文档库 最新最全的文档下载
当前位置:文档库 › 高中数学-圆的标准方程、圆的一般方程练习

高中数学-圆的标准方程、圆的一般方程练习

高中数学-圆的标准方程、圆的一般方程练习
高中数学-圆的标准方程、圆的一般方程练习

高中数学-圆的标准方程、圆的一般方程练习

自主广场

我夯基 我达标

1.下列方程中表示圆的是( )

A.x 2+y 2-2x+2y+2=0

B.x 2+y 2-2xy+y+1=0

C.x 2+2y 2-2x+4y+3=0

D.x 2+y 2+4x-6y+9=0

思路解析:题中的4个选项都是二元二次方程,一个二元二次方程是否表示圆,要判断它是

否同时满足以下这三个条件:(1)x 2、y 2项的系数相等且不为零,即A=C≠0;(2)没有xy 项,

即B=0;(3)D 2+E 2-4F >0.根据这三个条件对每一个方程进行判断.因为选项A 中D 2+E 2-4F=4+4-8=0,所以选项A 不正确;因为选项B 中有-2xy 项,所以选项B 也不正确;因为选项C 中两个平方项的系数一个等于1,另一个等于2,不满足A=C 的条件,所以选项C 也不正确;选项D 同时满足这三个条件,所以选项D 是正确的.因此,选D. 答案:D

2.已知方程x 2+y 2-2kx+2k+3=0表示圆,则k 的取值范围是( )

A.(-∞,-1)

B.(3,+∞)

C.(-∞,-1)∪(3,+∞)

D. ?

思路解析:利用D 2+E 2-4F >0就可求得k∈(-∞,-1)∪(3,+∞).

答案:C

3.已知圆C 的方程为f(x ,y)=0,点A(x 0,y 0)是圆外的一点,那么方程f(x ,y)-f(x 0,y 0)=0表示的曲线是( )

A.与圆C 重合的圆

B.过点A 与圆C 相交的圆

C.过点A 且与圆C 同心的圆

D.可能不是圆

思路解析:此题所给出的圆的方程是一个抽象的方程,实际上,我们只学习了两种圆的方程,完全可以分别用两种方程来分析这道题.这里还基于一个结论:圆外的点的坐标代入圆的方程后,方程就变成了不等式.因为点A(x 0,y 0)是圆外的一点,所以f(x 0,y 0)>0,由方程f(x ,

y)-f(x 0,y 0)=0,得f(x ,y)=f(x 0,y 0),不妨设圆C 的方程f(x ,y)=0为方程(x-a)2+(y-b)2-r 2=0,

则方程f(x ,y)=f(x 0,y 0)即为(x-a)2+(y-b)2=r 2+f(x 0,y 0),此方程表示的正是过点A 且与

圆C 同心的圆.因此,选C.

答案:C

4.圆(x+2)2+y 2=5关于原点(0,0)对称的圆的方程为( )

A.(x-2)2+y 2=5

B.x 2+(y-2)2=5

C.(x+2)2+(y+2)2=5

D.x 2+(y+2)2=5

思路解析:求圆关于某点或直线的对称图形的方程,主要是求圆心关于点或直线的对称点.求出圆心(-2,0)关于(0,0)的对称点为(2,0).

答案:A

5.设P(x ,y)是曲线x 2+(y+4)2=4上任意一点,则2

2)1()1(-+-y x 的最大值为( ) A.26+2 B.26 C.5 D.6

思路解析:此题的解题关键是要能从观察式子2

2)1()1(-+-y x 的特征中产生联想,即这个式子的几何意义是什么.

因为式子22)1()1(-+-y x 的几何意义是点P(x ,y)与点(1,1)之间的距离,又因为P(x ,y)是曲线x 2+(y+4)2=4上任意一点,所以22)1()1(-+-y x 的最大值即为在圆x 2+(y+4)2=4上求一点,使这个点到点(1,1)的距离最大.

如图2-3-(1,2)-4所示,|CB|即为所求,而|CB|=|CA|+|AB|,圆x 2+(y+4)2=4的圆心坐标为

A(0,-4),半径为2,即|AB|=2,而|AC|=26,所以|CB|=26+2,即22)1()1(-+-y x 的最大值为26+2.

因此,选A.

图2-3-(1,2)-4

答案:A

6.程x 2+y 2+x-2y+m=0表示圆时,m∈___________.

思路解析:如果方程x 2+y 2+x-2y+m=0表示圆,则D 2+E 2-4F >0一定成立.根据这个条件可以把

题意转化为不等式,从而求出m 的取值范围.

因为方程x 2+y 2+x-2y+m=0表示圆,所以1+4-4m >0,

解得m <

45.所以m∈(-∞,4

5). 答案:(-∞, 45) 7.直线3x+4y-12=0和两坐标轴围成的三角形的外接圆的方程是_______________.

思路解析:直线与两坐标轴的交点是A 、B ,AB 为圆的直径,即AB 的中点为圆心,AB 长的一半为圆的半径.

答案:(x-2)2+(y-23)2=4

25 8.已知圆M :(x+cosθ)2+(y-sinθ)2=1,直线l :y=kx ,下面四个命题:

A.对任意实数k 与θ,直线l 和圆M 相切

B.对任意实数k 与θ,直线l 和圆M 有公共点

C.对任意实数θ,必存在实数k ,使得直线l 与圆M 相切

D.对任意实数k ,必存在实数θ,使得直线l 与圆M 相切

其中真命题的代号是____________.(写出所有真命题的代号)

思路解析:圆心坐标为(-cosθ,sinθ),圆的半径为1,圆心到直线的距离为d=2221|)sin(|11|

sin cos |k k k k +++=+--?θθθ=|sin(θ+φ)|≤1,

故选B 、D.

答案:BD

我综合 我发展

9.求圆心在直线y=-4x 上,并且与直线l :x+y-1=0相切于点(3,-2)的圆的方程.

思路分析:已知圆心在y=-4x 上,所以可设圆心为(a,-4a),利用圆心到直线l :x+y-1=0的距离等于圆心到点(3,-2)的距离等于半径,就可以求出圆的方程.

解:依题意,设圆心为(a,-4a),则其到直线x+y-1=0的距离及其到点(3,-2)的距离都等于半径的长度.应用两点间的距离公式及点到直线的距离公式,可得圆心到点(3,-2)的距离=22)42()3(a a -+-,圆心到直线l 的距离=

2211|14|+--a a ,即得22)42()3(a a -+-=2211|

14|+--a a ,对这个式子两边平方并化简得a=1.于是容易计算得

到此圆的圆心为(1,-4),半径长为22,于是得到此圆的方程为(x-1)2+(y+4)2=8.

10.求过点A(-1,3),B(4,2),且在x 轴、y 轴上的四个截距之和是14的圆的方程.

思路分析:本题所给的条件是过两个定点和截距三个条件,考虑到知道三点就可以求出圆的方程,所以考虑应用圆的一般式并结合根与系数的关系解决这个问题.

解:设圆的一般式方程为x 2+y 2+Dx+Ey+F=0,①

由题意可知?????=++++=++++-.

02424,033)1(2222F E D F E D 令①中的y=0,可得x 2+Dx+F=0,圆在x 轴上的截距之和为-D ;

令①中的x=0,可得y 2+Ey+F=0,圆在y 轴上的截距之和为-E.

结合以上的方程组可以解得D=-4,E=-10,F=16.

所以我们得到此圆的方程为x 2+y 2-4x-10y+16=0.

11.设A 、B 两点是圆心都在直线3x-2y+5=0上的相交两圆的两个交点,且A 的坐标是(-4,5),求点B 的坐标.

思路分析:解本题要充分利用平面几何的知识.注意到两圆相交,则意味着两交点关于连心线对称,即B 点应为点A 关于直线3x-2y+5=0的对称点.

解:设B(x ,y),因AB 垂直于直线l :3x-2y+5=0,且A(-4,5),故直线AB 的方程为y-5=3

2-(x+4). 解方程组??

???=+-+-=-,0523)4(325y x x y 得交点P(1331,131-). 又由中点坐标公式得

2

51331,24131y x +=-=-

. 解得x=13

3,1350-=y . ∴B(133,1350-).

12.已知实数x 、y 满足方程x 2+y 2-4x+1=0.

(1)求y

x 的最大值和最小值; (2)求x 2+y 2的最大值和最小值.

思路分析:方程x 2+y 2

-4x+1=0表示圆心(2,0),半径为3的圆;x y 的几何意义是圆上一点与原点连线的斜率,x 2+y 2表示圆上一点到原点距离的平方,故可借助于平面几何知识,利用数

形结合来求解.

解:(1)原方程化为(x-2)2+y 2

=3,表示以点(2,0)为圆心,以3为半径的圆. 设x y =k,即y=kx,当直线与圆相切时,斜率k 取最大值和最小值,此时有31

|02|2=+-k k ,解得k=±3. 故x

y 的最大值为3,最小值为-3. (2)x 2+y 2表示圆上一点到原点距离的平方,由平面几何知识知原点与圆心的连线与圆的两个交点处取得最大值和最小值.

又圆心到原点的距离为2,故(x 2+y 2)max =(2+3)2=7+43,(x 2+y 2)min =(2-3)2=7-43.

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中数学说课稿:《圆的标准方程》.doc

高中数学说课稿:《圆的标准方程》 "说课"有利于提高教师理论素养和驾驭教材的能力,也有利于提高教师的语言表达能力,因而受到广大教师的重视,登上了教育研究的大雅之堂。下面是我为大家收集的关于高中数学说课稿:《圆的标准方程》,欢迎大家阅读借鉴! 高中数学说课稿:《圆的标准方程》 【一】教学背景分析 1.教材结构分析 《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用. 2.学情分析 圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强. 根据上述教材结构与内容分析,考虑到学生已有的认知结构和

心理特征,我制定如下教学目标: 3.教学目标 (1) 知识目标:①掌握圆的标准方程; ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程; ③利用圆的标准方程解决简单的实际问题. (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力; ②加深对数形结合思想的理解和加强对待定系数法的运用; ③增强学生用数学的意识. (3) 情感目标:①培养学生主动探究知识、合作交流的意识; ②在体验数学美的过程中激发学生的学习兴趣. 根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点: 4. 教学重点与难点 (1)重点:圆的标准方程的求法及其应用. (2)难点:①会根据不同的已知条件求圆的标准方程; ②选择恰当的坐标系解决与圆有关的实际问题. 为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析: 【二】教法学法分析 1.教法分析为了充分调动学生学习的积极性,本节课采用"

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

新人教版必修二高中数学 《圆的标准方程》 教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学必修二《圆的标准方程》教案

教案说明 圆是学生比较熟悉的曲线,初中平面几何对圆的基本性质作了比较系统的研究,因此这节课的重点确定为用解析法研究圆的标准方程及其简单应用。 一、设计理念 设计的根本出发点是促进学生的发展。教师以合作者的身份参与,课堂上建立平等、互助、融洽的关系,师生共同研究,共同提高。 二、设计思路 (1)突出重点抓住关键突破难点 求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路。在例题的设计中,我用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,能力与知识的形成相伴而行,这样的设计不但突出了重点,更使难点的突破水到渠成。 (2)学生主体教师主导探究主线 本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我在例题2的教学,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,他们体验到成功的快乐,感受到数学的魅力。在一个个问题的驱动下,高效的完成本节的学习任务。 三、媒体设计 本节采用powerpoint媒体,知识容量大,同时又有图形。为了在短时间内完成教学内容,故采用演示文稿的方式,增加信息量,节省时间。同时

动态演示图形,刺激学生的感官,引起更强的注意,提高课堂教学效率。

高一数学教案:4.1.1 圆的标准方程

第一课时 4.1.1 圆的标准方程 教学要求:使学生掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程 教学重点:圆的标准方程的推导步骤;根据具体条件正确写出圆的标准方程. 教学难点:运用圆的标准方程解决一些简单的实际问题 教学过程: 一、 复习准备: 1.提问:两点间的距离公式? 2.讨论:具有什么性质的点的轨迹称为圆?圆的定义? 二、讲授新课: 1. 圆的标准方程: ①建系设点: A. C 是定点,可设C(a ,b)、半径r ,且设圆上任一点M 坐标为(x ,y). ②写点集:根据定义,圆就是集合P={M||MC|=r} ④化简方程: 将上式两边平方得22 ()()x a y b r -+-= (建系设点→写点集→列方程→化简方程?圆的标准方程 (standard equation of circle)) ⑤思考:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么? ⑥师指出:只要a ,b ,r 三个量确定了且r >0,圆的方程就给定了.这就是说要确定圆的方程,必须具备三个独立的条件.注意,确定a 、b 、r ,可以根据条件,利用待定系数法来解决. 2. 圆的标准方程的应用 ①.写出下列各圆的方程: (1)圆心在原点,半径是3;(2)经过点P(5,1),圆心在点C(8,-3); (指出:要求能够用圆心坐标、半径长熟练地写出圆的标准方程.) ②.已知两点P 1(4,9)和P 2(6,3),求以P 1P 2为直径的圆的方程,试判断点M(6,9)、N(3,3)、Q(5,3)是在圆上,在圆内,还是在圆外? (从确定圆的条件考虑,需要求圆心和半径,可用待定系数解决) ③ ABC 的三个定点的坐标分别是A(5,1),B(7,-3),C(2,-8),求它的外接圆的方程 ( 用待定系数法解) ④ .已知圆心为C 的圆经过点A(1,1)和B(2,-2),却圆心C 在直线L:10x y -+=上,求圆心为C 的圆的标准方程。 3. 小结: ①.圆的方程的推导步骤:建系设点→写条件→列方程→化简→说明 ②.圆的方程的特点:点(a ,b)、r 分别表示圆心坐标和圆的半径; ③.求圆的方程的两种方法:(1)待定系数法;确定a ,b ,r ; (2)轨迹法:求曲线方程的一般方法. 三、巩固练习: 1. 练习:P131 14 2. 求下列条件所决定的圆的方程: (1) 圆心为 C(3,-5),并且与直线x-7y+2=0相切; (2) 过点A(3,2),圆心在直线y=2x 上,且与直线y=2x+5相切. 3. 已知:一个圆的直径端点是A(x 1,y 1)、B(x 2,y 2). 证明:圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0. 4. 作业 P134 习题4 1、2题. 第二课时 4.1.2圆的一般方程 教学要求:使学生掌握圆的一般方程的特点;能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 教学重点:(1)能用配方法,由圆的一般方程求出圆心坐标和半径;(2)能用待定系数法,由

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

高中数学-圆的标准方程练习题

高中数学-圆的标准方程练习题 5分钟训练(预习类训练,可用于课前) 1.圆心是O(-3,4),半径长为5的圆的方程为( ) A.(x-3)2+(y+4)2=5 B.(x-3)2+(y+4)2 =25 C.(x+3)2+(y-4)2=5 D.(x+3)2+(y-4)2 =25 解析:以(a,b)为圆心,r 为半径的圆的方程是(x-a)2+(y-b)2=r 2 . 答案:D 2.以点A(-5,4)为圆心,且与x 轴相切的圆的标准方程为( ) A.(x+5)2+(y-4)2=16 B.(x-5)2+(y+4)2 =16 C.(x+5)2+(y-4)2=25 D.(x-5)2+(y+4)2 =25 解析:∵圆与x 轴相切,∴r=|b|=4.∴圆的方程为(x+5)2+(y-4)2 =16. 答案:A 3.圆心在直线y=x 上且与x 轴相切于点(1,0)的圆的方程为____________. 解析:设其圆心为P(a,a),而切点为A(1,0),则P A⊥x 轴,∴由PA 所在直线x=1与y=x 联立,得a=1.故方程为(x-1)2+(y-1)2 =1.也可通过数形结合解决,若圆与x 轴相切于点(1,0),圆心在y=x 上,可推知与y 轴切于(0,1). 答案:(x-1)2+(y-1)2 =1 10分钟训练(强化类训练,可用于课中) 1.设实数x 、y 满足(x-2)2 +y 2 =3,那么 x y 的最大值是( ) A. 2 1 B.33 C.23 D.3 解析:令 x y =k,即y=kx ,直线y=kx 与圆相切时恰好k 取最值. 答案:D 2.过点A(1,-1)、B(-1,1),且圆心在直线x+y-2=0上的圆的方程是( ) A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2 =4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2 =4 解:由题意得线段AB 的中点C 的坐标为(2 1 1, 211+--),即(0,0),直线AB 的斜率为k AB =11)1(1----=-1,则过点C 且垂直于AB 的直线方程为y-0=1 1--(x-0),即y=x.所以圆心坐标 (x,y)满足?? ?=-+=. 02, y x x y 得y=x=1. ∴圆的半径为])1(1[)11(2 2 --+-=2.因此,所求圆的方程为(x-1)2 +(y-1)2 =4. 答案:C 3.设点P(2,-3)到圆(x+4)2+(y-5)2 =9上各点距离为d,则d 的最大值为_____________. 解析:由平面几何性质,所求最大值为P(2,-3)到圆(x+4)2+(y-5)2 =9的圆心距离加上圆的半径,即d max =2 2 )53()42(--+++3=13.

高中数学圆与方程讲义练习及答案

第四章 圆方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2 (1 点00(,)M x y 与圆2 2 2 ()()x a y b r -+-=的位置关系: 当22 00()()x a y b -+->2r ,点在圆外 当22 00()()x a y b -+-=2r ,点在圆上 当22 00()()x a y b -+-<2r ,点在圆内 (2当04>-+F E D 时,方程表示圆,此时圆心为? ? ? ? ?--2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为 相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()22 2222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点

高一数学教案[苏教版]圆的标准方程

4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆 的标准方程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问 题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情 和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条 件r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明222 ()()x a y b r -+-=为圆的方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

3、知识应用与解题研究 例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内 例(2): ABC 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程222()()x a y b r -+-= 可知,要确定圆的标准方程,可用待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和(2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、例(3)可得出ABC 外接圆的标

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

(完整word版)职高数学第八章直线和圆的方程及答案

第8章直线和圆的方程 练习8.4.1 圆的标准方程 1.圆心在原点,半径为3的圆的标准方程为 2.圆22(3)(2)13x y -++=的周长是 3.以C(-1,2)为圆心,半径为5的圆的标准方程是 练习8.4.2 圆的一般方程 1.圆224240x y x y +-+-=的圆心坐标是 2.求下列圆的圆心坐标和半径: (1)2210150x y y +-+= (2)22241x x y y -++=- 练习8.4.3 确定圆的条件 1. 求以点(4,1)-为圆心,半径为1的圆的方程. 2. 求经过直线370x y ++=与32120x y --=的交点,圆心为(1,1)C -的圆的方程. 3. 求经过三点(0,0)O ,(1,0)M ,(0,2)N 的圆的方程. 练习8.4.4 直线与圆的位置关系 1.判断下列直线与圆的位置关系: (1)直线2x y +=与圆222x y +=; (2)直线 y =与圆22(4)4x y -+=; (3)直线51280x y +-=与圆22(1)(3)8x y -++=.

2.求以(2,1)C -为圆心,且与直线250x y +=相切的圆的方程. 练习8.4.5 直线方程与圆的方程应用举例 1. 光线从点M (?2,3)射到点P (1,0),然后被x 轴反射,求反射光线所在直线的方程 2. 赵州桥圆拱的跨度是37.4米,圆拱高约为7.2米,适当选取坐标系求出其拱圆 的方程. 3.某地要建造一座跨度为8米,拱高为2米的圆拱桥,每隔1米需要一根支柱支撑,求第二根支柱的长度(精确到0.01m).

(完整版)高中数学必修2圆与方程典型例题(可编辑修改word版)

标准方程(x - a )2 + (y - b )2 = r 2 ,圆心 (a , b ),半径为 r 11 11 11 11 0 0 第二节:圆与圆的方程典型例题 一、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。二、圆的方程 (1) ; 点 M (x , y ) 与圆(x - a )2 + ( y - b )2 = r 2 的位置关系: 当(x - a )2 + ( y - b )2 > r 2 ,点在圆外 当(x - a )2 + ( y - b )2 = r 2 ,点在圆上 当(x - a )2 + ( y - b )2 < r 2 ,点在圆内 (2) 一般方程 x 2 + y 2 + Dx + Ey + F = 0 当 D 2 + E 2 - 4F > 0 时,方程表示圆,此时圆心为?- D E ? ,半径为r = 当 D 2 + E 2 - 4F = 0 时,表示一个点; 当 D 2 + E 2 - 4F < 0 时,方程不表示任何图形。 ,- ? ? 2 2 ? 2 (3) 求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出 a ,b ,r ;若利用一般方程,需要求出 D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 例 1 已知方程 x 2 + y 2 - 2(m - 1)x - 2(2m + 3) y + 5m 2 + 10m + 6 = 0 . (1) 此方程表示的图形是否一定是一个圆?请说明理由; (2) 若方程表示的图形是是一个圆,当 m 变化时,它的圆心和半径有什么规律?请说明理由. 答案:(1)方程表示的图形是一个圆;(2)圆心在直线 y =2x +5 上,半径为 2. 练习: 1.方程 x 2 + y 2 + 2x - 4 y - 6 = 0 表示的图形是( ) A.以(1,- 2) 为圆心, 为半径的圆 B.以(1,2) 为圆心, 为半径的圆 C.以(-1,- 2) 为圆心, 为半径的圆 D.以(-1,2) 为圆心, 为半径的圆 2.过点 A (1,-1),B (-1,1)且圆心在直线 x +y -2=0 上的圆的方程是( ). A .(x -3)2+(y +1)2=4 B .(x +3)2+(y -1)2=4 C .(x -1)2+(y -1)2=4 D .(x +1)2+(y +1)2=4 3.点(1,1) 在圆(x - a )2 + ( y + a )2 = 4 的内部,则 a 的取值范围是( ) A. -1 < a < 1 B. 0 < a < 1 C. a < -1 或 a > 1 D. a = ±1 4.若 x 2 + y 2 + ( -1)x + 2y + = 0 表示圆,则的取值范围是 5. 若圆 C 的圆心坐标为(2,-3),且圆 C 经过点 M (5,-7),则圆 C 的半径为 . 6. 圆心在直线 y =x 上且与 x 轴相切于点(1,0)的圆的方程为 . 7. 以点 C (-2,3)为圆心且与 y 轴相切的圆的方程是 . 1 D 2 + E 2 - 4F

高中数学-圆的标准方程教案

第四章 圆与方程 4.1.1 圆的标准方程 三维目标: 知识与技能:1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程。 2、会用待定系数法求圆的标准方程。 过程与方法:进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想,通过圆的标准方 程解决实际问题的学习,注意培养学生观察问题、发现问题和解决问题的能力。 情感态度与价值观:通过运用圆的知识解决实际问题的学习,从而激发学生学习数学的热情和兴趣。 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程。 教学过程: 1、情境设置: 在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,原是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222 ()()x a y b r -+-= ② 引导学生自己证明2 2 2 ()()x a y b r -+-=为圆的 方程,得出结论。 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 3、知识应用与解题研究

例(1):写出圆心为(2,3)A -半径长等于5的圆的方程, 并判断点12(5,7),(1)M M --是否在这个圆上。 分析探求:可以从计算点到圆心的距离入手。 探究:点00(,)M x y 与圆222 ()()x a y b r -+-=的关系的判断方法: (1)22 00()()x a y b -+->2r ,点在圆外 (2)22 00()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2 r ,点在圆内 例(2): ABC V 的三个顶点的坐标是(5,1),(7,3),(2,8),A B C --求它的外接圆的方程 师生共同分析:从圆的标准方程2 2 2 ()()x a y b r -+-= 可知,要确定圆的标准方程,可用 待定系数法确定a b r 、、三个参数.(学生自己运算解决) 例(3):已知圆心为C 的圆:10l x y -+=经过点(1,1)A 和(2,2)B -,且圆心在:10l x y -+=上,求圆心为C 的圆的标准方程. 师生共同分析: 如图确定一个圆只需确定圆心位置与半径大小.圆心为C 的圆经过点(1,1)A 和 (2,2)B -,由于圆心C 与A,B 两点的距离相等,所以圆心C 在险段AB 的垂直平分线m 上,又圆心C 在直线l 上,因此圆心C 是直线l 与直线m 的交点,半径长 等于CA 或CB 。 (教师板书解题过程。) 总结归纳:(教师启发,学生自己比较、归纳)比较例(2)、 例(3)可得出ABC V 外接圆的标准方程的两种求法: ①、根据题设条件,列出关于a b r 、、的方程组,解方程组得到a b r 、、得值,写出圆的标准方程. 根据确定圆的要素,以及题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程. 提炼小结: 1、 圆的标准方程。 2、 点与圆的位置关系的判断方法。 3、 根据已知条件求圆的标准方程的方法。

(新)高中数学圆的方程典型例题全

类型七:圆中的最值问题 例18:圆010442 2 =---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 例19 (1)已知圆1)4()3(221=-+-y x O : ,),(y x P 为圆O 上的动点,求2 2y x d +=的最大、最小值. (2)已知圆1)2(2 22=++y x O : ,),(y x P 为圆上任一点.求1 2 --x y 的最大、最小值,求y x 2-的最大、最小值. 分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决. 解:(1)(法1)由圆的标准方程1)4()3(2 2 =-+-y x . 可设圆的参数方程为?? ?+=+=, sin 4, cos 3θθy x (θ是参数). 则θθθθ2 2 2 2 sin sin 816cos cos 69+++++=+=y x d )cos(1026sin 8cos 626φθθθ-+=++=(其中3 4 tan = φ). 所以361026max =+=d ,161026min =-=d . (法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离' 1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离' 1d 减去半径1. 所以6143221=++=d . 4143222=-+=d . 所以36max =d .16min =d . (2) (法1)由1)2(2 2 =++y x 得圆的参数方程:???=+-=, sin , cos 2θθy x θ是参数. 则 3cos 2sin 12--=--θθx y .令t =--3 cos 2 sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ 1)sin(1322 ≤-=+-? φθt t 4 3 3433+≤≤-? t .

相关文档
相关文档 最新文档