文档库 最新最全的文档下载
当前位置:文档库 › AN25001 CP25XX系列电容性触摸检测芯片 应用设计 指南

AN25001 CP25XX系列电容性触摸检测芯片 应用设计 指南

AN25001 CP25XX系列电容性触摸检测芯片 应用设计 指南
AN25001 CP25XX系列电容性触摸检测芯片 应用设计 指南

Subject: 应用文档 AN25001 Rev 1.0 Model Name: 电容性触摸检测驱动系列

CP25XX系列电容性触摸检测芯片应用设计指南

1电容性触摸感应芯片CP25XX系列简介

在电容性触摸感应芯片CP25XX系列中,CP2526、CP2528、CP2532分别对应6感应器、8感应器、12感应器,具体产品型号及其特点见下表:

产品型号 产品描述 其他功能 封装形式

CP2526 6键电容性触摸检测芯片 背光、嗡鸣、滑动检测 SOP28

CP2528 8键电容性触摸检测芯片 背光、嗡鸣、滑动检测 QFN32

LQFP32

CP2532 12键电容性触摸检测芯片 背光、嗡鸣、滑动检测 QFN40

LQFP44

LQFP48

2CP25XX典型应用

CP25XX支持单点触发、直线滑动、圆形滑动和接近感应触发,I2C /SPI接口和可扩展GPIO接口使应用更加灵活简单。(典型应用如图1所示)

图 1CP25XX典型应用:指示灯,单点、滚动输入,与HOST芯片串口通信 2.1CP2528典型应用图

2.1.1I2C 接口模式

G

6

图 2CP2528典型应用图——I2C 接口模式

2.1.2SPI 接口模式

图 3CP2528典型应用图——SPI 接口模式 2.1.3硬件模式

6

图 4CP2528典型应用——硬件模式

2.2 CP2532典型应用图 2.2.1 I 2C 接口模式

图 5 CP2532典型应用图,使用I 2C 接口

2.2.2 SPI 接口模式

PAD4PAD5PAD3PAD2PAD1PAD0123412282930S 10SCLK CSN DVDD

AVSS S4S5

S6CREF DVSS SDI S3GPIO6

图 6 CP2532典型应用图,使用SPI 接口

2.2.3硬件模式

图 7CP2532典型应用——硬件模式

注意:1、在I2C通讯模式下,SDA、CLK需要通过上拉电阻上拉到DVDD;

2、INTN被作为中断引脚使用时也需要加上拉电阻,上拉到DVDD;

3、建议CREF引脚上预留一个到地的参考电容PAD,方便调试使用。

4、CP2528/32在硬件工作模式下,建议在CP2528/32的PD引脚上增加上电延时复位电路,具体实现为:在CP2528/32的PD引脚增加一个RC延时复位电路(延时时间约为100ms),R=20Kohm、C=4.7uF。

3PCB设计指导

平板电容效应与三个因素有关:平板面积、平板间距和介电常数。在实际电路应用中,需要考虑到这三点。感应电极尺寸、电极引线长度和宽度、芯片走线分布、感应通路与地的间距、铺地面积、板的厚度和电极薄膜层厚度都是PCB设计中需要考虑的因素。

3.1PCB板选择

在电容感应应用中,大多采用2层PCB板。感应电极和网格地位于TOP层,其余所有器件和引线位于BOTTOM层(见图8)。当PCB面积受限制时,也可以采用4层

PCB板。典型设计为:感应电极位于TOP层;感应通道引线位于第2层;第3层为铺地层;其余所有器件和引线位于BOTTOM层(见图9)。

图 8两层板布局设计

图 9四层板布局设计

2层PCB板和4层PCB板的厚度可以参考这个规则:位于同一平面的感应电极与

地的间距应小于感应电极与不同层地之间的垂直距离。

3.2感应电极设计

感应电极常常需要设计成不同形状、不同面积以满足不同的应用环境。CP25XX电容感应芯片系列灵活的灵敏度配置可以支持各种面积大小和形状的电极。

电极尺寸:在实际应用中,PCB上感应电极应比理论面积稍大一点,特别是电极周围存在铺地的情况下。

不同面积大小的感应电极,在相同薄膜材料覆盖下,感应灵敏度不同。感应电极面积越大,灵敏度越高,抗干扰能力越强。但是不建议把感应电极尺寸设计的过大,电极尺寸上限由待感测导电物体的有效面积决定(对人的大拇指来说,约为225mm2)。

引线与通孔:在两层PCB应用中,把电极引线分布在非电极层(即感应电极处于PCB 板正面,电极引线就分布在PCB反面),其优点是不会因导电物体接触引线区域而误触;根据感应电极的位置,尽量均匀分布电极引线,并且引线间距不能太小;若PCB 布线空间很小,需要用通孔连接板子正反面电极引线的情况下,要尽可能减少通孔数量,并且通孔越小越好,因为通孔会增加额外寄生电容。

电极引线过宽或者过长都会导致寄生电容较大,导电物体接触到电极引线可能引起误触发。在实际应用中为避免出现这种情况,PCB板设计中要尽量减小电极引线产生的寄生电容。对于大多数应用,一般单点感应电极引线长度建议不宜超过300mm,宽度在0.17~0.20mm范围内。

感应电极与处于非感应电极层的电极引线由通孔连接。推荐把通孔位置设计在感应电极边缘(见图10),使电极引线尽可能短,以减少引线寄生电容。

图 10电极上通孔位置

电极形状:根据不同应用需要,感应电极可被设计成各种形状。

单点感应触发应用中,常采用圆形或者方形。在不改变灵敏度设置的情况下,若希望增加单点感应区域,可以把电极设计成环形。

直线滑动应用中,可把感应电极设计成简单的方形或者锯齿状。当手指在感应电极上滑动时,齿形电极比方形电极能更精确地判断滑动趋势。由于滑动条两端的感应电极

特别灵敏,需要在滑动条边缘接地。图11为方形和齿形直线滑动条设计示例。

图 11方形感应电极和齿形感应电极滑动条示例

圆形滑动应用中,可把感应电极设计成扇形,如图12所示。

图 12圆形滑动电极形状设计示例

3.3PCB引线与外围器件分布设计

非感应电路分布注意点:推荐把非感应电路器件和串口引线放在感应区域外。串口引线不宜靠近感应电极和电极引线。若串口引线必须跨越电极引线时,将电极引线与串口垂直分布(不要平行分布);非感应电路器件和引线都推荐放置在非感应电极层。

外围器件推荐配置:CP25XX电容感应芯片所需外围器件少,只需要一个调节电流的电阻、一个参考电容(一般不需要配置)和一个BYPASS电容。调节电阻推荐选择的范围是5Kohm~50Kohm之间,阻值低于3.5Kohm,电容感应芯片将不能正常工作。电阻阻值越大,灵敏度越高,但是抗干扰能力下降。通常情况下,采用CP25XX系列电容感应芯片的方案不需要外接参考电容,把REFC引脚悬空即可。当感应通路采样值非常大的时候,可以增加参考电容来减小采样值。此时,根据实际应用中采样值范围,在REFC 引脚上连接一个1pF~10pF的电容,并且该电容在PCB上要尽可能的靠近感应芯片引脚。

BYPASS 电容一般选择10pF 电容。需要注意的是,这三个外围器件不宜分布在感应区域,因为它们会对电容感应采样造成影响。 3.4 感应电极上薄膜设计

通常,感应电极表面需要覆盖一个绝缘层。该薄膜既可避免用户直接接触电极,同时减小外界环境对电路的影响。理想情况下,当导体接触电极上薄膜时形成平行板电容效应,即d

S

C r 0

εε=。电容式传感器应用比理想的平行板电容应用更复杂,但总体来说可简单地归结为),(0d S f C r εε=,即感应电容与薄膜材料的介电常数成正比。 薄膜材料:表1给出了一些常用薄膜材料的介电常数。如果该材料的介电常数在2.0~8.0之间,那么就很适合电容传感应用。

表 1

常见材料的介电常数

薄膜材料 介电常数 空气 1.0 普通玻璃 7.6 ~ 8.0 陶瓷玻璃 6.0 丽光板 4.6 ~4.9 聚脂薄膜 3.2 树脂玻璃 2.8 ABS 3.8 ~ 4.5 木制

1.2 ~

2.5

在电极覆盖层厚度相同时,介电常数高的薄膜材料灵敏度更高。应用时,确保感应电极与薄膜材料之间没有空气间隔。为了保证薄膜材料与电极完全接触,应采用粘合剂。选择粘合剂时,注意:粘合剂不能保持电荷。不宜选择“双面胶”,因为胶带本身会吸

收一些电荷。推荐采用3M 的粘合剂467和468。这两种粘合剂不保持电荷,且足够薄,不会影响薄膜材料传导。

薄膜材料厚度:在确定某种薄膜材料厚度以后,可通过配置CP25XX 灵敏度来获得一个满意的感应效果。同样,当已知某种薄膜厚度应用效果,若希望在不改变原有灵敏度的情况下用其他薄膜材料替代,则可以根据两种薄膜材料的介电常数之比计算出替代材料厚度。

2

1

21r r T T εε=,1T 和2T 分别是两种薄膜材料厚度,1r ε和2r ε是两种材料的介电常数。 3.5 PCB 铺地设计

在电容式感应系统中,可通过铺地来达到抗干扰的目的,它也有助于降低感应通道采样误差;但是会降低灵敏度。

铺地位置:建议在感应层的电极周围接地;在非感应层上,感应电极背面要求铺地。这样有助于避免噪声干扰引起的误触发。

铺地填充率:在感应层,填充率建议为40%;非感应层,铺地填充率为60%~80%(并不需要100%的填充率,完全填充只会增加每个感应通道的寄生电容,并且它发挥的保护作用不会大于填充率为60%~80%的情况)。 4 感应电极阵列应用

CP25XX 除了支持普通的单点按键,还能实现直线滑动、圆形滑动和矩阵式应用。 4.1 直线和圆形滑动

滑动需要确定滑动方向和滑动速度。在直线滑动应用中,滑动方向是指沿直线正反方向移动;在圆形滑动应用中,滑动方向是指沿顺时针或者逆时针滚动。滑动速度是指感应物体在感应区域移动时,系统判断出的移动速率。CP25XX 系列电容感应芯片的感应通路采样周期为2ms,完全能对快速移动的感应物体进行实时跟踪,从而获得较精确的滑动速率。

直线滑动和圆形滑动感应阵列设计可以参考3.2感应电极设计部分。即便实际应用中需要较长的直线感应区域或者较大直径的圆形感应区域,也并不需要使用很多感应通路。一般情况下,使用CP25XX 上任意三个感应通路重复排列完全可以实现滑动应用。

图13中是典型的直线滑动和圆形滑动应用实例。采用类似123123123这种组合,可以实现滑动方向判断。当感应物体移动时,会依次触发三个感应通路。比如向右(顺时针)滑动时,CP25XX 能判断出感应通路1、通路2和通路3被先后触发;向左(逆时针)滑动时,CP25XX 能判断出感应通路3、通路2和通路1

被先后出发。

图 13

采用三个感应通道实现直线滑动和圆形滑动示例

CP25XX 滑动方案:

方案一: “OK”键采用微触的机械按键,上、下、左、右方向键采用触摸和微触机械按键复合,其它按键为电容触摸按键(如下图)

触摸芯片:CP2532

优点:可通过直接读取CP2532的滑动检测寄存器的值直接判断按键的滑动方向和

滑动数值,无需单独写算法。

缺点:该方案同时包含触摸按键和机械按键。 方案二:所有按键均采用触摸按键(如下图)

触摸芯片:可选CP2528或CP2532

优点:所有按键均为触摸按键,无机械按键。

缺点:按键中的方向键1、2、3、4、均当作同一个按键5处理,通过5、6、7

的排

列来实现滑动功能,但滑动算法需要客户自己开发。

方案三:所有按键均采用触摸按键

触摸芯片:CP2532

优点:可通过直接读取CP2532的滑动检测寄存器的值直接判断按键的滑动方向和

滑动数值,无需单独写算法。

缺点:由于滑动按键数量相对较少,滑动速度较以上方案会略慢一些。

4.2矩阵式阵列

矩阵式感应判断功能是CP25XX单点感应的特殊应用,例如CP2532提供了12个感应通路最多可以完成36个(6X6)感应按键判断,如图14所示。

在矩阵应用中,把感应通道分成X、Y两组。每一个按键点通过X/Y坐标确定位置(X/Y坐标也就是X组的感应通道和Y组的感应通道)。

图 1412个感应通路完成6X6矩阵应用

以CP2532为例,按图14设计按键,若感应物体接触到A区域时,通道2和通道7

被触发,即可确定感应物体位置。

当二维阵列受实际面积约束而把感应点分布较密集时,可打开CP25XX中ASS(邻键抑止)功能,防止相邻感应通路被误触发。CP25XX系列芯片为矩阵式应用提供了两

组ASS设置(见CP25XX芯片手册)。以图14为例,用户可通过串口设定感应通道1、2、3、4、5和6为ASS1组,感应通道7、8、9、10、11和12为ASS2组。那么即便在

相邻感应点比较靠近的情况下,也能获得满意的感应结果。

可测性设计技术

可测性设计技术 【摘要】随着微电子技术的迅速发展、芯片集成度的不断提高以及电路板复杂性的不断增加,传统的测试模型和测试方法已经不能满足当前的测试要求,测试费用急剧增加。本文介绍了可测试性设计的内涵、意义和分类,可测试性设计有两种方法:专项可测试性设计和结构化可测试性设计(边界扫描和内建自测试),并讲述了这些方法的基本原理。 【关键词】可测试性设计;边界扫描;内建自测试 随着数字电路集成度不断提高,系统日趋复杂,对其测试也变得越来越困难。当大规模集成电路LSI和超大规模集成电路VLSI问世之后,甚至出现研制与测试费用倒挂的局面。这就迫使人们想到能否在电路的设计阶段就考虑测试问题,使设计出来的电路既能完成规定的功能,又能容易的被测试,这就是所谓的可测性设计技术。因此也就出现了可测性的概念。 一、基本概念 在可测性的概念出先不久之后,人们又遇到了一个难题,即大家设计出来的电路在测试方面到底谁优谁劣,没有统一的标准,因此就需要对电路的测试难易程度进行数量描述,即可测性分析。 可测性分析是指对一个初步设计好的电路或待测电路不进行故障模拟就能定量地估计出其测试难易程度的一类方法。在可测性分析中,经常遇到三个概念:可控制性、可观察性和可测性。 可控制性:通过电路的原始输入向电路中的某点赋规定值(0或1)的难易程度。 可观察性:通过电路的原始输入了解电路中某点指定值(0或1)的难易程度。 可测性:可控制性和可观察性的综合,它定义为检测电路中故障的难易程度。 可测性分析就是对可控制性、可观察性和可测性的定量分析。但在分析过程中,为了不失去其意义,必须满足下面两条基本要求: (1)精确性,即通过可测性分析之后,所得到的可控制性、可观察性和可测性的值能够真实的反映出电路中故障检测的难易程度。 (2)复杂性,即计算的复杂性,也就是对可控制性和可观察性的定量分析的计算复杂性要低于测试生成复杂性,否则就失去了存在的价值。 二、可测性设计的意义 据统计资料表明,检测一个故障并排除它,所需的开销若以芯片级为1,则插件级为10,系统级为100,机器使用现场为1000。这表明,故障一定要在芯片级测出并排除它,绝不能把坏芯片带到插件中去。但由于现在的芯片,一般都是几千到几百万个门的电路,而外部可用于测试的端脚又非常的少,因此,芯片的测试是一件十分困难的事。尽管新的测试方法不断涌现,但由于集成技术的快速发展,测试生成的速度远远赶不上集成度的增长的需要。 根据很多实验证实,测试生成和故障模拟所用的计算机的时间与电路中门数的平方到立方成正比,也就是说测试的开销呈指数关系增长。但另一方面,由于微电子技术的发展,研制与生产成本的增长速度远远小于指数增长。因此,就使得测试成本与研制成本的比例关系发生了极大的变化,有的测试成本甚至占产品总成本的70%以上,出现了测试与研制开销倒挂的局面。

FTC334E 触摸芯片

F T C334E触控按键芯片 概述: 触摸感应检测按键是近年来迅速发展起来一种新型按键。它可以穿透绝缘材料外壳(玻璃、塑料等等),通过检测人体手指带来的电荷移动,而判断出人体手指触摸动作,从而实现按键操作。电容式触摸按键不需要传统按键的机械触点,也不再使用传统金属触摸的人体直接接触金属片而带来的安全隐患以及应用局限。电容式感应按键做出来的产品可靠耐用,美观时尚,材料用料少,便于生产安装以及维护,取代传统机械按钮键以及金属触摸。 F T C334E是专业的电容式触摸按键处理芯片,采用最新高精度数字电容测量技术,能做到防各种干扰、防面板水珠影响、适应各种电源供电等。能支持6个触摸按键功能,输出采用6通道独立输出,带灵敏度选项口。采用专用电路处理信号,能够轻松过E M S(C/S)方面的测试!。适用各种E M S测试要求高的电子产品的应用。 特点: —超强抗E M C干扰,能防止功率大到5W的对讲机等发射设备天线靠近触摸点干扰。 —极简单外围电路,最简单的应用外围只需要一颗参考电容。(视客户要求如需要提高E S D 和E M C则需每个按键接1颗电阻) —防水淹干扰,成片水珠覆盖在触摸面板上不影响按键的有效识别。 —超宽工作电压范围3.0V—5.5V,能应用在目前广泛应用的3.3V系统和3.0V电池系统。—电源电压变化适应功能,内置电压补偿电路,电源电压在工作范围内变化时自动补偿,不影响芯片正常工作。 —环境温度湿度变化自动适应,环境缓慢适应技术的应用,使得芯片无限长时间连续工作不会出现灵敏度差异。 —可调灵敏度,可以通过外接电容容量来调整灵敏度以适应不同的设计。 —提供二进制编码直接输出接口,方便用户系统对接。 —上电快速初始化,在300m S左右内芯片就可以检测好环境参数包括自动适应,按键检测功能开始工作。 —灵敏度自动适应,各按键引线如果因为长短不一造成寄生电容大小不同,能够自动检测并适应,不同按键灵敏度做到一致。 —S O P16L封装

可测试性需求讲解

软件可测试性需求设计 一、引言 1、目的 提高软件的可测试性,加快测试进度,提高测试效率。 2、范围 描述的范围主要是可测性设计的特征,考虑方向及设计方法。 3、读者对象 系统分析员、设计人员、开发人员。 二、测试所需文档 1、需求规格说明书 2、概要设计说明书 3、详细设计说明书 4、系统功能清单 5、系统运行环境搭建指导书 6、系统操作指导书 三、可测试性设计需求 可测试性主要是指被测实体具有如下特征:可控制性、可分解性、稳定性、易理解性、可观察性,该特征的主要要表现是设立观察点、控制点、观察装置。需要注意的是可测性设计时必须要保证不能对软件系统的任何功能有影响,不能产生附加的活动或者附加的测试。 1、可控制性设计需求 1)全局变量的可控制性设计需求 在外界使用适当的手段能够直接或间接控制该变量,包括获取、修改变量值等。可以将全局类型的变量进行分类并封装到一个个接口中操作。 2)接口的可控制性设计需求 各接口在外界使用适当的手段能够直接调用对该接口进行操作,这里所谓的适当的手段

主要包括使用测试工具和增加额外代码。对于向外提供的接口的接洽处能够人为的对接,比如构造测试环境模拟接口对接,这里所指的开放接口主要是指相对于被测系统,即为被测系统外提供的接口。接口接洽处人为对接时各接口所要求的条件和所需的参数人为的能够轻易达到和提供。 3)模块的可控制性设计需求 对于每个相对独立的模块设计好所需要的驱动和桩都能单独设计用例进行测试对应的功能,在测试运行期间模块异常时能够将其隔离而不影响测试。 4)业务流程的可控制性设计需求 在测试环境满足的情况下能够控制任一单独业务流程,各业务流程具有流通性。 5)场景的可测性设计需求 将一场景所涉及到的业务和接口整合到一个统一的接口使其能够单独操作该场景。 2、可分解性设计需求 1)业务流程的可分解性设计需求 对于复杂的业务流程需合理设定分解点,在测试时能够对其进行分解。 2)场景的可测性设计需求 对于复杂的场景需合理设定分解点,在测试时能够对其进行分解。 3、稳定性设计需求 测试模块发布合理,不能在后期追加的模块为前期所测模块引入新的不必要的测试活动。 4、易理解性设计需求 1)设计文档的易理解性 设计参考标准 内容描述主次要分清 依赖关系描述明确 2)接口的易理解性

电容器的基础知识及检测方法

【MeiWei 81重点借鉴文档】 电容器的基础知识及检测方法 一、基础知识 电容器是一种储能元件,在电路中用于调谐、滤波、耦合、旁路、能量转换和延时。电容器通常叫做电容。按其结构可分为固定电容器、半可变电容器、可变电容器三种。 1?常用电容的结构和特点 常用的电容器按其介质材料可分为电解电容器、云母电容器、瓷介电容器、玻璃釉电容等。 铝电解电容 它是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成。还需要经过直流电压处理,使正极片上形成一层氧化膜做介质。它的特点是容量大,但是漏电大,误差大,稳定性差,常用作交流旁路和滤波,在要求不高时也用于信号耦合。电解电容有正、负极之分,使用时不能接反。有正负极性,使用的时候,正负极不要接反。 纸介电容 用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯子,然后密封在金属壳或者绝缘材料(如火漆、陶瓷、玻璃釉等)壳中制成。它的特点是体积较小,容量可以做得较大。但是有固有电感和损耗都比较大,用于低频比较合适。 金属化纸介电容 结构和纸介电容基本相同。它是在电容器纸上覆上一层金属膜来代替金属箔,体积小,容量较大,一般用在低频电路中。油浸纸介电容 它是把纸介电容浸在经过特别处理的油里,能增强它的耐压。它的特点是电容量大、耐压高,但是体积较大。玻璃釉电容 以玻璃釉作介质,具有瓷介电容器的优点,且体积更小,耐高温。 陶瓷电容用陶瓷做介质,在陶瓷基体两面喷涂银层,然后烧成银质薄膜做极板制成。它的特点是体积小,耐热性好、损耗小、绝缘电阻高,但容量小,适宜用于高频电路。 铁电陶瓷电容容量较大,但是损耗和温度系数较大,适宜用于低频电路。 薄膜电容 结构和纸介电容相同,介质是涤纶或者聚苯乙烯。涤纶薄膜电容,介电常数较高,体积小,容量大,稳定性较好,适宜做旁路电容。 聚苯乙烯薄膜电容,介质损耗小,绝缘电阻高,但是温度系数大,可用于高频电路。 云母电容 用金属箔或者在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。 它的特点是介质损耗小,绝缘电阻大、温度系数小,适宜用于高频电路。 钽、铌电解电容 它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。它的特点是体积小、容量大、性能稳定、寿命长、绝缘电阻大、温度特性好。用在要求较高的设备中。 半可变电容 也叫做微调电容。它是由两片或者两组小型金属弹片,中间夹着介质制成。调节的时候改变两片之间的距离或者面积。它的介质有空气、陶瓷、云母、薄膜等。 可变电容 它由一组定片和一组动片组成,它的容量随着动片的转动可以连续改变。把两组可变电容装在一起同轴转动,叫做双连。可变电容的介质有空气和聚苯乙烯两种。空气介质可变电容体积大,损耗小,多用在电子管收音机中。聚苯乙烯介质可变电容做成密封式的,体积小,多用在晶体管收音机中。 2?主要性能指标 标称容量和允许误差:电容器储存电荷的能力,常用的单位是F、uF、pF。电容器上标有的电容数是电容器的标称容量。 电容器的标称容量和它的实际容量会有误差。一般,电容器上都直接写出其容量,也有用数字来标志容量的,通常在容 量小于lOOOOpF的时候,用pF做单位,大于lOOOOpF的时候,用uF做单位。为了简便起见,大于 100pF而小于1uF 的电容常常不注单位。没有小数点的,它的单位是pF,有小数点的,它的单位是uF。如有的电容上标有“332”( 3300pF )三位有效数字,左起两位给岀电容量的第一、二位数字,而第三位数字则表示在后加O的个数,单位是pF。 额定工作电压:在规定的工作温度范围内,电容长期可靠地工作,它能承受的最大直流电压,就是电容的耐压,也叫做电容的直流工作电压。如果在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。常用的固定 电容工作电压有 6.3V、1OV、16V、25V、5OV、63V、1OOV、25OOV、4OOV、5OOV、63OV、1OOOV。 绝缘电阻:由于电容两极之间的介质不是绝对的绝缘体,它的电阻不是无限大,而是一个有限的数值,一般在1OOO兆欧以上,电容两极之间的电阻叫做绝缘电阻,或者叫做漏电电阻,大小是额定工作电压下的直流电压与通过电容的漏电流的比值。漏电电阻越小,漏电越严重。电容漏电会引起能量损耗,这种损耗不仅影响电容的寿命,而且会影响电路的工作。因此,漏电电阻越大越好。 介质损耗:电容器在电场作用下消耗的能量,通常用损耗功率和电容器的无功功率之比,即损耗角的正切值表示。损耗角越大,电容器的损耗越大,损耗角大的电容不适于高频情况下工作。 4?选用常识 电容在电路中实际要承受的电压不能超过它的耐压值。在滤波电路中,电容的耐压值不要小于交流有效值的 1.42倍。使用电解电容的时候,还要注意正负极不要接反。 不同电路应该选用不同种类的电容。揩振回路可以选用云母、高频陶瓷电容,隔直流可以选用纸介、涤纶、云母、电解、 【MeiWei_81重点借鉴文档】 【MeiWei_81重点借鉴文档】

电容式触摸按键PCB布线

`电容式触摸按键 1. 电源 A.优先采用线性电源,因为开关电源有所产生的纹波对于触摸芯片来说影响比较大 B.触摸IC的电源采用开关电源时,尽量控制纹波幅度和噪声。在做电源变化时,如果纹波不好控制, 可采用LDO经行转换 C.触摸芯片的电源要与其他的电源分开,可采用星型接法,同时要进行滤波处理。 如果电源干扰的纹波比较大时可以采用如下的方式: 2.感应按键 A. 材料 根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等 但在安装时不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。 B. 形状: 原则上可以做成任意形状,中间可留孔或镂空。我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应 C. 大小 最小4mmX4mm, 最大30mmX30mm,有的建议不要大于15mmX15mm,太大的话,外界的干扰相应的也会增加 D. 灵敏度 一般的感应按键面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状、面积应该相同,以保证灵敏度一致。 灵敏度与外接CIN电容的大小成反比;与面板的厚度成反比;与按键感应盘的大小成正比。 CIN电容的选择: CIN电容可在0PF~50PF选择。电容越小,灵敏度越高,但是抗干扰能力越差。电容越大,灵敏度越低,但是抗干扰能力越强。通常,我们推荐5PF~20PF E. 按键的间距 各个感应盘间的距离要尽可能的大一些(大于5mm),以减少它们形成的电场之间的相互干扰。当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘周围必须用铺地隔离。 如图:各个按键距离比较远,周围空白的都用地线隔开了。但注意地线要与按键保持一定的距离

电容式触摸按键解决方案模板

电容式触摸按键解 决方案

电容式触摸按键解决方案 一、方案简介 在便携式媒体播放器和移动手持终端等大容量、高可视性产品的应用中,触摸按键已被广泛采用。由于其具有方便易用,时尚和低成本的优势,越来越多的电子产品开始从传统机械按键转向触摸式按键。 触摸按键方案优点: 1、没有任何机械部件,不会磨损,无限寿命,减少后期维护成本。 2、其感测部分能够放置到任何绝缘层(一般为玻璃或塑料材料)的后面,很容易制成与周围环境相密封的键盘。以起到防潮防水的作用。 3、面板图案随心所欲,按键大小、形状任意设计,字符、商标、透视窗等任意搭配,外型美观、时尚,不褪色、不变形、经久耐用。从根本上解决了各种金属面板以及各种机械面板无法达到的效果。其可靠性和美观设计随意性,能够直接取代现有普通面板(金属键盘、薄膜键盘、导电胶键盘),而且给您的产品倍增活力! 4、触摸按键板可提供UART、IIC、SPI等多种接口,满足各种产品接口需求。 二、原理概述 如图1所示在PCB上构建的电容器,电容式触摸感应按键实际上只是PCB上的一小块“覆铜焊盘”,触摸按键与周围的“地信号”构成一个感

应电容,当手指靠近电容上方区域时,它会干扰电场,从而引起电容相应变化。根据这个电容量的变化,能够检测是否有人体接近或接触该触摸按键。 接地板一般放置在按键板的下方,用于屏蔽其它电子产品产生的干扰。此类设计受PCB上的寄生电容和温度以及湿度等环境因素的影响,检测系统需持续监控和跟踪此变化并作出基准值调整。 基准电容值由特定结构的PCB产生,介质变化时,电容大小亦发生变化。 图1 PCB上构建开放式电容器示意图 三、方案实现 该系列电容式触摸按键方案,充分利用触摸按键芯片内的比较器特性,结合外部一个电容传感器,构造一个简单的振荡器,针对传感器上电容的变化,频率对应发生变化,然后利用内部的计时器来测量出该变化,

电解电容器测试方法详解

电解电容器测试方法详解 1目的 为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。 2适用范围 适用于本公司IQC对电解电容器来料的检验。 3准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量 调压器0V~450V/三相1台电流表UNI-T 1台 万用表FLUKE-117C 1台游标卡尺mm/inch 1把电桥测试仪Zen tech 1台双综示波器LM620C型1台高低温交变湿 1台温度计1支热试验箱 4外观物理检测 4.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括:商标、工作电压、标准静电容量、极性、工作温度范围。4.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 4.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。 4.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 4.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 4.6 检查电解电容标注的生产日期不应超过半年,并作好记录。 5容量与损耗测试 5.1用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤0.25)。 5.2对Zen tech电桥测试仪的使用方法:正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

电容式触摸感应IC工作原理

电容式触摸感应IC工作原理 任何两个导电的物体之间都存在着感应电容,一个按键即一个焊盘与大地也可构成一个感应电容,在周围环境不变的情况下,该感应电容值是固定不变的微小值。当有人体手指靠近触摸按键时,人体手指与大地构成的感应电容并联焊盘与大地构成的感应电容,会使总感应电容值增加。电容式触摸按键IC在检测到某个按键的感应电容值发生改变后,将输出某个按键被按下的确定信号。电容式触摸按键因为没有机械构造,所有的检测都是电量的微小变化,所以对各种干扰会更加敏感,因此触摸按键设计、触摸面板的设计以及触摸IC的选择都十分关键。 一,触摸PAD设计 1. 触摸PAD材料 触摸PAD可以用PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。当用平顶圆柱弹簧时,触摸线和弹簧连接处的PCB,镂空铺地的直径应该稍大于弹簧的直径,保证弹簧即使被压缩到PCB板上,也不会接触到铺地。 2. 触摸PAD形状 原则上可以做成任意形状,中间可留孔或镂空。作者推荐做成边缘圆滑的形状,可以避免尖端放电效应。一般应用圆形和正方形较常见。 3. 触摸PAD面积大小 按键感应盘面积大小:最小4mm×4mm,最大30mm×30mm。实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。各个感应盘的形状和面积应该相同,以保证灵敏度一致。通常在绝大多数应用里,12mm×12mm是个典型值。

4. 触摸PAD之间距离 各个触摸PAD间的距离要尽可能的大一些(大于5mm),这样可以减少它们形成的电场之间的相互干扰。当用PCB铜箔做触摸PAD时,若触摸PAD间距离较近(5mm~10mm),触摸PAD必须用铺地隔离。如果各个触摸PAD距离较远,也应该尽可能的铺地隔离。适当拉大各触摸PAD间的距离,对提高触摸灵敏度有一定帮助。 三、触摸面板选择 1. 触摸面板材料 面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚**乙烯(pvc)、尼龙、树脂玻璃等,按键正上方1mm以内不能有金属,触摸按键50mm以内的金属必须接地,否则金属会影响案件的灵敏度。在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的涂料。 2. 触摸面板厚度 通常面板厚度设置在0~10mm之间。不同的材料对应着不同的典型厚度,例如亚克力材料一般设置在2mm~4mm之间,普通玻璃材料一般设置在3mm~6mm之间。 3. 双面胶 触摸按键PCB与触摸面板通过双面胶粘接,双面胶的厚度取0.1~0.15mm比较合适,推荐采用3M468MP,其厚度0.13mm。要求PCB与面板之间没有空气,因为空气的介电系数为1,与面板的介电系数差异较大。空气会对触摸按键的灵敏度影响很大。所以双面胶与面板,双面胶与PCB粘接,都是触摸按键生产装配中的关键工序,必须保证质量。

电解电容检测方法

电解电容检测方法 一、电解电容的检测 1.脱离线路时检测 采用万用表R×1k挡,在检测前,先将电解电容的两根引脚相碰,以便放掉电容内残余的电荷。当表笔刚接通时,表针向右偏转一个角度,然后表针缓慢地向左回转,最后表针停下。表针停下来指示的阻值为该电容的漏电电阻,此阻值愈大愈好,最好应接近无穷大处。如果漏电电阻只有几十千欧,说明这一电解电容漏电严重。表针向右摆动的角度越大(表针还应该向左回摆),说明这一电解电容的电容量也越大,反之说明容量越小 2.线路上直接检测 ?主要是检测它是否已开路或已击穿这两种明显故障,而对漏电故障由于受外电路的影响一般是测不准的。用万用表R×1挡,电路断开后,先放掉残存在电容器内的电荷。测量时若表针向右偏转,说明电解电容内部断路。如果表针向右偏转后所指示的阻值很小(接近短路),说明电容器严重漏电或已击穿。如果表针向右偏后无回转,但所指示的阻值不很小,说明电容开路的可能很大,应脱开电路后进一步检测。 3.线路上通电状态时检测 若怀疑电解电容只在通电状态下才存在击穿故障,可以给电路通电,然后用万用表直流挡测量该电容器两端的直流电压,如果电压很低或为0V,则是该电容器已击穿。 对于电解电容的正、负极标志不清楚的,必须先判别出它的正、负极。对换万用表笔测两次,以漏电大(电阻值小)的一次为准,黑表笔所接一脚为负极,另一脚为正极。 ?二、电解电容的 1.要尽可能地选用原型号电解电容器。 2.一般电解电容的电容偏差大些,不会严重影响电路的正常工作,所以可以取电容量略大一些或略小一些电容器代替。但在分频电路、S校正电路、振荡回路及延时回路中不行,电容量应和计算要求的尽量一致。在一些滤波网络中,电解电容的容量也要求非常准确,其误差应小于±0.3%~0.5%。 3.耐压要求必须满足,选用的耐压值应等于或大于原来的值。

专用可测性设计技术

专用可测性设计技术 一.引言 随着微电子技术的迅速发展、芯片集成度的不断提高以及电路板复杂性的不断增加,传统的测试模型和测试方法已经不能满足当前的测试要求,测试费用急剧增加。 本文从可测性设计与VLSI测试,VLSI设计之间的关系出发,将与可测性设计相关的VLSI测试方法学、设计方法学的内容有机地融合在一起,文中简要介绍了VLSI可测性设计的理论基础和技术种类,可测性设计的现状,发展趋势,可测试性设计的内涵、意义和分类,并且探讨了可测性设计的实现方法。 关键词:可测性设计,自动测试生产,扫描技术,边界扫描技术,嵌入式自测试。二.可测性设计技术概述 2.1 可测性的起源于发展过程 20世纪70年代,美军在装备维护过程中发现,随着系统的复杂度不断提高,经典的测试方法已不能适应要求,甚至出现测试成本与研制成本倒挂的局面。20世纪80年代中,美国军方相继实施了综合诊断研究计划。并颁布《系统和装备的可测性大纲》,大纲将可测性作为与可靠性及维修等同的设计要求,并规定了可测性分析,设计及验证的要求及实施方法。该标准的颁布标志这可测性作为一门独立学科的确立。 尽管可测性问题最早是从装备维护的角度提出,但随着集成电路(IC)技术的发展,满足IC测试的需求成为推动可测性技术发展的主要动力。从发展的趋势上看,半导体芯片技术发展所带来的芯片复杂性的增长远远超过了相应测试技术的进步。 随着数字电路集成度不断提高,系统日趋复杂,对其测试也变得越来越困难。当大规模集成电路LSI和超大规模集成电路VLSI问世之后,甚至出现研制与测试费用倒挂的局面。这就迫使人们想到能否在电路的设计阶段就考虑测试问题,使设计出来的电路既能完成规定的功能,又能容易的被测试,这就是所谓的可测性设计技术。因此也就出现了可测性的概念。 2.2 可测性的基本原理 可测试性大纲将可测试性(testability)定义为:产品能及时准确地确定其状态(可工作、不可工作、性能下降),隔离其内部故障的设计特性。以提高可

三通道电容式触摸键芯片XC2863规格书

三通道电容式触摸键控制芯片 XC2863

目录 1概述 (3) 1.1 特性 (3) 1.2 系统框图 (4) 2管脚定义 (5) 3功能描述 (6) 4电气特性 (7) 5关键特性 (8) 5.1 环境自适应能力 (8) 5.1.1环境漂移跟随 (8) 5.1.2环境突变校准 (8) 6应用指南 (9) 7PCB设计 (10) 7.1 触摸键设计 (10) 7.1.1触摸键 (10) 7.1.2触摸键的常用结构 (10) 7.1.3触摸键设计 (11) 7.2 PCB布线 (11) 8封装 (12)

1概述 XC2863是矽励微电子推出的一款支持宽工作电压范围的三输入三输出电容式触摸键控制芯片。 XC2863内部集成高分辨率触摸检测模块和专用信号处理电路,以保证芯片对环境变化具有灵敏的自动识别和跟踪功能,且内置特殊算法以实现防水、抗干扰等需求。该芯片可满足用户在复杂应用中对稳定性、灵敏度、功耗、响应速度、防水、带水操作、抗震动、抗电磁干扰等方面的高体验要求。 XC2863为方便用户在应用中可对触摸键的灵敏度进行自主控制,特设置了灵敏度控制位。用户只需在PCB设计中对这个管脚的逻辑电平值进行设置,就能自由选择在具体应用中芯片体现出的检测灵敏度。 XC2863还内置了上电复位及电源保护电路,在典型应用中可无需任何外部器件,也无需软件、程序或参数烧录。芯片应用的开发过程非常简单,最大限度的降低了方案成本。 XC2863可广泛适用于遥控器、灯具调光、各类开关以及小家电和家用电器控制界面等应用中。 1.1特性 工作电压:2.5V~5.5V 三个高灵敏度的触摸检测通道 无需进行参数烧录 响应速度快 抗电磁干扰能力强 防水及带水操作功能 独特的环境跟踪和自适应能力 低功耗(典型工作电流< 25uA) 内置上电复位(POR)和电源保护电路 C MOS电平输出

变频器电解电容器的检测方法

A、因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF的电容可用R×100 挡测量。 B、将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百KΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。 C、对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。 D、使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达变频器、三菱变频器、西门子变频器、安川变频器、艾默生变频器的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/954993647.html,/

HTS1588B八通道电容式触摸按键芯片

HTS1588B八通道电容式触摸按键芯片 【概述】: HTS1588B可以支持8个触摸感应通道,采用二进制编码输出,通过串列传送资料,支持两线/三线串口通讯,特殊的软件滤波处理和数字电容转换检测技术,让其具抗干扰强、防水性能好、可以适用各类电源供电。在不同的工作环境中能有效规避各类干扰源,能有效抑制GSM手机贴近面板,大功率对讲机贴近面板产生的射频干扰;优良的防水效果,对触摸面板溅水、漫水、积水时触摸按键均可正常操作;对于静电、电磁、电源、温度、湿度各种环境干扰都有非常强的抵御和适应能力,增强了产品的可靠性、稳定性、易用性。 【特点】: ★超强抗干扰能力,可通过EMC所有测试项目ESD/EFT/CS传导都符合各行业标准。 ★防水淹干扰,成片积水覆盖在触摸面板上不影响按键的正常操作。 ★支持两线/三线串口通讯任选模式,方便用户系统对接。 ★上电300mS即可完成初始化,电压突然跌落保护功能,工作过程中不会因为电源电压跌落而产生误动作。 ★非常简单外围电路,最简单的应用外围只需要一颗参考电容。(客户如需要提高ESD 和EMC不同)。 ★触摸信号输出超时会强制关闭,长按时间系统默认为32S,用户可通过串口通讯设置(设置范围8S-60S) ★环境自适应功能,可以随温度/湿度变化自动调整参考值,芯片可以无限长时间连续工作不会出现灵敏度差异。 ★芯片引脚走线长短不一致可以通过自修正技术可以精确修正到每个触摸按键灵敏度基本一致。 ★超宽工作电压范围:3.0V—5.5V。 1

2 【应用领域】:各种大小家电、音视频设备、灯具开关、数码产品等。 【脚位】:

【脚位描述】 图表中:I/输入,O/输出,P/电源 脚位序号 脚位名称 类型 功能描述 1 K3 I/O 按键脚串联100欧-1K电阻可增强抗干扰防静电效果 2 K4 I/O 同上1 3 K5 I/O 同上1 4 K6 I/O 同上1 5 K7 I/O 同上1 6 K8 I/O 同上1 7 GND -- 电源负极 8 SCLK I 时钟输入,在上升沿读取串列数据,下降沿输出数据 9 NC -- 悬空 10 BUZ O 触摸蜂鸣器信号,当有效触摸被检测到时单次输出蜂鸣器 信号(交流4KHZ/2KHZ)约100mS。平时为高电平。 11 VDD -- 电源正极,系统中使用1628等芯片驱动数码管时建议一 定要给触摸芯片电源加RC滤波! 12 CS -- 接基准电容Cs负端,Cs电容正端接VDD Cs电容须使用5% 精度涤纶插件电容、10%高精度的NPO材质或X7R材质贴 片电容 13 NC -- 悬空 14 SDA I/O 串行通迅数据脚,输出时高电平为高阻抗,需外接 上拉电阻。 15 K1 I/O 同上1 16 K2 I/O 同上1 3

电解电容的检测方法

电解电容器的检测方法与经验 1、固定电容器的检测 A、检测10pF以下的小电容,因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B、检测10PF~0.1μF固定电容器是否有充电 现象,进而判断其好坏。万用表选用R×1k挡。两只三极管的β值均为100以上,且穿透电流要小。可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c 相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引

脚接触A、B两点,才能明显地看到万用表指针的摆动。 C、对于0.1μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。 2、电解电容器的检测 A、因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量

程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF的电容可用R×10 0挡测量。 B、将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,

数字系统测试与可测性设计实验指导书ATPG应用

《数字系统测试与可测性设计》 实验指导书(二) 实验教师: 2012年4月9日 I.实验名称和目的 实验名称:ATPG应用 实验目的:了解Mentor公司的FastScan-(ATPG生成工具)业界最杰出的测试向量自动生成工具。了解测试各种基准电路的标准输入格式,运用FastScan工具生成测试向量。深入理解单固定故障模型相关概念。 II.实验前的预习及准备工作: 1、充分理解课堂上学习的故障模型相关概念。 2、Mentor公司的测试相关工具的介绍 缩略语清单: ATPG :Automatic Test Pattern Generation ATE :Automated Test Equipment BIST :Built In Self Test CUT :Chip/Circuit Under Test DFT :Design For Testability DRC :Design Rule Check ing PI :Primary Input PO :Primary Output 组合ATPG生成工具FastScan FastScan是业界最杰出的测试向量自动生成(ATPG)工具,为全扫描IC设计或规整的部分扫描设计生成高质量的测试向量。FastScan支持所有主要的故障类型,它不仅可以对常用的Stuck-at模型生成测试向量,还可针对transition模型生成at-speed测试向量、针对IDDQ模型生成IDDQ测试向量。此外FastScan还可以利用生成的测试向量进行故障仿真和测试覆盖率计算。 另外,FastScan MacroTest模块支持小规模的嵌入模块或存储器的测试向量生成。针对关键时序路径,Fastscan CPA模块可以进行全面的分析。 主要特点: ?支持对全扫描设计和规整的部分扫描设计自动生成高性能、高质量的测试向量; ?提供高效的静态及动态测试向量压缩性能,保证生成的测试向量数量少,质量高; ?支持多种故障模型:stuck-at、toggle、transition、critical path和IDDQ; ?支持多种扫描类型:多扫描时钟电路,门控时钟电路和部分规整的非扫描电路结构; ?支持对包含BIST电路,RAM/ROM和透明Latch的电路结构生成ATPG; ?支持多种测试向量类型:Basic,clock-sequential,RAM-Sequential,clock PO,Multi-load; ?利用简易的Procedure文件,可以很方便地与其他测试综合工具集成; ?通过进行超过140条基于仿真的测试设计规则检查,保证高质量的测试向量生成;?FastScan CPA选项支持at-speed测试用的路径延迟测试向量生成;

电容的测量方法

关于电容器的电容的测量方法电容器作为非常重要的一个电学元件在现代电子技术中有着非常广泛的用途,其作用和相关应用在我们《高中物理》第二册、第十三章、第八节中已有适当的介绍。在此,我并不想进一步来介绍其相关的知识和应用,而是想谈谈关于描述电容器的一个非常重要的物理量——电容的测量方法。 《高中物理》课本中将电容器的电容定义为:电容器所带的电荷量Q与电容器两极板间的电势差U的的比值。即: Q C= U 显然,通过上式我们可以看出对于电容器电容C的测量的关键在于式中的另外两个物理量——加在电容器两板间的电压U和电容器所带的电量Q。至于加在电容器两板间的电压U我们可以直接通过电压表来测量,但是电容器所带的电量Q恐怕就没那么容易去直接测量了吧!也就是说,要想测量电容器的电容,最大的困难就在于:如何测量电容器所带的电量Q。那么究竟用什么方法?怎样才能测得电容器所带的电量Q呢?下面我就由这两个问题谈谈我的一点看法。 一.实验原理 显然在实验中我们要想测量电容器所带的电量Q,只有让其放电才有办法将其显示出来。当然,由Q=It,大家都清楚:要测量电流I,我们可以选用仪器——电流计来显示,而要测量时间t我们则可以选用秒表来记录;但是,我们又知道:在电路中,如果电阻太小,则电流太大导致放电时间太短,这样不便于我们观察和记录,故为了延长放电时间我们必须选择很大的电阻接到电路中来实现延长放电时间。这种方法,我们就叫它高阻放电法。这也就是我要介绍的一种测量电容器的电容的方法——高阻放电法测电容器的电容。 其原理图如下:Array 原理分析:电容器的电容C=Q/U,先测定电容器充电结束后的电压U,再通过对高阻值电阻放电的过程测量放电时的电流I和时间t的关系。由于电路中的电压U会随着电量Q的减小而减小(由U=Q/C可知),同时电路中的电流I也会随着放电过程中电容器两板间的电压U的减小而减少(由I=U/R可知)。故电容器在放电过程中的不同时间段内的放电量并不相等,即Q=It并非一个恒量,也就是说I随时间t的变化关系为一曲线。显然,我们要求出电容器所带的电量值,绝对不能简单地记录一个或几个值I和放电的总时间t 然后用它们相乘用求平均值就可以的。要解决这一问题我们必须将放电时间分成无数个时间段,而每一段小段时间内又可近似地看成电流I是恒定的,这样我们就可以求出其电量 了——这就是我们所说的微元法。而事实上解决这一问题的最好办法又是图象法,如果我

电容触摸按键芯片应用介绍

深圳芯邦科技股份有限公司?
Chipsbank 电容触摸按键 Demo 介绍
—施明刚
描述
CBM7011 是芯邦科技股份公司推出的电容式触摸按键控制器。该芯片主要用于家电、 消费电子、工控等领域的按键检测,具有灵敏度高、抗干扰能力强,防水防尘、高可靠性等 优点。可广泛替代传统机械式按钮。 CBM7011 采用自主研发的 8-Bit MCU 处理器,采用 I2C-slave/Host,UART 接口传输按 键信息。也可采用 I/O Mode 传输按键信息,更容易开发应用系统而不用解析通讯协议包。 电容式触摸传感器可直接制作在 PCB 板上,外围器件少、系统总成本优于传统按键方 案。自适应触摸板电容检测范围 1pF~40pF。并且提供多种封装形式。
CBM7011 全功能演示 Demo 介绍
为了更好的体现 CBM7011 控制芯片的软硬件性能,单独设计一款 Demo 板。该 Demo 板由 USB Device、 CBM7011、 SM1668 三款芯片以及相关外围器件构成, 其原理图详见图-1。 其中: CBM7011 是电容式触摸按键控制器; USB Device 用于 PC 与 CBM7011 的交互,PC 可以通过 USB 获取相关数据; SM1668 与 7011 连接,旨在获取 7011 的输出并通过 LED 显示。
SM1668
USB Device
CBM7011
Buzzer
图-1 7011 Demo 板流程图
CBM7011 Demo 样板见图-2,可见该 Demo 板由 4 个按键、1 个滑条、1 个圆环组成。 触摸按键的基本功能是检测是否有手指在触按。 如果手指比较靠近触摸按键, 当所测量 的电容变化超过预先设定的阀值, 就会检测到手指触摸的发生。 触摸按键可以被设计成各种
深圳芯邦科技股份有限公司?
联系电话:0755‐88835998 转 839?

JL223B 单键电容式触摸按键IC_V1.2(3)

J L223B_SPEC JL223B 规格说明书 版本 1.2 2014-03-08 单键触摸开关 本公司保留对规格书中产品在可靠性、功能和设计方面的改进作进一步说明的权利。然而对于规格内容的使用不负责任。文中提到的应用其目的仅仅是用来做说明,不保证和不表示这些应用没有更深入的修改就能适用,也不推荐它的产品使用在会由于故障或其它原因可能会对人身造成危害的地方。该产品不授权适用于救生、维生器件或系统中作为关键器件,本公司拥有不事先通知而修改产品的权利 。

1.概述 JL223B是单键电容式触摸按键专用检测传感器IC。采用最新一代电荷检测技术,利用操作者的手指与触摸按键焊盘之间产生电荷电平来确定手指接近或者触摸到感应表面。没有任何机械部件,不会磨损,感测部分可以放置到任何绝缘层(通常为玻璃或者塑料材料)的后面,很容易制成与周围环境相密封的键盘。面板图案随意设计,按键大小、形状自由选择,字符、商 标、透视窗等可任意搭配,外形美观、时尚,而且不褪色、不变形、经久耐用。从根本上改变了各种金属面板以及机械面板无法达到的效果。其可靠性和美观设计随心所欲,可以直接取代现有普通面板(金属键盘、薄膜键 盘、导电胶键盘)。不需要对现有的程序做任何改动。具有外围元件少、成本低、功耗少等优势。 2.特点 l工作电压:2.0V-5.5V; l工作电流极低:3.5uA; l灵敏度可通过外部电容值来调整; l可实现同步输出模式及电平切换模式输出; l带有自校准的独立触摸按键控制; l高抗干扰性:内置稳压电路,环境自适应算法等多种措施; l带6秒自校准功能; l SOT23-6封装 3.应用场合 智能锁、智能手环、无线蓝牙耳机、移动电源、LED灯、玩具、MP4、触摸 空气清新器、触摸音箱、触摸台灯、触摸指纹识别打火机等。

可测性设计技术

可测性设计技术 摘要 本文从可测性设计与VLSI测试,VLSI设计之间的关系出发,将与可测性设计相关的VLSI测试方法学、设计方法学的内容有机地融合在一起,文中简要介绍了VLSI可测性设计的理论基础和技术种类,可测性设计的现状,发展趋势,可测试性设计的内涵、意义和分类,并且探讨了可测性设计的实现方法。 关键词:可测性设计,自动测试生产,扫描技术,边界扫描技术,嵌入式自测试。 1可测性设计技术概述 可测性的起源于发展过程 20世纪70年代,美军在装备维护过程中发现,随着系统的复杂度不断提高,经典的测试方法已不能适应要求,甚至出现测试成本与研制成本倒挂的局面。20世纪80年代中,美国军方相继实施了综合诊断研究计划。并颁布《系统和装备的可测性大纲》,大纲将可测性作为与可靠性及维修等同的设计要求,并规定了可测性分析,设计及验证的要求及实施方法。该标准的颁布标志这可测性作为一门独立学科的确立。 尽管可测性问题最早是从装备维护的角度提出,但随着集成电路(IC)技术的发展,满足IC 测试的需求成为推动可测性技术发展的主要动力。从发展的趋势上看,半导体芯片技术发展所带来的芯片复杂性的增长远远超过了相应测试技术的进步。 随着数字电路集成度不断提高,系统日趋复杂,对其测试也变得越来越困难。当大规模集成电路LSI和超大规模集成电路VLSI问世之后,甚至出现研制与测试费用倒挂的局面。这就迫使人们想到能否在电路的设计阶段就考虑测试问题,使设计出来的电路既能完成规定的功能,又能容易的被测试,这就是所谓的可测性设计技术。因此也就出现了可测性的概念。 可测性的基本原理 可测试性大纲将可测试性(testability)定义为:产品能及时准确地确定其状态(可工作、不可工作、性能下降),隔离其内部故障的设计特性。以提高可测试性为目的进行的设计被称为可测试性设计(DFT: design for testability)。可测试性是测试信息获取难易程度的表征。一个产品的可测试性包括2方面的含义:一方面,是能通过外部控制激活产品状态(通常为故障状态)的特性,即可控性;另一方面,能通过控制将激活的故障状态传送到可观测端口的特性,即可观测性。而可测性就是可控性和可观测性难易程度的综合表征,一般取值在[0,1]之间。可测性设计要解决的问题是如何通过改善设计变难测或不可测故障转变为易测或可测的故障。 可测试性是设备本身的一种设计特性。同可靠性(reliability)一样,可测试性也是装备本身所固有的一种设计特性。产品一旦生产出,就具备了一定的可测试性。正如可靠性可以通过MTBF 等可靠性指标度量一样,可测性也可以通过可控性、可观测性指标度量。要改善产品的可测试性指标,必须在产品设计阶段就进行良好的可测试性设计。 改善可测试性的代价主要有测试生成代价和测试码置入代价两部分。可测性设计是基于测试生成而提出的,旨在提高系统测试生成矢量(ATPG)算法的有效性。因此,可测试性设计主要包括:降低测试生成代价的设计和降低测试码置入代价的设计。 2可测性设计的几种基本技术方法 可测性建模技术 可测性技术是建立有效的测试方法基础上的一种技术,只有在故障模式和测试方法明确的基础上可测性设计才有意义。这一点在早期以[0,1]故障模型和以门级敏化测试方法为主的数字电路测试中并不突出。然而随着装备和芯片复杂性的成倍增长,故障的模式与传输激励已

相关文档