉碎→酸提取→过滤→浓缩→冷却→乙醇沉淀→离心分离→干燥→称量→粉碎→果胶。 剔除腐烂变质、发黑的桔皮,用清水洗净后,放入烧杯中,加水,加热至90 ℃保温5~10 min,使酶失活,捞出桔皮,将桔皮在40 ℃下干燥,切碎。将20 g原料加入用HC1预先配制的、具有一定pH值和温度的酸溶液中,维持所需的温度达到一定的提取时间,并不断搅拌。趁热用布氏漏斗过滤得果胶提取液。将滤液用旋转蒸发仪在60-70 ℃下浓缩至原体积的1/3时为止。果胶浸提液冷却至常温后加入1倍体积的95 乙醇,搅拌、静置2 h,使果胶沉淀析出。用布氏漏斗过滤得粗果胶。在60-70 ℃干燥,粉碎即得果胶粉。随后进行提取物中果胶含量的测定和提取率的计算。 1.3 试验方法 单因素试验,分别研究不同液料质量比对果胶提取率的影响(浸 提液pH值3、温度80℃、浸提时间45 min);不同浸提液pH值对果胶提取率的影响(浸提液温度80℃、液料质量比10、浸提时间45 min);不

实验三-从果皮中提取果胶

从果皮中提取果胶 一、实验目的 1、学习从从果皮中提取果胶的基本原理和方法, 了解果胶的一般性质。 2、掌握提取有机物的原理和方法。 3、进一步熟悉萃取、蒸馏、升华等基本操作。 二、实验原理 果胶是一种高分子聚合物,存在于植物组织内,一般以原果胶、果胶酯酸和果胶酸3种形式存在于各种植物的果实、果皮以及根、茎、叶的组织之中。果胶为白色、浅黄色到黄色的粉末,有非常好的特殊水果香味,无异味,无固定熔点和溶解度,不溶于乙醇、甲醇等有机溶剂中。粉末果胶溶于20倍水中形成粘稠状透明胶体,胶体的等电点pH值为3.5。果胶的主要成分为多聚D—半乳糖醛酸,各醛酸单位间经a—1,4糖甙键联结,具体结构式如图1。 图1 果胶的结构式 在植物体中,果胶一般以不溶于水的原果胶形式存在。在果实成熟过程中,原果胶在果胶酶的作用下逐渐分解为可溶性果胶,最后分解成不溶于水的果胶酸。在生产果胶时,原料经酸、碱或果胶酶处理,在一定条件下分解,形成可溶性果胶,然后在果胶液中加入乙醇或多价金属盐类,使果胶沉淀析出,经漂洗、干燥、精制而形成产品。 三、主要仪器和药品 仪器:恒温水浴锅、真空干燥箱、布氏漏斗、抽滤瓶、玻棒、纱布、表面皿、精密pH试纸、烧杯、电子天平、小刀、小剪刀、真空泵、。 药品:干柑桔皮、稀盐酸、95%乙醇(分析纯)等。 四、实验内容 1、柑桔皮的预处理 称取干柑桔皮20g,将其浸泡在温水中(60~70℃)约30min,使其充分吸水软化,并除掉可溶性糖、有机酸、苦味和色素等;把柑桔皮沥干浸入沸水5min进行灭酶,防止果胶分解;然后用小剪刀将柑皮剪成2~3mm的颗粒;再将剪碎后的柑桔皮置于流水中漂洗,进一步除去色素、苦味和糖分等,漂洗至沥液近无色为止,最后甩干。 2、酸提取 根据果胶在稀酸下加热可以变成水溶性果胶的原理,把已处理好的柑桔皮放入水中,控制温度,用稀盐酸调整pH值进行提取,过滤得果胶提取液。 3、脱色 将提取液装入250ml的烧杯中,加入脱色剂活性炭;适当加热并搅拌20min,然后过滤除掉脱色剂。 4、真空浓缩 将滤液于沸水浴中浓缩至原液的10%为止,以减少乙醇用量。 5、乙醇沉淀 将浓缩液用适量(约为浓缩后滤液体积的1.5倍)的95%乙醇沉淀约30min,减压过滤后用稀乙醇洗涤,然后用水洗涤得果胶。 6、真空干燥

草莓酒实验报告

草莓酒实验报告 一 、实验目的 1、了解果酒酿制原理,学习果酒酿制工艺。 2、熟悉草莓酒的感官指标和礼花卫生指标。 二、原理 (一)酵母菌在适宜条件下,进行一系列生命活动将糖转化成酒精: ↑+→252612622CO OH H C O H C 酒精计法原理:用酒精计法测得酒精体积百分数示值,即酒精度。 (二)果酒感官分析原理:感官分析系指评价员通过用口、眼、鼻等感觉器官检查产品的感官特性,即对葡萄酒、果酒产品的色泽、香气、滋味感官特性进行检查与分析评定。 三、实验主要仪器与药品 仪器:250mL 的锥形瓶、保鲜膜、纱布、电炉(或电磁炉)、玻璃棒、试剂瓶、电子天平(0.001克)、乳胶软管、榨汁机、大研钵、玻璃丝、糖度计1支、量筒、500ml 烧杯、称量纸、标签纸、药匙、记号笔。 药品:亚硫酸(偏重亚硫酸钾)、果胶酶、果酒酵母、明胶等。 四、实验工艺流程与操作说明 工艺流程:新鲜草莓 → 分选 → 去萼,去萼梗 → 清洗 → 灭菌 → 破碎榨汁 →加SO 2 (偏重亚硫酸钾) → 加果胶酶、过滤果汁 → 调糖→ 主发酵 → 倒瓶 → 陈酿 16℃,约40天 → 调配 → 下胶 → 过滤 → 装瓶 → 贮酒 → 成品 (70℃,10min 杀菌)。 五、操作说明 (一)、原料处理 选择充分成熟,色泽鲜艳,无病和无霉烂的草莓做原料,将草莓摘去叶蒂。因为如果霉烂里面的有害物质会影响产品的品质。 (二)、清洗 先用臭氧水淋洗消毒,再用自来水清洗干净,晾干,备用。如果农药残留量较多药用洗洁精清洗,并冲洗干净。 (三)、破碎、榨汁、果胶酶的添加及防氧化 将清洗好的草莓沥净水分,榨汁机压榨取汁,将榨出的果汁置于玻璃容器中,装量为体积的

果胶的测定

韩雅珊.1992(2002)?.食品化学实验指导[M].中国农业大学出版社 果胶的测定: 一、实验原理 本实验采用钙离子螯合剂和果胶酶提取水果中的总果胶物质,然后用分光光度法测定总果胶物质,先用乙醇处理样品,使果胶沉淀,再用乙醇溶液洗涤沉淀,除去可溶性糖类、脂肪、色素等物质,从残渣中提得果胶物质。采用NaOH溶液将果胶物质皂化,生成果胶酸钠,再经乙酸酸化使之生成果胶酸,再加入果胶酶使之水解。 分光光度法测定是以果胶分子的基本结构单位——半乳糖醛酸和咔唑的反应为基础的。果胶经水解生成半乳糖醛酸,在强酸中与咔唑发生缩合反应,生成紫红色化合物,其呈色强度与半乳糖醛酸含量成正比,测定的结果可用脱水半乳糖醛酸(AUA)。 二、实验仪器与试剂 仪器:玻璃器皿烧杯、试管、玻棒、胶头滴管、容量瓶、PH计、分光光度计 试剂:①果胶酶提取液:1份果胶酶试剂和10份水在一起搅拌1h,然后离心除去沉淀,上清液即为果胶酶提取液;②1%EDTA溶液(乙二胺四乙酸);③醋酸溶液(1份醋酸+2份水);④浓硫酸;⑤95%乙醇;⑥精制乙醇:在1L 95%乙醇中,加入4g锌粉和4ml硫酸(1+1),在水浴中回流24h,然后蒸馏,在馏出液中加入4g锌粉和4gKOH后再蒸馏一次;⑦一水半乳糖醛酸。 三、实验步骤 1、果胶物质的提取 将10g新鲜橘皮和125ml95%乙醇一起捣碎,抽滤后保留沉淀,用50ml75%乙醇洗涤沉淀两次,将沉淀转移到250ml烧杯中,加入100ml 1%EDTA溶液,用1mol/LNaOH 将PH调节至11.5,保持30min后,再用醋酸溶液将果胶溶液酸化到PH5.0,然后加入10ml 果胶酶提取液,搅拌0.5h后,定容至250ml,用脱脂棉过滤,弃去沉淀和前20ml滤液,

3实验-果胶的提取

3果胶的提取方法 目前,提取果胶的工艺主要有四种:醇析法、离子交换法、盐沉淀法及微生物法。 3.1 醇析法 醇析法是一种最古老的工业果胶生产方法,其基本原理是将植物细胞中的非水溶性果胶在稀酸中转化成水溶性果胶。常用的酸有盐酸、六偏磷酸、草酸等。经酸萃取后得到很稀的果胶水溶液,将得到的果胶水溶液浓缩后,这种方法的工艺比较成熟,各种工艺条件 比较容易控制,而且果胶产品不含杂质,颜色较好。其工艺流程如下:原料→预处理→ 酸提→脱色→浓缩→沉析→干燥→成品。 何立芳等研究发现在醇析法中,浸提温度、浸提时间、酸度及浸提剂用量都对提取率有较大的影响。温度过高,果胶易分解,果胶胶凝度很低,质量不好;温度过低,速度太慢,提取率低,故浸提过程温度一般控制在80~90℃之间。酸度大,果胶提取率高,主要原因是果胶水解逐渐强烈之故。但酸度过大,果胶胶凝度会下降,故一般浸提液的pH值调节在1.5~2.5之间。随着浸提时间的提高,提取率和胶凝度有所提高,但浸提时间达到一定后,产品提取率增大变得很缓慢,且产品颜色加深,影响质量,从节能和生产效率的角度出发,时间控制在45~60min为佳[5]。韦鑫等研究发现,果胶的提取率除了与浸提温度、浸提时间、酸度及浸提剂用量有关外,还与果胶酶和水质有关。未经过预处理的果胶由于果胶酶的存在,会分解果胶,从而影响果胶产量;自来水由于其中含有部分Ca2+、Mg2+离子,这些离子对果胶有一定的封闭作用,以致影响果胶产量[5]。黄秀山,高凤芹研究发现,用95%的乙醇等体积沉淀效果好;用无水乙醇则会增加成本;用稀释后的乙醇萃取不完全,使得产品产量降低[6]。 醇析法的主要缺点是整个工艺耗时较长,酒精用量多,酒精回收能耗较多。 3.2 盐沉淀法 盐沉淀法就是在酸抽提出果胶后,采用铁盐、铝盐或者铁铝混合盐来沉淀果胶,从而把果胶分离出来,再通过乙醇的清洗和干燥过程,得到果胶产品。其生产工艺如下:原料处理→酸萃取→过滤→加盐沉淀→过滤→盐析后处理→干燥→果胶成品[9]。采用盐沉淀法沉淀出果胶,省去了稀酸浓缩工序,减少乙酸回收量,节省能耗,从而可以降低生产成本。目前的盐析法主要是铁盐法、铝盐法和铁铝混合盐法。若单独用铝盐沉淀果胶时,则果胶产率较低,沉淀颗粒较小,难以分离;若单独用高价铁盐沉淀果胶时,果胶产率较高,但果胶产品颜色较深,果胶质量不高。赵伟良曾提出用铁铝混合溶液沉淀果胶,能够形成果胶酸盐的絮状沉淀,得到的果胶产品色泽好,产率高[10]。 当前盐析法的主要问题在于脱盐技术未能跟上,脱盐不彻底,因而造成果胶粘度下降,果胶凝胶度不高。 3.3 离子交换法 由于桔皮原料、酸及水中钙、镁等离子含量较高,这些离子对果胶有封闭作用,影响果胶转化为水溶性果胶;同时也因为原料中杂质含量较高,从而影响酸提效果。所以在果胶提取时,采用酸水解同时结合离子交换树脂的方法。首先酸可使原果胶溶解,由于酸水解纤维素——果胶多糖复合物,果皮中的钙、镁、钠等阳离子溶出,阳离子交换树脂通过吸附阳离子,从而加速原果胶的溶解,提高果胶的质量和产率;阴离子交换树脂可以吸附分子量为500以下的低分子物质,解除果胶的一些机械性牵绊,因而也可提高果胶的质量和产率[11]。西南

干红葡萄酒酿造实验报告

开放性实验报告干红葡萄酒的酿造 专业: 班级: 学号: 姓名: 2016年 11 月 12 日

学习葡萄酒的酿造原理,掌握干红葡萄酒的酿制工艺 二实验原理 葡萄酒+果糖→酒精+CO2(条件:人工酵母或天然酵母)(酒精发酵) 高级醇+脂肪酸+挥发酸+酯类(陈酿) 色素+单宁+有机酸+果香物质+无机盐(葡萄酒原料) 三实验材料和仪器设备 (1)材料:新鲜葡萄、活性酵母、果胶酶、偏重亚硫酸钾、白砂糖、纱布、明胶; (2)仪器设备:分柄天平、烧杯、量筒、玻璃棒、称量纸、水浴锅、温度计、比重计、3L发酵瓶、纱布袋、漏斗、干净瓶子。 四实验操作步骤 (1)清洗容器或仪器,冷开水清洗。 (2)分选和清洗葡萄:剔除生的,有破损的,发霉的果实。清洗过后的葡萄自然晾干(为节约时间也可以用吹风机冷风吹干) (3)手工去梗,将葡萄的蒂部微微捏破,直接放入发酵瓶中。 (4)装瓶:装量不超过容量的75%,同时加入克的偏重亚硫酸钾搅匀,并加入克果胶酶,搅匀。 (5)酵母复水活化:称取7克冰糖溶解于少量冷开水定容100ml,加入2克酵母,混匀,放置于水浴锅30℃静置3小时活化,每10分钟搅拌一次,活化结束后直接加入葡萄醪中发酵。 (6)酒精发酵:酵母菌活化结束后取15ml加入发酵罐搅匀,当有酒帽形式时,加入25克白砂糖,每天测量一次比重、温度,并定期挥帽。 (7)当比重降至—时,酒精发酵结束。使用纱布袋与漏斗过滤皮渣,酒液用干净的瓶子装瓶,满瓶。 (8)陈酿:在装入干净的瓶子的同时加入克偏重亚硫酸钾摇匀,在适宜的温度下放置。

1 整理干红葡萄酒发酵实验过程中,每天测量发酵温度和比重的结果,作出发酵 第二天葡萄酒温度较高,可能是受室温影响,总的来看,发酵较为正常。 2整理葡萄酒酿造过程中的相片,从气泡产生的多少、葡萄皮的浮沉、葡萄汁和葡萄籽的位置等参数的变化进行描述。 气泡由一开始的无气泡,到后来发酵搅拌时产生气泡。 葡萄皮由一开始挤入时的分布不均,到最后的悬浮在上层。 葡萄汁由一开始的堆积在下层,到最后的中层,位于沉淀之上。

植物有丝分裂的实验报告

植物有丝分裂的实验报告 篇一:植物有丝分裂实验报告 植物有丝分裂实验报告主研人:邓正强组员:曹敏、宋卓霖、代芝芝、吴茵茵一、实验目的 1. 观察植物细胞有丝分裂的过程,能够识别有丝分裂的不同时期。 2. 是比较以植物根尖、茎尖、幼芽做有丝分裂的材料的难易程度。 3. 初步掌握制作植物(根尖、茎尖、幼芽)有丝分裂装片的技术。 二、实验原理有丝分裂是植物细胞分裂的主要方式,细胞分裂过程中,核内染色体准确地复制,并有规律地、均匀地分配到两个子细胞中去,使子细胞和母细胞的遗传组成一样,保证了植物细胞的遗传性状的一致。各种生长旺盛的植物组织中,如根尖组织、茎尖组织、居间分生组织、愈伤组织等,常进行着剧烈的细胞有丝分裂。在细胞分裂的适当(分裂旺盛期)时候取材,进行预处理,固定、解离、染色和涂抹压片等方法,使细胞、染色体分散,便于在显微镜下观察染色体的形态特征和变化特点及进行染色体计数。 三、实验材料、实验器材及试剂 1、实验材料:蚕豆干种子、 2、实验器材:显微镜、载玻片、盖玻片、培养皿、镊子、刀片、滴管、吸水纸等 3、实验试剂:卡诺固定液(无水乙醇:冰醋酸=1:1)、1mol/L HCl 溶液、0.01g/ml 龙胆紫染液或0.02g/ml 醋酸洋红染液或改良石炭酸品红染液。

四、实验步骤(一)、材料准备 1. 蚕豆根尖:选取新鲜无病斑的蚕豆干种子,经日晒后,放在烧杯内,室温下清水浸泡一昼夜。种子吸水膨胀后,放在培养皿上20℃左右保湿培养(双层纱布覆盖),待根长1~2cm时,于上午9:00~10:30 或下午14:00~16:00 进剪下根尖备用。 2. 蚕豆茎尖:选取新鲜无病斑的蚕豆干种子,经日晒后,放在烧杯内,室温下清水浸泡一昼夜。种子吸水膨胀后,放在培养皿上20℃左右保湿培养(双层纱布覆盖),待长出5~8cm即可,于上午9:00~10:30 或下午14:00~16:00 进剪下茎尖备用。 3. 蚕豆幼芽:在长出的蚕豆茎两片叶原基上1cm处截断,待在叶原基部发出幼芽,叶芽长出到4~5cm时即可,于上午9:00~10:30 或下午14:00~16:00 进剪下幼芽备用。(二)、预处理将截取的蚕豆根尖、茎尖、幼放入盛有蒸馏水的小烧杯,置于冰水溶液中,0~3℃下处理24 小时。(三)、解离根尖、茎尖等体细胞需经处理,除去细胞间的果胶层,并使细胞壁软化,才便于压片。 这种处理过程称为解离,解离时间的长短依植物材料和解离液的不同而不同。时间短细胞不易压散,时间过长,细胞被压破,且影响染色效果。固定好的蚕豆根尖、茎尖芽用蒸馏水冲洗2 遍,然后放入预热的60℃的1mol/ml 盐酸中,60℃恒温处理5 分钟左右,倒去盐酸,用蒸馏水冲洗3 遍

果胶酶实验报告

实验报告 果胶酶在果汁生产中的作用一.实验目的 1. 探究不同温度对果胶酶活性的影响; 2. 探究不同ph 对果胶酶活性的影响; 3. 探究果胶酶的用量对果汁生产的影响。二.实验原理 1. 果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 2. 果胶酶的活性受ph影响,处于最适ph,酶的活性最高,高于或低于此值活性均下降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3. 在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。 三.实验材料与用具苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1. 制备果汁选取一个中等大小的苹果(约200g)洗净后, 不去皮, 切成小块, 放入榨汁机中,加入约200ml 水,榨取2min ,制得苹果泥。量取一定体积的苹果泥,不同条件下处理后,用滤纸进 行过滤即可得到果汁; 2. 取9 支试管编号并分别加入等量的果汁和果胶酶; 3. 将9 支试管分别放入30C、35C、40C、45C、50C、55C、60C、65C、70C 的水 浴锅中保温10 分钟; 4. 过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1. 制备果汁; 2. 取5 支试管编号并分别加入等量的果汁和果胶酶; 3. 将5支试管放入40C恒温水浴锅中加热; 3. 待试管内温度稳定后在5 支试管分别加入ph 分别为5、6、7、8、9 的盐酸溶液; 4. 恒温保持10min ; 5. 过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1. 配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、 6mg、 7mg 8mg 9mg配制成相等体积的水溶液,取等量放入9支试管中,并编号1?9。; 2. 在9 支试管中加入等量的苹果汁; 3. 将上述试管放入恒温水浴加热一段时间。 4. 将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5. 恒温水浴约20 分钟 6. 过滤后测量果汁的体积 四.实验结果五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计

果胶酶实验报告

实验报告果胶酶在果汁生产中的作用一.实验目的 1.探究不同温度对果胶酶活性的影响; 2. 探究不同ph 对果胶酶活性的影响; 3.探究果胶酶的用量对果汁生产的影响。二.实验原理 1.果胶酶的活性受温度影响。处于最适温度时,活性最高。果肉的出汁率、果汁的澄清度与果胶 酶的活性大小成正比。 2.果胶酶的活性受ph影响,处于最适Ph,酶的活性最高,高于或低于此值活性均下 降。果肉的出汁率、果汁的澄清度与果胶酶的活性大小成正比。 3.在一定的条件下,随着酶浓度的增加,果汁的体积增加;当酶浓度达到某一数值后, 在增加酶的用量,果汁的体积不再改变,此值即是酶的最适用量。三.实验材料与用具苹果、果胶酶、盐酸溶液、榨汁机、电子天平、恒温水浴锅、烧杯、量筒、试管、漏斗、温度计、玻璃棒、滤纸、滴管、三脚架 四.实验步骤 (一)温度对果胶酶活性的影响 1.制备果汁选取一个中等大小的苹果(约200g)洗净后,不去皮,切成小块,放入榨 汁机中,加入约200ml 水,榨取2min ,制得苹果泥。量取一定体积的苹果泥,不同条 件下处理后,用滤纸进 行过滤即可得到果汁; 2.取9 支试管编号并分别加入等量的果汁和果胶酶; 3.将9 支试管分别放入30C、35C、40C、45C、50C、55C、60C、65C、70C 的水 浴锅中保温10 分钟; 4.过滤果汁用量筒测量果汁的里量,并记录数据。 (二)ph 对果胶酶活性的影响 1.制备果汁; 2.取5 支试管编号并分别加入等量的果汁和果胶酶; 3.将5支试管放入40C恒温水浴锅中加热; 4.待试管内温度稳定后在5 支试管分别加入ph 分别为5、6、7、8、9 的盐酸溶液; 5.恒温保持10min; 6.过滤果汁用量筒测量果汁的里量,并记录数据。 (三)果胶酶的用量对果汁生产的影响 1.配制不同浓度的果胶酶溶液准确称取纯的果胶酶1mg、2mg、3mg、4mg、5mg、6mg、 7mg 8mg 9mg配制成相等体积的水溶液,取等量放入9支试管中,并编号1? 9。; 2.在9 支试管中加入等量的苹果汁; 3.将上述试管放入恒温水浴加热一段时间。 4.将不同浓度的果胶酶分别迅速与各试管的苹果泥混合,然后再放入恒温水箱中。 5.恒温水浴约20 分钟 6.过滤后测量果汁的体积 四.实验结果 五.分析与结论篇二:果胶酶活性测定实验报告 一、实验设计 二、实验报告 篇三:果胶的实验报告

苹果汁实验报告03

本科课程论文 苹果汁饮料的制作

摘要 为了探究苹果汁制作的原理和其质量控制的影响因素,本实验选用市场购买的新鲜苹果为主要原料,辅以相应的抗氧化剂和物理护色的手段进行果汁制作。设置护色与未通过护色以及市场购买所得苹果汁样品三个对照组,检测其产品和半产品的糖度、酸度和ph等理化性质和感官评价来进行研究。通过单因素实验,最终确定工艺参数组合为果汁量30%,糖度10%,酸度0.25,ph为3,所得的苹果汁品质和口感较良好。 关键词:苹果汁糖度酸度 ph 感官检测

1前言 园艺产品加工学属食品工艺学,是根据技术上先进、经济上合理的原则,既需要有技术观点,又需要有经济观点。技术上先进,包括工艺先进和设备先进两部分,要达到工艺上先进,就需要了解和掌握工艺技术参数对加工制品品质的影响,实际上就是要掌握外界条件和食品生产中的物理、化学、生物学之间的变化关系,这就学要切实掌握物理学、化学和生物学方面的知识,特别是生物化学、食品化学和微生物学方面的基础知识。设备先进包括设备自身的先进性和对工艺水平适应的程度。 大学里普遍忽视了经济要素,工艺学本身实际上包括着经济的观点,所谓经济上合理,就是要求投入和产出之间有一个合理的比例关系。任何一个企业的生产,一项科学研究的确定,都必须考虑这个问题。当今环境污染越来越引起人们的重视,在工艺学的研究中,应该选用不产生污染或少产生污染的工艺路线。一般加工程度越高,往往营养、风味损失越大,甚至有可能在加工过程中产生了不利人体健康的产物,影响了农产品的食用安全性。同时增加了能源和原辅材料的消耗,并产生更多的环境污染。 要低碳经济,节能减排,就应提倡适度加工,物适所用,不应过分强调农产品精深加工(过度加工)。现代高新技术的应用必须适应我国国情,需要结合传统技术,不能盲目追求投资大,能耗高的所谓高新技术,应推广成本低、效益好的实用技术。 消费者选购食品可通过看配料,配料简单,食品添加剂越少越好,标注的营养保健物质往往是炒作概念,忽悠消费者。市售加工食品,天然成分有多少?农产品深加工增值有没添加剂产业大?聪明的消费者不要失去自我,相信科学!回归自然!物适所用。应树立食物途径摄入为主,不足补充,过量有害,合适为度的科学营养观念。能吃天然或少加工的更好:最好吃新鲜苹果,其次是苹果汁,再次是苹果酒,最差是苹果醋。吃西瓜好过喝吃西瓜汁饮料;买冬菇好过买冬菇口服液;吃鱼吃肉好过吃蛋白粉和氨基酸口服液等等。 加工制品的优劣,除受加工设备和技术条件的影响外,更与原料的品质和加工适应性密切相关。不同加工品对原料有相应的要求,只有选择适宜的原料,才

食品分析实验报告记录

食品分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

大学 食品分析 实验报告

食品中总灰分含量的测定 一、目的与要求 1.学习食品中总灰分含量测定的意义与原理 2.掌握灼烧重量法测定灰分的实验操作技术及不同样品前处理方法的选择 二、实验原理 将样品炭化后置于500~600℃高温炉内至有机物完全灼烧挥发后,无机物以无机盐和金属氧化物的形式残留下来,这些残留物即为灰分。称量残留物的质量即可计算出样品中的总灰分。 三、仪器与试剂 1.仪器 马弗炉;分析天平:感量0.0001g ;干燥器:内装有效的变色硅胶;坩埚钳;瓷坩埚。 2.试剂 三氯化铁溶液(5g/L ):称取0.5g 三氯化铁(分析纯)溶于100ml 蓝黑墨水中。 四、实验步骤 1.配制浓盐酸:蒸馏水=1:4的稀盐酸,将洗净后的坩埚放入浸泡15min 。 2.将浸泡过后的坩埚取出,放入马弗炉中灼烧30min 。 3.冷却200℃以下将坩埚取出移至干燥器内冷却至室温,称取坩埚的质量30.5337g 。 4.称取固体样品——奶粉1.0636g 放入坩埚内,置于电热炉上炭化30min 或至样品完全炭化不冒白烟。 5.把坩埚放入马弗炉内,错开坩埚盖,关闭炉门进行灼烧。 6.冷至200℃一下取出坩埚,并移至干燥器内冷却至室温,称量至恒重得30.5835g 。 五、结果计算 样品总灰分含量计算如下: 式中,X 为每100g 样品中灰分含量,g ;m 1为空坩埚质量,g ;m 2为样品和坩埚质量,g ;m 3为坩埚和灰分质量,g 。 m 3—m 1 X= × 100 m —m

相关文档