文档库 最新最全的文档下载
当前位置:文档库 › 跳频技术

跳频技术

跳频技术
跳频技术

跳频可分为快速跳频和慢速跳频,在GSM中采用的是慢速跳频,其特点是按照固定的间隔改变一个信道使用的频率.

根据GSM的建议,基站无线信道的跳频是以每一个物理信道为基础的,因此对于移动台来说,只需要在每个帧的相应时隙跳变一次,其跳频速率为217跳/秒,它在一个时隙内用固定的频率发送和接收,然后在该时隙后需跳到下一个TDMA帧,由于监视其它基站需要时间,故允许跳频的时间约为1ms,收发频率为双工频率。但对基站系统来说,每个基站中的TRX (收发信机)要同时于多个移动台通信,因此,对于每个TRX来说,能根据通信使用的物理信道,在其每个时隙上按照不同的跳频方案来进行跳变。

一、跳频的种类及各自实现的方法

GSM中的跳频可分为基带跳频和射频跳频两种。在北电系统中采用的是射频跳频。

基带跳频是通过腔体合成器来实现的,而射频跳频是通过混合合成器来实现的。

当采用基带跳频时,它的原理是在真单元和载频单元之间加入了一个以时隙为基础的交换单元,通过把某个时隙的信号切换到相应地无线频率上来实现跳频,这种做法的特点是比较简单,而且费用也底。但由于采用的腔体合成器它要求其每个发信机的频率都是固定发射的,当发信机要改动其频率时,只能人工调谐到新的频率上,其话音信号随着时间的变化使用不同频率发射机发射,收发信机在跳频总线上不停的扫描观察,当总线发现有要求使用某一频率时,总线就自动指向拥有该频率的发信机上来发送信号。采用基带跳频的小区的载频数与该小区使用的频点数是一样的。

当采用射频跳频时,它是在通过对其每个TRX的频率合成器进行控制,使其在每个时隙的基础上按照不同的方案进行跳频。它采用的混合合成器对频带的要求十分宽松,每个发信机都可使用一组相同的频率,采用不同的MAIO加以区分。但它必须有一个固定发射携带有BCCH的频率的发信机,其他的发信机可随着跳频序列的序列值的改变而改变。

两者的区别是:

1、基带跳频采用的腔体合成器最多可配置8个发信机,而且衰耗小,此时衰耗仅为3.5dB;而射频跳频采用的混合合成器的容量较小,最多可配置4个发信机,而且衰耗大,当为H2D时,衰耗为4.5dB当为H4D时,衰耗为8dB.显然,当基站配置较大时,采用混合合成器的基站的覆盖要小.

2、腔体合成器对频段的要求不如混合合成器灵活,混合合成器所带的发信机可以使用一

组频率,频点的间隔要求为200 K;腔体合成器的发信机仅能使用固定的频率发射,而且所用频点的间隔要求大于600K.

3、基带跳频的每个发信机TX只能对应一个频点,而射频跳频的每个发信机TX能够发送所有参与跳频的频点。当使用基带跳频时携带BCCH频点的TX若出现故障,则易导致整个小区的瘫痪,而在射频跳频时则不会出现这类情况,因为每个TX都能发送BCCH频点,携带BCCH信道的载频优先级最高,当该载频出现问题时,携带BCCH信道的TDMA帧,能够自动通过另一个载频发射出去。

二、跳频的优点

GSM采用跳频有两个原因,是因为它可起到频率分集和干扰源分集的作用。

1、跳频可起到频率分集的作用。

跳频是要保证同一个信息按几个频率发送,从而可提高了传输特性。不同频率的信号所收到的衰落不同,而且随着频率差别增大时,衰落更加独立。对于相距足够远的频率,它们可看做是完全独立的,通过跳频,包括信息一部分的所有突发脉冲不会被瑞利衰落以同一方式破坏。

当移动台以高速移动时,在同一信道上接收两个相邻突发脉冲期间(相隔8个时隙,即4.615ms),移动台位置的差别对于驱除信号瑞利变化的相关性以足够了,在这种情况下,跳频基本起不到什么作用.然而对于拥有大量手持机的用户的系统是很重要的,因为手持机的用户通常运动速度较慢,或处于静止状态,在此时跳频优越性就显示出来了,它所能提供的增益大概是在6.5dB左右.

2、跳频可起到干扰源分集作用

在业务量密集的地方,网络的容量将受到由于频率复用产生的干扰限制。相对干扰比C/I值(载波电平/干扰电平)可能在呼叫之间变化很大。载波电平随着移动台相对于基站的位置及移动台与基站之间障碍的数量而变化,干扰电平的变化依赖于此频率是否被附近蜂房的另一呼叫使用,它还随着干扰源距离、电平的变化而变化。由于系统的目标是尽可能满足更多用户的需求,当不选用跳频时,如一频点出现干扰时,当用户占用该频点时就会造成通话质量使用户难以忍受,而当使用跳频时,该干扰情况就会被该小区的许多呼叫所共享,整个网络的性能将得到提高。经分析使用跳频的网络可比不采用跳频的网络高出3dB的增益。

三、跳频序列

在小区参数的定义中定义了两个频率组,一个称为小区分配表(CELL ALLOCATION)用来定义该小区所用到的所有频点,另一个被称为移动分配表(MOBILE ALLOCATION)用来定义参与跳频的所有频点。在此值得注意的是,携带有BCCH的载频,不能用于跳频,因为它携带有FCCH、SCH及BCCH信道,需要不停的向该小区的所有手机广播同步消息及系统消息。在GSM规范中有两个参数用来定义跳频序列,分别是MAIO(移动分配指针偏移)和HSN (跳频序列号)。

MAIO因需描述跳频重复功能的起点,所以偏移的可能值与参与跳频的频率数一样多。MA的频点数应在1到64之间,产生跳频序列要经过一个十分复杂的算法过程时,参与计算的参数有FN(当前的帧号及获得的描述帧号的T1、T2、T3值)、MAIO、HSN。

HSN值有64个不同的值,通常一个小区的信道应有相同的HSN值,不同的MAIO值,因为这是要避免同一小区信道之间的干扰,当同一小区出现相同的MAIO后将导致严重的指派失败率。两个拥有相同HSN不同MAIO的信道,不会在同一突发脉冲使用相同的频率。相反,当两个使用同一跳频组,MAIO也相同的但HSN不同的信道,它只会对突发脉冲的1/n

干扰。

MS可以由系统广播消息中提供的小区参数来根据算法导出跳频序列和小区的跳频序列号。在使用同一跳频组的相邻小区中,应注意使用不同的HSN,该做法可获得干扰源分集增益。但注意应尽量避开使用HSN=0的情况(它是循环跳频),因为它会导致低质量的干扰源分集。

跳频通信系统抗干扰性能分析

题目:跳频通信系统抗干扰性能分析 姓名: 学院:信息科学与技术学院 系:通信工程系 专业: 年级: 学号: 教师: 2012年7月10日

跳频通信系统抗干扰性能分析 摘要 扩频技术是一种信息传送技术,它利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传送信息所需的最小带宽。而跳频技术以其良好的抗干扰性能和衰落性及较低的信号被截获概率,成为战术通信领域应用最广的一种抗干扰手段。本文在介绍跳频通信基础原理的基础上,并借助计算机仿真工具Matlab /Simulink 搭建仿真模型,得到了在多径信道下的误码率-信噪比曲线,从而分析跳频通信系统的抗干扰性能。 关键字:跳频、Simulink 仿真、多径、抗干扰 一.引言 跳频通信时现代通信中采用的最常用的扩频方式之一,其基本原理是指收发双方传输信号的载波频率按照预定规律进行离散变化。与定频通信相比,由于发送的信号调制在多个伪随机跳变的频率上,敌方不容易捕获到所发送的信息,有利于信号的隐藏,可以有效躲避干扰。因此,跳频技术在通信对抗尤其是卫星通信中处于特别有利的位置。扩频技术正在取代常规通信技术成为军事通信的一种主要抗干扰通信技术。因此,对扩频通信的研究,成为通信对抗中的重要部分。本文通过Matlab 软件仿真跳频通信系统的基本过程,在多径信道下分析其抗干扰能力。 二.跳频通信的基本原理 扩频通信系统是一种信息处理传输系统,这种系统是利用伪随机码对被传输信号进行频谱扩展,使之占有远远超过被传输信息所必需的最小带宽。在接收机中利用同一码对接收信号进行同步相关处理以解扩和恢复数据。现有的扩频系统可分为:直接序列扩频、跳频、跳时,以及上述几种方式的组合。其中跳频系统是如今使用最多的扩频技术。 跳频扩频的调制方式可以为二进制或M 进制的FSK(MFSK)。如果采用二进制FSK ,调制器选择两个频率中的一个,设为0f 或1f ,对应于待传输的信号0或1.得到的二进制FSK 信号是由PN 码生成器输出序列输出觉得的频率平移量,选择

蓝牙跳频算法.

蓝牙跳频算法 1. 引言 “蓝牙”,英文名称为“Bluetooth”,是一种开放性短距离无线通信技术标准。其宗旨是提供一种短距离、低成本的无线传输应用技术。它同IEEE802.11b一样,使用2.4GHz ISM(即:工业、科学、医学)频段。跳频是蓝牙的关键技术,对应于单时隙分组,蓝牙的跳频速率为1600跳/秒;对应于多时隙分组,跳频速率有所降低;但在建立链接时则提高为3200跳/秒。以2.45GHz为中心频率,来得到79个1MHz带宽的信道。在发射带宽为1MHz时,其有效数据速率为721kbps。蓝牙跳频技术,是实现蓝牙扩谱的关键技术。由于2.4GHz ISM频段是对所有无线电系统都开放的频段,而蓝牙系统不是工作在该频段的第一个系统,大多数无线局域网、某些无绳电话以及某些军用或民用通信都在使用该频段,微波炉、高压钠灯的无线电波也在此频率范围之内,所以ISM频谱已变得相当拥挤而嘈杂,使用ISM频段的任何系统都会遇到干扰。蓝牙技术通过使用扩频的方式,使得系统所传输的信号工作在一个很宽的频带上,传统的窄带干扰只能影响到扩频信号的一小部分,这就使得信号不容易受到电磁噪声和其他干扰信号的影响,从而更加稳定。同时,蓝牙以跳频技术作为频率调制手段,如果在一个频道上遇到干扰,就可以迅速跳到可能没有干扰的另一个频道上工作;如果在一个频道传送的信号因受到干扰而出现了差错,就可以跳到另一个频道上重发,从而加强了信号的可靠性和安全性。 2. 蓝牙跳频算法 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多个频率频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中,跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率。 2.1 蓝牙跳频序列标准 蓝牙基带标准共定义了10种类型跳频序列,其中79跳系统和23跳系统各有5种类型(欧洲/美国使用的是79条系统,日本/法国/西班牙使用的是23跳系统)。呼叫(paging)跳频序列为32(16)个不同唤醒频率(不同的系统对应的频点数不同),均匀分布在79(23)MHz范围内,周期为32(16)。呼叫响应序列为32(16)个不同响应频率,与当前呼叫频率序列一一对应,主,从单元使用不同规则得到该序列。查询(inquire)跳频序列为32(16)个不同唤醒频率,均匀分

扩频 LoRa跳频扩频通信(FHSS)的原理

扩频LoRa跳频扩频通信(FHSS)的原理 LoRa的扩频技术:LoRa是基于扩频的调制方案,通过扩频将信号扩展到宽带噪声,以获得扩频增益。 扩频的概念和原理 扩频通信(SSC)或扩频通信技术具有其用于传输信息的信号带宽远远大于其本身带宽的基本特征。信号带宽较大可以降低信噪比的要求。如果带宽增加到一定水平,则可进一步降低信噪比。扩频通信的优点是利用宽带传输技术交换信噪比,是扩频通信的基本思想和理论基础。 扩频技术是将信息信号的带宽进行多次扩展来进行通信的技术。传输信号的带宽远大于信息信号的带宽。例如,如果发送64Kbps的数据流,则基带带宽约为64KHz,但是在使用扩频技术的情况下,它占用的信道带宽可以被增加到5MHz和10MHz以上。同时,发射到宇宙的无线功率谱(单位带宽内的功率)也大幅度减少。 扩频信号的解扩过程

信息的频谱扩展过程 常规数字数据通信的原理是使用适配于数据率的最小可能的带宽。这是因为带宽数量有限,很多用户共享。扩频通信的原理是尽可能多地使用最大带宽,并且相同能量分布在宽带宽上。 另外,扩频通信具有以下特征 ●数字传输方式 ●使用与要发送的信息无关的功能(扩展功能)对要发送的信息进行调制,从而实现带宽的扩大●在接收侧使用相同扩频功能来解调扩频信号,恢复传输到的信息 ●扩频通信的优点 ●发送功率密度低,不易对其他设备造成干扰。 ●机密性很高,被监听的可能性极低。 ●具有较强的抗干扰能力,和很强的抑制同频噪声和各种噪声的能力。 ●具有良好的抗多径衰落能力。 LoRa跳频通信(FHSS)原理 FHSS跳频方式的工作原理是,各LoRa分组的内容的一部分在MCU管理中设定的跳频信道中

跳频是最常用的扩频方式之一

跳频 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频(Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。

跳频扩频通信技术资料整理

3.1.3 自适应跳频adaptive frequency hopping 在WIA-PA超帧簇通信阶段的每个时隙,根据实际的信道状况更换通信信道。 3.1.20 跳频frequency hopping 收发信道切换方法,目的为抗干扰和减少信号衰落。 3.1.40 时隙跳频timeslot hopping 为了避免干扰和衰减,按照一定规律,在每个时隙改变收发频率。 AFH Adaptive Frequency Hopping 自适应跳频 AFS Adaptive Frequency Switch 自适应频率切换 FH Frequency Hopping 跳频 TH Timeslot Hopping 时隙跳频 WIA-PA 数据链路层支持基于时隙的跳频机制、重传机制、时分多路访问(TDMA)和载波侦听多路访问CSMA)混合信道访问机制,保证传输的可靠性和实时性。 --------------------------------------- 8.4.3 时隙通信

8.4.5 信道跳频 WIA-PA 支持跳频通信方式,跳频序列由网络管理者指定。 WIA-PA 支持以下3 种跳频机制:——自适应频率切换(AFS):在WIA-PA 超帧中,信标Beacon、CAP 和CFP 段在同一个超帧周期使用相同的信道,在不同的超帧周期根据信道状况切换信道。信道质量差时,即丢包率高于“PLRThreshold”时设备改变通信信道。参数“PLRThreshold”的容详见6.9.1.2.1;——自适应跳频(AFH):在WIA-PA 超帧的每个时隙,根据信道状况更换通信信道。信道状况通过重传次数进行评价。信道质量差时,如果发送端统计的重传次数达到了“ChannelThreshold”,则从可用信道“IntraChanel[ ]”中按顺序选择下一信道,同时在下一重传时隙利用主信道通知所在簇的接收端(通知过程详见图43)。如果接收端没有接收到信道切换通知,继续统计接收端的重传次数,达到“ChannelThreshold”时从可用信道“IntraChanel[ ] ”中按顺序选择下一信道在第(ChannelThreshold+2)个重传时隙进行通信。如果接收端接收到信道切换通知,则更换通信信道,且返回确认信息ACK。如果发送端没有收到确认信息ACK,则不更换信道,仍然采用主信道重传数据。如果发送端达到重传上限值“macMaxFrameRetries”,则丢弃当前包,且利用主信道发送下一个包。如果接收端在切换信道后仍然没有接收到发送端的包,则认为切换信道失败,返回主信道进行通信。如果发送端在达到重传上限值“macMaxFrameRetries”前与接收端在备选信道上通信成功,则发送端选用备选信道发送下一个包。非活动期的簇通信段采用AFH 跳频机制。

跳频和扩频通信

跳频通信和扩频通信 跳频通信是扩频通信的一个分支,它的突出优点是抗干扰性强,因而很适用于军事领域。当70年代末第一部跳频电台问世以后,就预示着其发展势头锐不可挡。到了80年代,世界各国军队普遍装备跳频电台。这十年是跳频电台发展速度最快的十年。广泛使用跳频电台曾被誉为80年代VHF频段无线电通信发展的主要特征。90年代,跳频通信如虎添翼,在军用跳频通信领域已相当成熟的同时,跳频通信的应用又拓宽到民用领域。业内人士指出,跳频通信是对抗无线电干扰的有效手段,称其为无线电通信的“杀手锏”。跳频通信是如此的神奇,以致于自其问世至今的短短30年间,倍受世界各国,特别是几大军事强国的青睐。 2 跳频通信的基本概念 2.1 定义 我们在用收音机收听某电台,当电台在中波和短波两个波段上播放同一个节目时,有这样的体会:若中波波段信号不好,则随即换到短波波段收听;当短波波段信号不好,则又换回到中波波段收听。这种以更换波段的手段来改善收听效果的方法,就是跳频的通俗含义。只不过这种跳频仅在接收端发生,而且是由人工干预来实施跳频的。我们假设,当广播电台发送的频段也能“紧跟”收音机用户更换的话,那么,这种通信方式就是跳频通信。因此,跳频通信可这样描述:通信收发双方同步地改变频率的通信方式称为跳频通信。 2.2 同步条件(通信条件) 与定频通信相比,跳频通信的载波频率一直在跳变。工作中,发方以相当快的速率(跳速)改变频率,收方必须与发方同步地改变频率,双方才能保持通信。也就是说,跳频通信时,收发双方必须采用同一种跳频图案。跳频电台之间要成功地进行跳频通信,收发双方必须同时满足三个条件:跳频频率相同;跳频序列相同;跳频的时钟相同(允许存在一定的误差)。三个条件缺一不可,否则无法实现跳频通信。 3 跳频通信的主要特点 3.1 抗干扰性强 跳频通信抗干扰的机理是“打一枪换一个地方”的游击策略,敌方搞不清跳频规律,因而具有较强的抗干扰能力。一方面,我方的跳频指令是个伪随机码,其周期可长达十年甚至更长的时间。另一方面,跳变的频率可以达到成千上万个。因此,敌方若在某一频率上或某几个频率上施放长时间的干扰也无济于事。

跳频信号的侦察技术研究

跳频信号的侦察技术研究 跳频通信因其良好的抗干扰性、低截获概率及组网能力,在军事通信中得到了广泛的应用,也向通信侦察提出了严峻的挑战。开展对跳频信号侦察的研究,寻求截获、估计、分选跳频信号的方法,已成为当前通信侦察领域紧迫而艰巨的任务之一。论文研究了复杂电磁环境下跳频信号侦察的关键技术,主要包括跳频信号的检测、参数估计和信号分选三部分内容。首先,将各种时频表示应用于跳频信号的检测,仿真其性能,在时频聚焦性和抑制交叉项两项指标上定性和定量比较了各种时频表示的优劣,寻求综合性能较好的时频表示。建立了跳频信号的数学模型,给出了跳频信号各种参数的定义;重点研究了各种线性时频表示、二次时频分布、重排类时频分布、组合时频分布在跳频信号检测中的应用;利用信息熵,定量评价了各类时频分布的性能,并估算了几种典型时频分布的计算复杂度,给出了各类时频分布的综合评价。其次,针对单天线宽带数字接收系统,研究了复杂电磁环境下基于时频分析的跳频信号参数盲估计算法。针对跳频信号侦察,提出了“复合信息熵”的定量评估指标,该指标综合考虑电磁环境中的信号类型数、跳频信号数目、跳速和信道使用情况,由类型熵、密度熵和分布熵三部分组成;基于信道化门限和时频分析完成了去噪和信号预选;基于谱图对单个跳频信号的跳周期、跳时和载频进行了盲估计;基于组合时频分析(SP&SPWVD),对多个跳频信号的跳周期、跳时、载频和幅度参数进行了盲估计,并给出了各参数估计的仿真性能。再次,基于时频分析、空间谱估计,结合数字信道化、时频聚焦等技术对FH

信号、FH/DS信号进行空时频测向,实现了欠定条件下的高精度测向。根据传统的空时阵列模型,结合信号的时频分析,建立了空时频分布 的数学模型;分析了空时频测向能获得时频增益的原因,研究了增益 大小与哪些因素相关;利用空时频分析实现了多个跳频信号的DOA估计,提出了适合无“频率碰撞”情况下的线性空时频DOA估计算法; 虽然利用空时频技术能够实现欠定条件的多信号测向,但在N /M值较大情况因为信号之间的互扰较大使测向性能欠佳,故再结合数字信道 化技术,解决了N /M值较大情况信号之间互扰很大的问题,实现了多 个跳频信号的高精度测向;将空时频分析和宽带信号测向方法,实现 了欠定条件下多FH/DS信号的DOA高精度估计。最后对跳频信号分选技术进行了深入的研究,针对不同的应用场合提出了相应的分选算法。提出了一种适应于环境中仅存在异步组网电台的实时分选方法,该方 法计算量少,便于实时分选,适合应用于快速、高速跳频信号的侦察; 提出了一种类数目K值的估计和优选初始聚类中心的改进K-Means算法;初始聚类中心优选能使聚类迭代次数大为减少,并能避免聚类过 程中陷入局部最小,增强了聚类的鲁棒性;利用改进K-Means聚类算 法对HDW集合进行了聚类分选;针对高斯核参数σ的优选问题,提出 了粗搜索和精估计相结合的改进方法,在得到精确的σopt同时减少 了总搜索次数;利用密度分布图和领域半径、门限参数实现了KKM算 法中类数目K的估计和初始聚类中心的优选;利用基于高斯核函数的 K-Means对跳速和到达角均时变的跳频信号进行聚类分选,分选效果 良好。

跳频通信系统中同步技术研究

跳频通信系统中同步技术研究 作者:李娜 来源:《现代电子技术》2011年第01期 摘要:同步技术是跳频通信系统关键技术之一。针对跳频通信系统中同步的要求,采用同步字头与时间信息相结合的方法实现跳频同步。首先研究了跳频同步方法、同步信息格式和初始同步等问题,最后对同步性能进行了分析。结果表明,该跳频通信系统的同步时间短、捕获概率高、虚警概率低。 关键词:跳频通信;同步字头; 时间信息TOD; 同步方案;同步性能 中图分类号:TN914.41-34文献标识码:A 文章编号:1004-373X(2011)01-0095-02 Technology of Synchronization in Frequency-hopping Communication System LI Na (Beijing HAIGE SHENZHOU Communications Technology Co. Ltd., Guangzhou HAIGE Communications Group,Beijng 100070, China) Abstract: Synchronization is one of the key technologies of FH communication. The synchronization of frequency hopping is achieved by adopting synchronization head and time of day to meet the requirement of practical development of FH communication system. The method of frequency-hopping synchronization, the format of synchronization information and the capture of synchronization are studied, and the performance of synchronization is analyzed. The results show that the FH communication system has characteristics of short synchronization time, high capture probability and low false probability. Keywords: frequency-hopping communication; synchronization head; TOD; synchronization scheme; synchronization performance 0 引言 跳频通信是现代通信领域中一种有效的抗干扰通信手段,其独特的抗干扰性能使其在军事和民用领域都得到了越来越广泛的应用。由于定时时钟相对误差、传输信道的多普勒频移等因素,跳频通信系统存在时间和频率的不确定性,为保证正常工作,建立和实现准确的跳频同步是关键[1]。 1 跳频同步方法的研究

军用跳频电台

军用跳频电台 军用跳频电台大多是短波或超短波电台。 跳频是最常用的扩频方式之一,其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,也就是说,通信中使用的载波频率受伪随机变化码的控制而随机跳变。从通信技术的实现方式来说,“跳频”是一种用码序列进行多频频移键控的通信方式,也是一种码控载频跳变的通信系统。从时域上来看,跳频信号是一个多频率的频移键控信号;从频域上来看,跳频信号的频谱是一个在很宽频带上以不等间隔随机跳变的。其中:跳频控制器为核心部件,包括跳频图案产生、同步、自适应控制等功能;频合器在跳频控制器的控制下合成所需频率;数据终端包含对数据进行差错控制。 与定频通信相比,跳频通信比较隐蔽也难以被截获。只要对方不清楚载频跳变的规律,就很难截获我方的通信内容。同时,跳频通信也具有良好的抗干扰能力,即使有部分频点被干扰,仍能在其他未被干扰的频点上进行正常的通信。由于跳频通信系统是瞬时窄带系统,它易于与其他的窄带通信系统兼容,也就是说,跳频电台可以与常规的窄带电台互通,有利于设备的更新。 通信收发双方的跳频图案是事先约好的,同步地按照跳频图案进行跳变。这种跳频方式称为常规跳频( Normal FH)。随着现代战争中的电子对抗越演越烈,在常规跳频的基础上又提出了自适应跳频。它增加了频率自适应控制和功率自适应控制两方面。 在跳频通信中,跳频图案反映了通信双方的信号载波频率的规律,保证了通信方发送频率有规律可循,但又不易被对方所发现。常用的跳频码序列是基于m序列、M序列、RS码等设计的伪随机序列。这些伪随机码序列通过移位寄存器加反馈结构来实现,结构简单,性能稳定,能够较快实现同步。它们可以实现较长的周期,汉明相关特性也比较好,但是当存在人为的故意干扰(如预测码序列后进行的跟踪干扰)时,这些序列的抗干扰能力较差。 在90年代初,出现了基于模糊(Fuzzy)规则的跳频图案产生器。在这种系统中,由模糊规则、初始条件以及采样模式共同来决定系统的输出序列。只要窃听者不知道模糊规则、初始条件、采样模式三者的任何一个,就无法预测到系统的输出频率,由此就提高了系统的抗窃听能力和抗干扰能力。模糊跳频给出的跳频码序列与传统的跳频码序列相比更加均匀,也更难预测。 90年代末有人提出了混沌(chaotic)跳频序列。其基本思想是通过混沌系统的符号序列来生成跳频序列。在这个混沌系统中要确定一个非线性的映射关系、初始条件和混沌规则,三者唯一确定一个输出序列。由此确定的混沌跳频序列体现了良好的均匀性,低截获概率,良好的汉明相关特性以及具有理想的线性范围。 与一般的数字通信系统一样,跳频系统要求实现载波同步、位同步、帧同步。此外,由于跳频系统的载频按伪随机序列变化,为了实现电台间的正常通信,收发信机必须在同一时间跳变到同一频率,因此跳频系统还要求实现跳频图案同步。跳频系统对同步有两个基本要求:一是同步速度快,二是同步能力强。目前跳频电台的同步方法有精确时钟法、同步字头法、自同步法、FFT捕获法、自回归谱估计法等等。在实际应用中,同步方案常常综合使用多种同步方法。例如战术跳频系统中常用扫描驻留同步法,综合使用了精确时钟法、同步字头法、自同步法三种同步方法,分成扫描和驻留两个阶段进行。扫描阶段完成同步头频率的捕获,驻留阶段从同步头中提取同步信息,从而完成收发双方的同步。 在自适应跳频中,同步还包括收发双方频率集更新的同步,保证双方同步地实现坏频点替代,否则会使收发双方频率表不一致,导致通信失败。 频合器是跳频通信系统中的关键部分,目前大多数跳频电台中使用的频率合成器采用的是锁相环(PLL)频率合成技术,但是该技术的频率转换速度已经接近其极限,要进一步改善的技术难度越来越大,而且分辨率较低。为了能够进一步提高跳频速率,提出了直接式数字频合器(DDS)。它采用全数字技术,具有频率分辨率高,频率转换时间快,输出频率可以很高而且稳定性好,相位噪声低等优点,可满足快速跳频电台对频率合成器的要求。例如在美国的JTIDS中,跳速达到每秒35800跳,只有采用直接数字频合器才能实现。但是DDS的价格昂贵,复杂度大,直接用于战术跳频电台有一定的难度。如果采用DDS+PLL的方法,结合两者的长处,可以获得单一技术难以达到的效果。 在跳频系统中,即使在信道条件良好的情况下,仍有可能在少数跳中出现错误,因此有必要进行差错控制。差错控制的方法主要分为两类:一是自动请求重发纠错(ARQ)技术;二是采用前向纠错(FEC)技术。 ARQ技术可以很好的对付随机错误和突发错误,它要求有反馈电路,当信道条件不好时,需要频繁的重发,最终可能导致通信失败。 FEC技术不需要反馈电路,但是需要大量的信号冗余度以实现优良的纠错,从而会降低信道效率。由于纠错码对突发错误的纠错能力较差,而通过交织技术可以使信道中的错误随机化,因此,经常采用编码与交织技术相结合的办法来获得良好的纠错性能。 在跳频系统中常用的纠错编码技术有汉明码、BCH码、trellis码、RS码、Golay码、卷积码和硬判决译码、软判决译码等。1993年提出了TURBO码,其信噪比接近于Shannon极限,引起了人们的极大兴趣。与RS码等常用的跳频编码相比, TURBO码在跳频系统中显示了极大的应用潜能。此外,还可以把不同的编码方法结合在一起,取长补短,进行联合编码。在快跳频方式下,还可以运用重发大数判决来克服跳频频段内的快衰落。 跳频电台在实际应用中通常要组成跳频通信网,以实现网中的任何两个通信终端均能够做到点到点的正常通信。组网除了要避免近端对远端的干扰、码间干扰、电磁干扰等其它干扰以及由系统引起的热噪声等噪声干扰以外,还要注意避免由组网引起的同道干扰、邻道干扰、互调干扰、阻塞干扰等。采用跳频的多址通信网具有很多优点:抗干扰能力强,低截获概率,低检测概率,对频率选择性衰落有很好的抑制作用等等。但是,与常用的DS/CDMA系统相比,跳频网的最大用户数相对较小。 跳频通信网可以分为同步通信网和异步通信网。跳频通信网有多种组网方式,如分频段跳频组网方式、全频段正交跳频组网方式等。在分频段跳频组网方式中,系统把整个频段分成若干个子频段,不同的通信链路采用不同的子频段进行通信,从而有效地防止同一通信网间的干扰。全频段正交跳频组网方式仅用于同步跳频通信网中,也就是说整个通信网中只有一个基准时钟,通过设计在某一相同时刻t的N个相互正交的跳频频率序列来进行组网,这样尽管各个终端间的通信均使用相同频段,但是由于瞬时的跳频频率点不相同,因此可保证它们之间不会出现同频道干扰。自适应跳频通信系统中,由于在通信过程中会去除那些通信条件恶劣的信道,因此频率更新后可能会出现同频道干扰现象,故必须设计一种良好的频点更新算法,保证更新后的跳频序列之间依然是正交的,否则可能会使各通信节点之间频繁出现频率碰撞,导致无法正常通信。实际应用中也可以把以上两种组网方式结合进行。例如英国Recal-Tacticom公司的Jaguar系列电台在组网中就同时采用了这两种组网方式,可组网数目达到200—300个。 除了以上这些关键技术以外,调制解调方法在跳频系统中也很重要,可以采用FSK、QAM、QPSK、QASK、DPSK、QPR、数字chirp调制等多种调制方式。 自适应跳频系统是在常规跳频系统的基础上,实时地去除固定或半固定干扰,从而自适应地自动选择优良信道集,进行跳频通信,使通信系统保持良好的通信状态。也就是说,它除了要实现常规跳频系统的功能之外,还要实现实时的自适应频率控制和自适应功率控制功能,因此就需要一个反向信道以传输频率控制和功率控制信息。 通过可靠的信道质量评估算法,发现了干扰频点后,应当在收发双方的频率表中将其删除,并以好的频点对它们进行替换,以维持频率表的固定大小。这种检测和替换是实时进行的。为增加跳频信号的隐蔽性和抗破译能力,跳频图案除具有很好的伪随机性、长周期外,各频率出现次数在长时间内应具有很好的均匀性。在引入自适应频率替换算法对频率表进行实时更新后,为保障系统性能,仍然要求跳频图案具有很好的均匀性,所以应当依次用不同的质量较好的频点来分别替换被干扰的频点。 收端频率表的更新会导致收发频率表的不一致性。为了使收发频率表同步更新,必须通过反馈信道将收端的频率更新信息通知发方。这种信息的相互交换是一种闭环控制过程,需要制定相应的信息交换协议来保证频表可靠的同步更新。衡量协议有效性的另一个重要指标便是频点去除的速度。在检测出干扰频点后,干扰频点去除的速度越快,对通信的影响越小。 信道质量评估的另一个作用是进行自适应功率控制。功率控制就是要把有限的发送功率最好地分配给各个跳频信道,使得各个信道都能够以最小发射机功率实现正常通信,从而提高跳频信号的隐蔽性和抗截获能力。在自适应跳频系统中,系统检测每个信道的通信状况,并通过信道质量评估单元中的功率控制算法对每个跳频信道单独进行功率控制。 功率控制算法可以基于两种原则:一是比特误码率最小原则,算法为各个跳频信道选择适当的功率,

nRF24L01点对点跳频技术应用

nRF24L01点对点跳频技术应用(转载) 分类:技术应用 关键字:nRF24L01;射频;无线通信;跳频 1 nRF24L01概述 nRF24.L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。 nRF24L01主要特性如下: GFSK调制: 硬件集成OSI链路层; 具有自动应答和自动再发射功能; 片内自动生成报头和CRC校验码; 数据传输率为l Mb/s或2Mb/s; SPI速率为0 Mb/s~10 Mb/s; 125个频道: 与其他nRF24系列射频器件相兼容; QFN20引脚4 mm×4 mm封装; 供电电压为1.9 V~3.6 V。 2 引脚功能及描述 nRF24L01的封装及引脚排列如图1所示。各引脚功能如下:

图(1) CE:使能发射或接收; CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01: IRQ:中断标志位; VDD:电源输入端; VSS:电源地: XC2,XC1:晶体振荡器引脚; VDD_PA:为功率放大器供电,输出为1.8 V; ANT1,ANT2:天线接口; IREF:参考电流输入。 3 工作模式 通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表1所示。

跳频通信技术的研究

跳频通信技术的研究 当今信息时代,如何有效的利用宝贵的频带资源,如何进行准确可靠的信息通信是通信领域中至关重要的问题。扩频通正是在这种背景下迅速发展起来的。从20世纪40年代起,人们就开始了对扩频技术的研究,其抗干扰、抗窃听、抗测向等方面的能力早已为人们所熟知。但由于扩频系统的设备复杂,对各方面的要求都很高,在当时的技术条件下,要制成适应军事和民用需要的扩频系统是不可能的,因而扩频技术发展缓慢。进入20世纪60年代后,随着科学技术的迅速发展,许多新型器件的出现,特别是大规模、超大规模集成电路、微处理器、数字信号处理(DSP)器件、扩频专用集成电路(ASIC)以及像声表面波(SAW)器件、电荷耦合器件(CCD)这样的新型器件的问世,使扩频技有了重大的突破和发展,许多新型系统相继问世,兵在实际的使用和实验中显示出了它们的优越性,使扩频通信成为未来通信的一种重要方式。并因此受到了人们极大的重视。扩展频谱系统主要包括以下几种扩频方式: (1)直接序列扩频(DS) (2)跳频(FH) (3)跳时(TH) (4)线性调频(Chirp) 本文中主要讲述对跳频通信的研究。本论文共分X章, 第一章扩频技术及其理论基础 1.1概论 扩展频谱系统具有很强的干扰性,其多址能力、保密、抗多径等功能也倍受人们的关注,被广泛地应用于军事通信和民用通信中。 扩展频谱系统是指发送的信息被展宽到一个很宽的频带上,这一频带比要发送的信息的带宽宽得多,在接收端通过相关接收,将信号恢复到信息带宽的一种系统,简称为扩频系统或SS(Spread Spectrum)系统。

1.2 扩频通信的理论基础 扩频通信技术是把要发送的信号扩展到一个很宽的频带上,然后再发送出去,系统的射频带宽比原始信号的带宽宽得多。这样做,系统的复杂度比常规系统的复杂度要高得多,付出的代价是昂贵的,能得到什么好处呢?可以从著名的香农定理来看。 香农定理指出:在高斯白噪声干扰条件下,通信系统的极限传播速率(或称信道容量)为 C=B lb(1+S/N)b/s (1-1)式中:B为信号带宽,S为信号平均功率,N为噪声功率。若白噪声的功率谱密度可为,噪声功率N= B,则信道容量C可表示为 (1-2) 由上式看出,B、、S确定后,信道容量C就确定了。由香农第二定理知,若信源的信息速率R小于或等于信道容量C,通过编码,信源的信息能以任意小的差错概率通过信道传输。为使信源产生的信息以尽可能高的信息速率通过信道,提高信道容量是人们所期望的。 由香农公式可以看出: (1)要增加系统的信息传输速率,则要求增加信道容量。增加信道容量的方法可以通过增加传输信号带宽B,或增加信噪比S/N来实现。由式(1-1)可知,B与C成正比,而C与S/N呈对数关系,因此,增加B比增加S/N 更有效。 (2)信道容量C为常数时,带宽B与信噪比S/N可以互换,即可以通过增加带宽B来降低系统对信噪比S/N的要求;也可以通过增加信号功率,降低信号的带宽,这就为那些要求小的信号带宽的系统或对信号功率要求严格的系统找到了一个减小带宽或降低功率的有效途径。 (3)当B增加到一定程度后,信道容量C不可能无限地增加。由式(1-1)可知,信道容量与信号带宽成正比,增加B,势必会增加C,但当B增加到一定程度后,C增加缓慢。由式(1-2)知,随着B的增加,由于噪声功率N= B,因而N也要增加,从而信噪比S/N要下降,影响到C的增加。1-2扩频系统的物理模型

跳频原理

1、跳频技术 跳频就是按照预先定义的跳频序列(FHS)随机地改变正在进行通信的信道所占用频率的技术。在同一个频道组内,各跳频序列应是正交的,各信道在跳频传输过程中不能被碰撞。 过去采用跳频技术是为了确保通信的秘密性和抗干扰性,它首先被用于军事通信,后来发现在移动通信中,电波传播多径效应引起的瑞利衰落与传输的发射频率有关,衰落空洞将因频率的不同发生在不同地点,如果在通话期间载波频率在几个频点上变化,则传送信息仅在短时间内受到衰落空洞的影响,尤其是处于多径环境中的漫速移动的移动台通过采用跳频技术,能大大改善移动台的通信质量,可达到频率分集的效果。此外,跳频还具有干扰分集的作用。由于跳频频道间的不相关性,分离了来自许多小区的同频干扰,可提高蜂房小区的容量。 跳频系统分为快跳频和慢跳频两种。慢跳频的跳频频率低于或等于调制符号速率,即在一个或几个调制符号周期内跳频一次;快跳频的跳频频率大于调制符号速率,即在一个调制符号周期内跳频一次以上。 1、GSM的跳频技术 在GSM标准中采用慢跳频技术。每秒217跳,每跳周期为1200比特。GSM系统中的跳频分为基带跳频和射频跳频两种。 基带跳频的原理是将话音信号随着时间的变换使用不同频率发射机发射,其原理图如图6.26所示。 TR X1 TR X2 TR X3 TR X4 图6.26 基带跳频原理

由上图可见,基带跳频中可供跳频的频率数N(hop)≦基站载频数N(TRX)。基带跳频适用于合路器采用空腔耦合器的基站,由于这种空腔耦合器的谐振腔无法快速改变发射频率,故基站无法靠改变载频频率的方法实现跳频。实施的方框图如图6-27所示,其中,收发信机负责无线信号的接收与发送,基带处理单元进行信道的处理。 图6.27基带跳频实施框图 为了实现基带跳频,如上图所示,收发信机与基带处理单元之间的连接由路由转接器来控制,在用户通信过程中,要求无论移动台通信频率如何变化,负责处理用户链路的基带处理单元要保持不变,而基带跳频中所有收发信机的频率也不变。那么,怎样才能确保跳频实现呢?其实只要在路由转接器中根据预先设定的跳频方式来改变收发信机与基带处理单元之间的连接,就能保证该基带处理单元与用户之间的通信链路始终保持畅通。由此可见,由于频率变换的范围仅限于基站所拥有的收发信机的个数,故跳频的频率数N(hop) ≦基站载频数N(TRX)。 射频跳频是将话音信号用固定的发射机,由跳频序列控制,采用不同频率发射,原理图如图6-28所示。射频跳频为每个时隙内的用户均跳频(TRX1因为是BCCH 信道所在的载频,故不跳频),可供跳频的频率数N(hop)不受基站载频数N(TRX)的限制,GSM 规范规定每个小区最多可有64个频率供跳频。 1 2 3 4 5 6 7 TR X 1TR X 2 图6.28 射频跳频原理图 射频跳频适用于合路器采用宽带耦合器的基站,由于这种宽带耦合器与发射器频率的变化无关,故在跳频时载频与手机根据预设的跳频序

GSM网络跳频原理介绍

题目:跳频原理介绍 内容简介: 跳频技术的性能,跳频原理的介绍,比较基带跳频与综合 跳频的优缺点,基本原理适用于所有系统。 目录1.序 (3)

2. 跳频的性能 (3) 2.1 频率分集 (3) 2.2 干扰分集 (4) 2.3 结论 (5) 3.技术描述 (6) 3.1跳频的方式 (6) 3.1.1 基带跳频 (6) 3.1.2 综合跳频 (7) 3.2 系统配置 (8) 3.2.1基带跳频 (8) 3.2.2综合跳频(配置成两个频率组) (9) 3.2.3综合跳频(包括BCCH频点) (10) 3.3跳频法则 (10) 3.3.1循环跳频 (10) 3.3.2随机跳频 (10) 3.3.3正交跳频序列 (11) 3.4通用分组无线服务(GPRS) (11) 4.工程指引 (12) 4.1应用 (12) 4.1.1概述 (12) 4.1.2跳频增益 (12) 4.1.3跳频和用户感觉的语音质量 (13) 4.2参数························································错误!未定义书签。 4.3跳频对GSM系统掉话的影响 (14) 4.4不同跳频频点数对系统质量掉话的改善程度 (15) 4.4.1两个跳频频点情况 (15) 4.4.2三个跳频频点惰况 (16)

4.4.3四个及四个以上跳频频点 (17) 1.序 移动无线传播在遇到障碍时会遭受短期的幅度变化,这些变化称为瑞利衰落。不同频率的信号的衰落特性不同。随着频率差别的增大,衰落更加独立。 GSM中通过跳频(载波频率跳变)频率分集技术,保证了一个信息按几个频率发送,使包含码字一部分的所有突发脉冲不会被瑞利衰落以同一种方式破坏,从而提高了传播性能。 在通话过程中,当移动台移动到正在使用频点的瑞利衰落谷点(fading dip)或者频点受到干扰时,脉冲非常容易丢失。如果采用跳频技术,同一个位置对于下一个脉冲来说,该位置具有很好的接收特性。由于采用了GSM原理中的编码和交织技术使单一脉冲的丢失对语音质量的影响达到最小。在跳频系统中,每一个小区(cell)都预先分配了一个频率集。通话过程中移动台在每个TDMA帧都改变频率,也就是每秒217跳。 2. 跳频的性能 2.1 频率分集

利用MATLAB实现跳频通信系统

利用MATLAB实现跳频通信系统 摘要:随着无线通信不断快速的发展,跳频调制技术越来越受到人们的重视。跳频通信是一种具有较强抗干扰能力的通信体制。其工作原理是指收发双方传输信号的载波频率按照预定规律进行离散变化的通信方式,即通信中使用的载波频率受伪随机变化码的控制而随机跳变。跳频技术是一种具有高抗干扰性、高抗截获得能力的扩频技术。由于它的技术优势,跳频技术不仅在军事通信领域得到广泛的运用,在民用领域也有很好的表现。 本课题要求构建蓝牙跳频通信系统的各组成模块,包括信号传输,信号接收,谱分析和误码分析部分,了解和熟悉蓝牙跳频系统的特点,分析系统的运行及性能。主要研究方法是MATLAB软件进行蓝牙跳频通信系统的仿真,通过各组成模块的连接与封装,运行并分析结果。 关键词:蓝牙,跳频,MATLAB,无线通信

Realize Frequency Hopping Communication System Based on MATLAB Abstract:With the rapid development of the wireless communications, people pay more and more attention to frequency hopping modulation techniques. Frequency hopping communication is a strong anti-interference communication system. The working principle is a communication mode which refers to the carrier frequency that sends and receives the signal according to rule to do dispersant change, that is applying the carrier frequency used in communication by pseudo-random code control and random changes hopping. Frequency hopping technology is a spread spectrum with high anti-interference and resistance ability. Frequency hopping technology not only being widely used in military communication areas, but also in civilian areas due to its technique advantages. This paper is to make up composed modules for the Bluetooth frequency hopping communication system, which including signal transmission, signal reception, spectral analysis and error analysis, as well as to know and have a deep understanding of the characteristics of this system, and also including analyzing the performance and its performance. The main research method is using matlab to make the simulation of the Bluetooth frequency hopping communication systems, run and analysis results by the simulation of each of the modules connection and encapsulation. Keywords: Bluetooth, frequency hopping, MATLAB, wireless communication

相关文档