文档库 最新最全的文档下载
当前位置:文档库 › 自然对数

自然对数

e是自然对数的底数,是一个无限不循环小数。e在科学技术中用得非常多,一般不使用以10为底数的对数。学习了高等数学后就会知道,许多结果和它有紧密的联系,以e为底数,许多式子都是最简的,用它是最“自然”的,所以叫“自然对数”,因而在涉及对数运算的计算中一般使用它,是一个数学符号,没有很具体的意义。

其值是2.71828……,是这样定义的:
当n->∞时,(1+1/n)^n的极限。
注:x^y表示x的y次方。

你看,随着n的增大,底数越来越接近1,而指数趋向无穷大,那结果到底是趋向于1还是无穷大呢?其实,是趋向于2.718281828……这个无限不循环小数


对数(Logarithm 若 )。则b叫做以a为底N的对数,记作 。当a=10时称作常用对数,当a=e时,称作自然对数。

对数的发明是16世纪末至17世纪初的事。当时在自然科学领域特别是天文学方面经常遇到十分复杂的数值计算,数学家们为了寻求化简计算的方法而发明了对数。一般认为,对数是由苏格兰数学家纳皮尔和瑞士工程师比尔吉彼此独立地发明的。但在此之前,在法国数学家许凯(15世纪)和德国数学家施蒂费尔(1487—1567)的工作中就孕育了对数的思想。他们研究等比数列与等差数列之间的关系,特别是施蒂费尔将这两种数列加以对比,指出,等比数列各项的乘、除、乘方、开方运算、相当于等差数列相应各项的加、减、乘、除运算。但是他们都没有进一步发展这种思想。

比尔吉是瑞士的一位工程师,他曾担任著名天文学家开普勒的助手,因此经常接触复杂的天文计算,于是产生了化简数值计算的强烈愿望。他受施蒂费尔工作的影响,考虑等差数列

0,10,20,…,10n和与之对应的等比数列

由此建立了一种对数体系,于1620年发表在《等差数列和等比数列表》中。不难看出,比尔吉所造的对数表,把对数的底取为 ,与现在自然对数的底e相差甚小。

比尔吉发明对数的时间大约在1610年,但他推迟了发表的时间,而纳皮尔的对数表在1614年公诸于世,早比尔吉6年。纳皮尔是苏格兰的一个贵族,他对数值计算颇有研究。他制造的“纳皮尔算筹”,化简了乘除法运算,其原理就是用加减法来代替乘除法。纳皮尔发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独特的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。在他的《奇妙的对数表的描述》中阐明了对数原理(见[《奇妙的对数表的描述》]),后人称他发明的对数为纳皮尔对数,记为 ,它与自然对数的关系为



以10为底的常用对数,是由另一

位英国数学家布里格斯首先采用的。在他1624年出版的《对数算术》中,载有14位的常用对数表。他还制作了正弦、正切对数表。荷兰数学家兼出版商弗拉克补充了布里格斯的对数表,他出版的几种对数表(包括三角函数对数表)很快在欧洲普及。弗拉克还最早阐明对数首数的意义。

关于以e为底的自然对数的准确涵义,是由英国一位数学教师斯佩德尔(J.Speiodell)首先指出的,他在1619年出版了关于对数的著作,包含1—1000的自然对数表。

对数传到中国的时间是17世纪中叶,中国数学家薛风祚和波兰传教士穆尼阁合作的《比例对数表》是我国最早的对数著作。


最佳答案
e,作为数学常数,是自然对数函数的底数。有时称它为欧拉数(Euler number),以瑞士数学家欧拉命名;也有个较鲜见的名字纳皮尔常数,以纪念苏格兰数学家约翰?纳皮尔引进对数。它就像圆周率π和虚数单位i,e是数学中最重要的常数之一。
它的数值约是(小数点后100位):e ≈ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
第一次提到常数e,是约翰?纳皮尔于1618年出版的对数著作附录中的一张表。但它没有记录这常数,只有由它为底计算出的一张自然对数列表,通常认为是由威廉?奥特雷德(William Oughtred)制作。第一次把e看为常数的是雅各?伯努利(Jacob Bernoulli).
已知的第一次用到常数e,是莱布尼茨于1690年和1691年给惠更斯的通信,以b表示。1727年欧拉开始用e来表示这常数;而e第一次在出版物用到,是1736年欧拉的《力学》(Mechanica)。虽然以后也有研究者用字母c表示,但e较常用,终于成为标准。
用e表示的确实原因不明,但可能因为e是“指数”(exponential)一字的首字母。另一看法则称a,b,c和d有其他经常用途,而e是第一个可用字母。不过,欧拉选这个字母的原因,不太可能是因为这是他自己名字Euler的首字母,因为他是个很谦虚的人,总是恰当地肯定他人的工作。
很多增长或衰减过程都可以用指数函数模拟。指数函数的重要方面在于它是唯一的函数与其导数相等(乘以常数)。e是无理数和超越数(见林德曼—魏尔施特拉斯定理(Lindemann-Weierstrass))。这是第一个获证为超越数,而非故意构造的(比较刘维尔数);由夏尔?埃尔米特(Charles Hermite)于1873年证明。



当x趋于正无穷大或负无穷大时,“1加x分之一的x次方”这个函数表达式(1+1/x)^x的极限就等于e,用公式表示,即:

lim(1+1/x)^x=e (x趋于±∞)

实际上e就是欧拉通过这个极限而发现的,它是个无限不循环小数,其值等于2.71828……。以e为

底的对数叫做自然对数,用符号“ln”表示。

以e为底的对数(自然对数)和指数,从数学角度揭示了自然界的许多客观规律,比如指数函数“e的x次方”对x的微分和积分都仍然是函数本身。后人把这个规律叫做“自然律”,其中e是自然律的精髓。因此,上述求极限e的公式被英国科学期刊《物理世界》2004年10月号公布为读者选出的科学界历来“最伟大的公式”之一,并且名列第二。

欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰?伯努利(Johann Bernoulli,1667-1748年)的精心指导。

欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文。到如今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为“分析学的化身”。

欧拉是科学史上最多产的一位杰出的数学家,称为数学界的莎士比亚。据统计他那不倦的一生,共写下了886部书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%。彼得堡科学院为了整理他的著作,足足忙碌了47年!数学史上称18世纪为“欧拉时代”。

欧拉还创设了许多数学符号,例如函数f(x)(1734年),π(1736年),log和 e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),虚数i(1777年)等等。

欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾13个孩子在旁边喧哗。他那顽强的毅力和孜孜不倦的治学精神,使他在59岁双目失明后的17年间,他还口述了几本书和400篇左右的论文。

19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:“研究欧拉的著作永远是了解数学的最好方法。”欧拉的父亲保罗?欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点教学。由于小欧拉的才华和异常勤奋的精神,又受到约翰?伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了。

1725年约翰

?伯努利的儿子丹尼尔?伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡。1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授。

1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了。然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁。

1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力急剧衰退,最后也完全失明。

不幸的事情接踵而来。1771年彼得堡的大火灾殃及欧拉住宅,带病且双目失明的64岁的欧拉,被围困在大火中。虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了。

沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来。欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久。欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成。欧拉在失明的17年中,还解决了使牛顿头痛的月离问题和很多复杂的分析问题。

欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉。他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:“欧拉是我们的导师。”

欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:“我死了”,欧拉终于“停止了生命和计算”。

欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的。

欧拉一生谦逊,从没有用自己的名字给他发现的东西命名。只有那个大约等于2.71828的自然对数的底,被他命名为e。但因他对数学广泛的贡献,因此在许多

数学分支中,反而经常见到后人以他的名字命名的重要常数、公式和定理。

相对于π是希腊文字中圆周第一个字母,e的由来较不为人熟知。有人甚至认为:欧拉取自己名字的第一个字母e作为自然对数的底。

其实欧拉选择e的理由,较为多数人所接受的说法有二:一为在a,b,c,d等四个常被使用的字母后面,第一个尚未被经常使用的字母就是e,所以,他很自然地选了这个符号,代表自然对数的底数;另一说法为e是“指数”一词英文的第一个字母,虽然你或许会怀疑瑞士人欧拉


e的全称是自然对数的底,不是自然对数,自然对数是ln。

自然对数的底e,一般认为是欧拉(Leonhard Euler,1707-1783,瑞士)在研究微积分的时候发现的。e=lim(1+1/x)^x,当x趋近于正无穷时的极值。在计算中,一般取 e=1+1/(1!)+1/(2!)+1/(3!)....,越多项越准确。

与上次提到的圆周率相比,e对于人类的重要性并不像π那样显而易见。但是e又是无处不在的。

-----------分割线-----------

古人对e的认识

公元前1700年左右,古巴比伦人就曾提出一个问题:

如果以20%的年利息贷款给别人,那么一年后你有多少钱?

这道题无非是一个简单的公式:1x(1+0.2)^1=1.2

如果每半年复利一次,则第一年的本利和为1x(1+0.2/2)^2=1.21

如果每季度复利一次,则为1x(1+0.2/4)^4=1.21550625

如果每月复利一次,则为1.2193910849

每天复利一次,则为1.221335858

如果每时、每分、每秒复利,第一年的本利和分别为1.2213999696、1.2214027117、1.2214027574。

从上面的计算可以看出,年率一定,分期复利,期数增加,本利和缓慢增大;但无论期数怎么增加,本利和并不会无限制地增大,而是有一个“封顶”,永远超过不了。这个封顶就是时时刻刻都在复利时第一年的本利和,用数学语言来将就是期数趋向无穷大时第一年本利和的极限。稍懂点微积分就能算出这个极限等于

e^0.2=1.2214027581

巴比伦人不知道这个连续复利的问题,很显然,在古代讨论这么大的小数是令人痛苦的。

-----------分割线-----------

伯努利家族对e的贡献

在1683年,瑞士著名数学家雅各·伯努利(Jacob Bernoulli, 1654~1705)在研究连续复利时,才意识到问题须以极限方式来解决。但是他只提出了一个式子,觉得这个数应该在2和3之间,并未得到完整的数据。因为那时候,还没有极限的概念。

顺便说一句,伯努利家族3代人出了8位天才科学家。这位雅各·伯努利醉心于赌博游戏中的输赢次数,并写出巨著《猜度术》。他还解决了悬链线问题(1690 年),曲率半径公式(1694年),“伯努利双纽线”(1694年),“伯努

利微分方程”(1695年),“等周问题”(1700年)等。另外,他非常钟爱对数螺旋线,最为人们津津乐道的轶事之一,是雅各布醉心于研究对数螺线,这项研究从1691年就开始了。他发现,对数螺线经过各种变换后仍然是对数螺线,如它的渐屈线和渐伸线是对数螺线,自极点至切线的垂足的轨迹,以极点为发光点经对数螺线反射后得到的反射线,以及与所有这些反射线相切的曲线(回光线)都是对数螺线。他惊叹这种曲线的神奇,竟在遗嘱里要求后人将对数螺线刻在自己的墓碑上,并附以颂词“纵然变化,依然故我”,用以象征死后永生不朽。

还有个约翰· 伯努利,他除了解决悬链线问题(1691年),提出洛必达法则(1694年)、最速降线(1696年)和测地线问题(1697年),给出求积分的变量替换法(1699年),研究弦振动问题(1727年),出版《积分学教程》(1742年)等工作外,还有个对人类数学界最大的功劳,那就是:

培养了一位好学生——欧拉。

学物理学的同学也听说过另一位伯努利:丹尼尔· 伯努利,他是上面一位约翰的儿子。此人对流体动力学的贡献极大。并研究弹性弦的横向振动问题(1741~1743年),提出声音在空气中的传播规律 (1762年)。他的论著还涉及天文学(1734年)、地球引力 (1728年)、湖汐(1740年)、磁学(1743、1746年),振动理论(1747年)、船体航行的稳定(1753、1757年)和生理学 (1721、1728年)等。

扯远了,我们还是回到自然对数上来。

-----------分割线-----------

天才欧拉的诞生

现在,该轮到欧拉出场了。之前,我们先用些篇幅介绍这位欧拉先生。

欧拉的一生,称得上传奇。他不到十岁就开始自学《代数学》,要知道那时候很多欧洲的骑士还是大字不识呢。他在大学时得到约翰· 伯努利的提携,之后丹尼尔·伯努利又将他推荐到俄国彼得堡科学院。可以说,伯努利家族是欧拉的贵人。

欧拉可以用3天的时间计算出彗星轨道。

1771年彼得堡遭受大火灾,欧拉的书房毁于一旦。但是已经失明的他居然凭借记忆,用一年的时间重写出大部分论文。

欧拉写下886本书籍和论文,他死后彼得堡科学院花了47年才整理完毕。

欧拉可以背诵前100个质数的前10次幂。

欧拉创立了许多新的符号:课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等

几乎每个数学领域都有欧拉的名字:从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常

数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清。他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作。歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的。欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式,又把三角函数与指数函联结起来。

以上一长段,各位不想看就不看吧,这些在各位的高中数学中都学过。

在老师的指导下,欧拉很快提出了用无穷阶乘的倒数和来表示自然对数的底的公式。有了公式,就容易很多。据说他靠手算就算到了小数点之后23位。考虑到这位牛人记忆力超群,这样的事情似乎也很正常。

自然对数的出现,不但使悬链方程迎刃而解,而且对于当时很热门的天文学——西方的星象学——也具有重要意义。对数使得复杂的乘法运算可以转变为简单的加法,只要查阅对数表就可以了。同时,对数尺也应运而生。当然在计算器普及的今天,已经很少有人用这种东西了。

-----------分割线-----------

C版本

#include
int main()
{
double A(double );
double e=1.0,f;
double n=1.0;

while(1)
{
f=1.0/A(n);
if(f>0.0000001)
{
n++;
e=e+f;
}
else
break;
}

printf("%0.16f\n",e);
return 0;
}

double A(double a)
{
double b=1,c=a;
for(;ba=a*b;
return a;
}

TC++ 3.0下通过



相关文档
相关文档 最新文档