文档库 最新最全的文档下载
当前位置:文档库 › 污水除磷技术

污水除磷技术

污水除磷技术
污水除磷技术

污水处理工艺简介及对比方案必选比用

污水处理工艺简介及对比方案必选比 用

A/O工艺、A2/O工艺、氧化沟、SBR工艺、CAST工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,因此A/O法是改进的活性污泥法。A/O 工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充分供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,经过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混

凝沉淀,可将COD值降至100mg/L以下,其它指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。特别,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5) 缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。经过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮 (内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。 3. A/O工艺的缺点 1.由于没有独立的污泥回流系统,从而不能培养出具有独特

城市污水处理厂化学除磷效果及运行成本研究

万方数据

万方数据

万方数据

万方数据

城市污水处理厂化学除磷效果及运行成本研究 作者:念东, 王佳伟, 刘立超, 周军, 甘一萍, 王洪臣, Nian Dong, Wang Jiawei, Liu Lichao, Zhou Jun, Gan Yiping, Wang Hongchen 作者单位:北京城市排水集团有限责任公司,北京,100022 刊名: 给水排水 英文刊名:WATER & WASTEWATER ENGINEERING 年,卷(期):2008,34(5) 被引用次数:11次 参考文献(3条) 1.邱维;张智城市污水化学除磷的探讨[期刊论文]-重庆环境科学 2002(02) 2.赵恩海;朱文亭我国污水处理的发展趋势[期刊论文]-城市环境与城市生态 2000(04) 3.Henze M;Harremoes P;国家城市给水排水工程技术研究中心污水生物处理与化学处理技术 1999 本文读者也读过(10条) 1.孔令勇.马小蕾废水化学除磷的基本原理与设计[会议论文]-2009 2.徐丰果.罗建中.凌定勋废水化学除磷的现状与进展[期刊论文]-工业水处理2003,23(5) 3.李炜炜.吴国防.丁云松.龙腾锐.LI Wei-wei.WU Guo-fang.DING Yun-song.LONG Teng-rui城市污水厂化学除磷投药点后移的生产性试验[期刊论文]-中国给水排水2010,26(10) 4.侯艳玲.刘艳臣.邱勇.何苗.施汉昌.Hou Yanling.Liu Yanchen.Qiu Yong.He Miao.Shi Hanchang化学除磷药剂中三价铁铝对生物系统污泥活性影响的研究[期刊论文]-给水排水2010,36(6) 5.唐建国.林洁梅化学除磷的设计计算[期刊论文]-给水排水2000,26(9) 6.张健.ZHANG Jian杭州七格污水处理厂化学除磷工艺探讨[期刊论文]-中国给水排水2010,26(21) 7.帖春英.TIE Chun-ying改良A2/O与化学除磷工艺用于城市污水处理[期刊论文]-中国给水排水2010,26(20) 8.吕亚云污水化学除磷处理技术[期刊论文]-河南化工2010,27(8) 9.潘理黎.王玲.郑海军.吕伯昇.徐伟勇.Pan Lili.Wang Ling.Zheng Haijun.Lu Bosheng.Xu Weiyong城镇污水处理厂尾水深度化学除磷试验研究[期刊论文]-水处理技术2011,37(6) 10.张亚勤污水处理厂达到一级A排放标准中的化学除磷[期刊论文]-中国市政工程2009(5) 引证文献(11条) 1.孙士权.杨静.毕立俊.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-工业水处理 2010(1) 2.贾会艳.杨云龙城市污水化学辅助除磷[期刊论文]-山西建筑 2009(14) 3.孙士权.刀钟颖.郭文文.洪俊明.张金松滤布滤池强化处理城市二级出水中试研究[期刊论文]-环境工程学报2009(7) 4.解立国太原市北郊污水净化厂深度除磷研究[期刊论文]-科技情报开发与经济 2009(20) 5.戴斌低碳源情况下氧化沟工艺除磷的方式[期刊论文]-上海建设科技 2009(5) 6.陈晓安.严福平.李旭.桂丽娟连续流砂过滤器处理城市二级出水中试研究[期刊论文]-工业用水与废水 2011(1) 7.乔莹.栗建华污水处理厂节能降耗区域性评价管理研究[期刊论文]-长治学院学报 2010(5) 8.郑育毅低碳源城市污水化学除磷的研究[期刊论文]-工业水处理 2011(9) 9.刘传伟.孙书群城市污水污水处理厂氮磷去除的研究[期刊论文]-广州化工 2011(23) 10.杨凌波.葛勇涛.谢继荣.应启锋.曾思育.何苗基于节能降耗的污水处理厂绩效评估体系研究[期刊论文]-给水排水 2009(z1)

污水处理生物除磷工艺.

污水处理生物除磷工艺 (一)缺氧好氧活性污泥法(A/O工艺) 当以除磷为主时,可采用无内循环的厌氧/好氧工艺,基本工艺流程如下图所示。 厌氧/好氧工艺流程 1. 设计参数 A/O工艺生物除磷设计参数见下表 A/O工艺生物除磷设计参数 2. 工艺计算 缺氧好氧活性污泥法生物除磷的工艺计算包括厌氧池(区)容积、好氧池(区)容积。具体计算公式见下表。

A/O工艺生物除磷容积基计算公式 (二)弗斯特利普( Phostrip) 除磷工艺 Phostrip工艺是由Levin在1965年首先提出的,该工艺是在回流污泥的分流 管线上增设一个脱磷池和化学沉淀池而构成的,其工艺流程见下图。

该工艺将在常规的好氧活性污泥法工艺中增设厌氧释磷池和化学沉淀池。工艺流程为:部分回流污泥(约为进水量的10%~20% )通过旁流进入厌氧池,在厌氧池中的停留时间为8~ 12h, 使磷由固相中释放,并转移到水中;脱磷后的污泥问流到好氧池中继续吸磷,厌氧池上清液含有高浓度磷(可高达100mg/L 以上),将此上清液排入石灰混凝沉淀池进行化学处理生成磷酸钙沉淀,该含磷污泥可作为农业肥料,而混凝沉淀池出水应流入初沉池再进行处理。Phostrip工艺不仅通过高磷剩余污泥除磷,而且还通过化学沉淀除磷。该工艺具有生物除磷和化学除磷双重作用,所以Phostrip工艺具有高效脱氮除磷功能。 Phostrip工艺比较适合于对现有工艺的改造,只需在污泥回流管线上增设少量小规模的处理单元即可,且在改造过程中不必中断处理系统的正常运行。总之,Phostrip工艺受外界条件影响小,工艺操作灵活,脱氮除磷效果好且稳定。但该工艺存在流程复杂、运行管理麻烦、处理成本较高等缺点。 四、厌氧/缺氧/好氧活性污泥法脱氮除磷工艺 需要同时脱氮除磷时,可采用厌氧/缺氧/好氧(A2/O)工艺,基本工艺流程如下图。 A2/O工艺脱氮除磷流程 (一)一般规定 进入系统的污水应符合下列要求: (1) 脱氮时,污水中的五日生化需氧量(BOD5 )与总凯氏氮(TKN)之比宜大于4 ; (2) 除磷时,污水中的BOD5与总磷( TP)之比宜大于17 ; (3) 同时脱氮、除磷时,宜同时满足前两款的要求; (4) 好氧池(区)剩余碱度宜大于70mg/L( 以碳酸钙CaC03计);

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

除磷工艺比较与选择

污水除磷工艺比较与选择 化学除磷 1. 1.1 化学除磷原理 化学除磷主要是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂与污水中溶解性的盐类(如磷酸盐)反应生成颗粒状、非溶解性的物质。实际上投加化学药剂后,污水中进行的不仅是沉析反应,同时还发生着化学絮凝作用,即形成的细小的非溶解状的固体物互相粘结成较大形状的絮凝体。 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。 1.2 化学除磷药剂 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 表1 污水净化常用药剂

铝盐的混凝沉淀 Al 2(SO 4 ) 3 + 6H 2 O----2Al(OH) 3 +3SO 4 2-+6CO 2 Al 2 (SO 4 ) 3 + 2PO 4 ----2AlPO 4 +3SO 4 2- 在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH) 3 沉淀。 铁盐的混凝沉淀 Fe 2(SO 4 ) 3 + 3HCO 3 ----Fe(OH) 3 +2SO 4 2-+3CO 2 Fe3+ + PO 43----FePO 4 ↓pH=5~5.5 每1mol磷需要加铁(Fe3+) 1.5—3 mol,最佳pH为5.0。 对磷含量为5mg/l左右的二级处理水,通过投加100-200mg/l的氯化铁 ( FeCl 3.6H 2 O)就可以得到90%以上的磷去除率。 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。

污水处理中的化学除磷

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,

除磷废水处理站设计方案

除磷废水处理站设计方 案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

含磷废水治理工程工艺技术设计初步方案天津普蓝环保工程有限公司 2013年3月25日

目录 一、工程概况 (2) 二、设计依据、规范、范围及原则 (2) 三、设计水量与水质 (5) 四、废水处理工艺设计 (7) 五、污水处理系统性能及技术参数 (9) 六、建筑结构设计 (29) 七、电气控制设计 (31) 八、运行费用估算 (34) 九、组织机构及人员编制 (35) 十、项目实施 (37) 十一、项目管理 (38) 十二、工程投资报价 (40) (1)主要构筑物投资估算 (40) (2)主要处理设备及材料投资报价 (40) (3)工程总投资 (42) 十三、技术服务 (43) 十四、售后服务 (44)

一、工程概况 某污水处理厂在进行污水深度处理及回用过程中,采用双膜技术所排放的RO泥水中磷酸盐含量出现超标,废水中含有不同浓度的磷酸盐,该类废水具有连续性排放、水质成份复杂,其危害性比较大,这些RO浓水如不经处理就直接排放,将对周围的生态环境造成严重的影响(对地表水、土壤、作物造成严重污染),并将影响周围居民的身心健康。 随着国家经济的发展,人民生活水平的不断提高,国家对环境保护越来越重视,已成为企业发展的重要课题。对环保的日益重视和人民环保意识的提高,废水污染解决与否直接关系企业的生存和发展。因此,无论从企业发展还是从改善水资源、保护水环境,做好该厂这类废水的治理工程建设是十分必要。 该公司领导十分重视环保工作,贯彻科学发展观,重点研究、探索循环发展经济,企业节约水资源,降低生产成本,减少污水排放量,计划实行污水综合治理,以期采用合理可靠地解决方式去除排放浓水中的磷酸盐,以供该单位领导和有关部门参阅、决策和实施。 项目名称:污水回用处理RO浓水 工程规模:14000t/d

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

一体化污水处理核心处理工艺比较选择

一体化污水处理核心处理工艺比较选择 污水处理工艺的选择是污水处理厂设计的主体和关键,污水处理工艺是否合理,直接关系到污水处理厂的出水水质、处理效果、运转的稳定性、运转成本和操作管理的水平。因此必须结合实际,在满足处理效果的前提下,选择成熟、可靠、经济、高效且操作管理方便、先进的污水处理工艺,以取得最佳的效益。 由设计水质和处理要求可以看出,污水处理厂主要污染为有机污染,参考我国《室外排水设计规范》(GB50014-2006)对污水处理厂的处理效率的规定,一级处理方法,对于SS处理效率为40~55%,对于BOD5处理效率为20~30%;二级处理方法,对于SS处理效率为60~90%,对于BOD5处理效率为65~95%。结合本工程设计,应采用二级处理方法。 普通活性污泥法具有运行稳定、管理方便的优点,前人在设计和运行方面积累了大量的工程经验,但普通活性污泥法也存在着在运行不当时或进水水质异常时易发生污泥膨胀导致出水恶化的问题,同时由于污泥泥龄较短和没有缺氧工况;对氮、磷的去除率不理想,随着社会经济发展,进入水体的污染负荷已严重超过水体自然净化能力,特别是氮、磷在自然水体中积累,造成水体的富营养化已成为人们普遍关注的问题。所以城市生活污水的脱氮除磷显得越来越重要。 现就目前国内外城市污水脱氮除磷二级生物处理采用较多的工艺作一分析比较。 生物除磷脱氮污水处理工艺比较 目前,用于城市污水处理具有一定脱氮除磷效果的污水处理工艺大致分为两大类:第一类为按空间进行分割的连续流活性污泥法;第二类为按时间进行分割的间歇性活性污泥法。另外还有一类就是以BAF工艺为代表的生物膜法。

按空间分割的连续流活性污泥法 按空间分割的连续流活性污泥法是指各种处理功能(如进水、曝气、沉淀、出水)在不同的空间(不同的池子)内完成。目前,较成熟的工艺有:传统A2/O 工艺、A2/O氧化沟工艺等。 传统A2O工艺及UCT、倒置A2/O工艺 传统A2O工艺于70年代由美国专家在厌氧—好氧除磷工艺(AO工艺)的基础上开发出来的。该工艺是在AO工艺中增加一个缺氧段,将好氧段流出的一部分混合液回流至缺氧段,以达到脱氮的目的。 传统A2O工艺可以完成有机污染物的去除、硝化反硝化脱氮、磷的过量摄取而被去除等功能。其流程简图如下: 进水出水 回流污泥剩余污泥 传统A2O工艺流程简图 传统A2O工艺的特点: 在去除有机污染物的同时可达到除磷脱氮目的; 工艺简单、水力停留时间较短; 在厌氧—缺氧—好氧条件下交替运行,丝状菌不会过度繁殖,从而不会引发污泥膨胀。 传统A2O工艺的缺点是回流污泥中过多的硝酸盐破坏厌氧环境,影响厌氧放磷效果,为此产生了UCT工艺。与传统A2O工艺比较,UCT工艺不同之处在于污泥先回流至缺氧段,再将缺氧段部分混合液回流至厌氧段,从而减少了回流污泥中硝酸盐对厌氧放磷的影响。但UCT工艺增加了一次回流,即多一次提

污水处理中的化学除磷

污水处理中的化学除磷公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

污水处理中的化学除磷 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3式5

含磷废水的处理方法

含磷废水的处理方法 目前,国内外污水除磷技术主要有生物法、化学法两大类。生物法如A/O、A2/O、UCT工艺,主要适合处理低浓度及有机态含磷废水。化学法主要有混凝沉淀法、结晶法、离子交换吸附法、电渗析、反渗透等工艺,主要适合处理无机态含磷废水,其中混凝沉淀与结晶综合处理技术可以处理高浓度含磷废水,除磷率较高,是一种可靠的高含磷废水处理方法。 1. 生物法 20世纪70年代美国的Spector发现,微生物在好氧状态下能摄取磷,而在有机物存在的厌氧状态下放出磷。含磷废水的生物处理方法便是在此基础上逐步形成和完善起来的。目前,国外常用的生物脱磷技术主要有3种:第一,向曝气贮水池中添加混凝剂脱磷;第二,利用土壤处理,正磷酸根离子会与土壤中的Fe和Al的氧化物反应或与粘土中的OH-或SiO22-进行置换,生成难溶性磷酸化合物;第三种方法是活性污泥法,这是目前国内外应用最为广泛的一类生物脱磷技术。生物除磷法具有良好的处理效果,没有化学沉淀法污泥难处理的缺点,且不需投加沉淀剂。对于二级活性污泥法工艺,不需增加大量设备,只需改变运转流程即可达到生物除磷的效果。但要求管理较严格,为了形成VFA,要保证厌氧阶段的厌氧条件。 张林生等采用石灰沉淀结晶法处理高浓度含磷废水取得成功,该法结合了沉淀法与结晶法的优点,克服了两者的缺点,具有很好的发展前1/ 4

景。实验结果与工程实践表明,该法处理含磷废水除磷效率高,出水水质稳定,且可回用。 2. 化学沉淀法 通过投加化学沉淀剂与废水中的磷酸盐生成难溶沉淀物,可把磷分离出去,同时形成的絮凝体对磷也有吸附去除作用。常用的混凝沉淀剂有石灰、明矾、氯化铁,石灰与氯化铁的混合物等。影响此类反应的主要因素是pH、浓度比、反应时间等。 为了降低废水的处理成本,提高处理效果,学者们在研制开发新型廉价高效化学沉淀剂方面做了大量工作。王光辉发现,原水含磷 10mg/L时,投加300mg/L的Al2(SO4)3或90mg/L的FeCl3,可除磷70%左右,而在初沉时加入过量石灰,一般总磷可去除80%左右。他根据化学凝聚能增加可沉淀物质的沉降速度,投加新型净水剂碱式氯化铝,沉降效果达80%~85%,很好地解决了生产用水的PO43-污染问题。混凝沉淀法是一种传统的除磷方法,具有简便易行,处理效果好的优点。但是长期的运行结果表明,化学沉淀剂的投加会引起废水pH 值上升,在池子及水管中形成坚硬的垢片,还会产生一定量的污泥。另外,研究表明:除磷效率对应沉淀剂剂量的曲线是指数型的,当化学沉淀剂超出一定量,曲线即达到停滞期。所以,试图用沉淀法将废水中磷的质量浓度降到0.1mg/L以下,是不太经济的。 丛广治等主持的大连开发区污水厂A/O改造实践表明,系统在下列参数下可取得较好的净化效果:BOD5负荷为0.2~0.3kg/(kgMLSS·d),TP 负荷为(2.8~3.0)×10-3kg/(kgMLSS·d)。厌氧段容积∶好氧段容积 2/ 4

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

化学除磷药剂选择

化学除磷药剂选择比较 为了生成非溶解性的磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙。许多高价金属离子药剂投加到污水中后都会与污水中的溶解性磷离子结合生成难溶解性的化合物,但出于经济原因考虑,用于磷沉析的金属盐药剂主要是Fe3+盐、Fe2+盐和Al3+盐,这些药剂是以溶液和悬浮液状态使用的。除金属盐药剂外,氢氧化钙也用作沉析药剂,反应生成不溶于水的磷酸钙。 常见的化学除磷使用的药剂则如表一所示: 表1 污水净化常用药剂

化学除磷药剂添加时在水体中的反应与所需条件如下: 石灰的混凝沉淀: 5Ca2+ + 4OH- + 3HPO42----Ca5OH(PO4)3 + 3H2O 为使磷的去除率达到90%以上,需要把pH值调到10.5-11.0以上。Ca/P的重量比为2.2:1以上。 沉折过程中,对于不溶解性的磷酸钙的形成起主要作用的不是Ca2+,而是OH-离子,因为随着pH值的提高,磷酸钙的溶解性降低,采用Ca(OH)2除磷要求的pH值为8.5以上。 但在pH值为8.5到10.5的范围内除了会产生磷酸钙沉析外,还会产生碳酸钙,这也许会导致在池壁或渠、管壁上结垢。其反应式 Ca2++CO32-→CaCO3 与钙进行磷酸盐沉析的反应除了受到PH值的影响,另外还受到碳酸氢根浓度(碱度)的影响。在一定的PH值惰况下,钙的投加量是与碱度成正比的。 对于软或中硬的污水,采用钙沉析时,为了达到所要求的PH值所需要的钙量是很少的,具有强缓冲能力的污水相反则要求较大的钙投加量。 铝盐的混凝沉淀: Al2(SO4) 3 + 6H2O----2Al(OH) 3+3SO42-+6CO2 Al2 (SO4) 3 + 2PO4----2AlPO4+3SO42- 在pH为6.0—6.5的条件下,每1mol的磷需要加铝1.5-3.0 mol。如果水显碱性,在加铝之前应先降低pH以减少Al(OH)3沉淀。 铁盐的混凝沉淀: Fe2(SO4)3 + 3HCO3----Fe(OH)3+2SO42-+3CO2

污水处理中的化学除磷的工艺和方法

污水处理中的化学除磷的工艺和方法 磷的去除有化学除磷生物除磷两种工艺,生物除磷是一种相对经济的除磷方法,但由于该除磷工艺目前还不能保证稳定达到0.5mg/l出水标准的要求,所以要达到稳定的出水标准,常需要采取化学除磷措施来满足要求。 化学除磷是通过化学沉析过程完成的,化学沉析是指通过向污水中投加无机金属盐药剂,其与污水中溶解性的盐类,如磷酸盐混合后,形成颗粒状、非溶解性的物质,这一过程涉及的是所谓的相转移过程,反应方程举例如式1。实际上投加化学药剂后,污水中进行的不仅仅是沉析反应,同时还进行着化学絮凝反应,所以必须区分化学沉析和化学絮凝的差异。 FeCl3+K3PO4→FePO4↓+3KCl 式1 污水沉析反应可以简单的理解为:水中溶解状的物质,大部分是离子状物质转换为非溶解、颗粒状形式的过程,絮凝则是细小的非溶解状的固体物互相粘结成较大形状的过程,所以絮凝不是相转移过程。 在污水净化工艺中,絮凝和沉析都是极为重要的,但絮凝是用于改善沉淀池的沉淀效果,而沉析则用于污水中溶解性磷的去除。如果利用沉析工艺实现相的转换,则当向污水中投加了溶解性的金属盐药剂后,一方面溶解性的磷转换成为非溶解性的磷酸金属盐,也会同时产生非溶解性的氢氧化物(取决于PH值)。另一方面,随着沉析物的增加及较 小的非溶解性固体物聚积成较大的非溶解性固体物,使稳定的胶体脱稳,通过速度梯度或扩散过程使脱稳的胶体互相接触生成絮凝体。最后通过固—液分离步骤,得到净化的污水和固一液浓缩物(化学污泥),达到化学除磷的目的。 根据化学沉析反应的基础,为了生成磷酸盐化合物,用于化学除磷的化学药剂主要是金属盐药剂和氢氧化钙(熟石灰)。许多高价金属离子药剂投加到污水中后,都会与污水中的溶解性磷离子结合生成难溶解性的化合物。出于经济原因,用于磷沉析的金属盐药剂主要是Fe3+、Al3+和Fe2+盐和石灰。这些药剂是以溶液和悬浮液状态使用的。二价 铁盐仅当污水中含有氧,能被氧化成三价铁盐时才能使用。Fe2+在实际中为了能被氧化常投加到曝气沉砂池或采用同步沉析工艺投加到曝气池中,其效果同使用Fe3+一样,反应式如式2、3。 Al3++PO43-→AlPO4↓pH=6~7 式2 Fe3++PO43-→FePO4↓pH=5~5.5 式3 与沉析反应相竞争的反应是金属离子与OH的反应,所以对于各种不同的金属盐产品 应注意的是金属的离子量,反应式如式4、5。 Al3++3OH-→Al(OH)3↓式4 Fe3++3OH-→Fe(OH)3 式5 金属氢氧化物会形成大块的絮凝体,这对于沉析产物的絮凝是有利的,同时还会吸附胶体状的物质、细微悬浮颗粒。需要注意的是有机物在以化学除磷为目的化学沉析反应中的沉析去除是次要的,但在分离时有机性胶体以及悬浮物的凝结在絮凝体中则是决定性的过程。 沉析效果是受PH值影响的,金属磷酸盐的溶解性同样也受PH的影响。对于铁盐最佳PH值范围为5.0~5.5,对于铝盐为6.0~7.0,因为在以上PH值范围内FePO4或AIPO4

脱氮除磷工艺发展

污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。 污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营BOD 5 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次 (1)以去除有机物、氨氮为目的的工艺。因对总氮无要求,可以采用生物硝

相关文档
相关文档 最新文档