文档库 最新最全的文档下载
当前位置:文档库 › 指数、对数及幂函数知识点小结及习题

指数、对数及幂函数知识点小结及习题

指数、对数及幂函数知识点小结及习题
指数、对数及幂函数知识点小结及习题

指数函数、对数函数及幂函数

Ⅰ.指数与指数函数

1.指数运算法则:(1)r s r s

a a a

+=; (2)()

s

r rs a

a =; (3)()r

r r ab a b =;

(4)m

n m

n

a a =;

(5)m n

n

m

a

a

-

=

(6),||,n n a n a a n ?=?

?奇偶

2. 指数函数:

【基础过关】

类型一:指数运算的计算题

此类习题应牢记指数函数的基本运算法则,注意分数指数幂与根式的互化,在根式运算或根

式与指数式混合运算时,将根式化为指数运算较为方便

指数函数 0

a>1

图 象

表达式 x y a =

定义域 R

值 域 (0,)+∞

过定点 (0,1)

单调性

单调递减 单调递增

1

、5+的平方根是______________________ 2、 已知2=n

a ,16=mn

a

,则m 的值为………………………………………………( )

A .3

B .4

C .3

a D .6

a

3、

化简

(b a b +-的结果是………………………………( )

A

、a -

、a

a

D

、2b a +

4、已知0.001a =

,求:413

3

2233

8(14a a b

a b

-÷-+=_________________

5、已知1

3x x -+=,求(1)1

12

2

x x -

+=________________(2)332

2

x x -+=_________________ 6

、若y

y

x x

-+=,其中1,0x y ><,则y y x x --=______________

类型二:指数函数的定义域、表达式

指数函数的定义域主要涉及根式的定义域,注意到负数没有偶次方根;此外应牢记指数函数的图像及性质 函数)

(x f a

y =的定义域与)(x f 的定义域相同

1、若集合A={

113x

x y -=

},B={

x s A B =?=

则____________________

2、如果函数()y f x =的定义域是[1,2],那么函数

1(2)x

y f -=的定义域是________ 3、下列函数式中,满足f(x+1)=1

2f(x)的是……………………………………………( )

A 、()1

12x +

B 、

1

4x +

C 、2x

D 、2x

-

4、

=则实数a 的取值范围是………………………………( )

A 、2a <

B 、12

a ≤

C 、12

a >

D 、任意实数

类型三:复合函数 ○

1形如02=+?+c a b a x x

的方程,换元法求解

2函数)(x f a y =的定义域与)(x f 的定义域相同 ○

3先确定)(x f 的值域,再根据指数函数的值域,单调性,可确定)

(x f a y =的值域

涉及复合函数的单调性问题,应弄清函数是由那些基本函数符合得到的,求出复合函数的定义域,然后分层逐一求解内层函数的单调区间和外层函数的单调区间,注意“同增异减”

(1)外函数是二次函数,内函数是指数函数

1、求函数

2391x x

y =++g 的值域 2、当10x -≤≤时,函数2

2

34x x y +=-g 的最大值是______________,最小值是__________

3、已知x [-3,2]∈,求f(x)=11

142x

x -+的最大值是______________,最小值是______________

(2)外函数是指数函数,内函数是二次函数

1、函数y=(1

3)2281

x x --+ (-31x ≤≤)的值域是______________,单调递增区间是__________ 2、已知函数y=(1

3)225

x x ++,求其单调区间_____________________及值域_______________

类型四:奇偶性的判定

利用奇偶性的定义,注意计算过程中将根式化为分式指数幂后通分

1、函数x

x a a x f -?+=2)1()(是……………………………………………( )

A 、奇函数

B 、偶函数

C 、非奇非偶函数

D 、既奇且偶函数

2、已知函数f(x)=1

(1)1x x

a a a ->+

(1)判断函数的奇偶性;(2)求该函数的值域;(3)证明f(x)是R 上的增函数。

3、设a ∈R,f(x)= 22

()21x x

a a x R ?+-∈+,试确定a 的值,使f(x)为奇函数

类型五:分类讨论思想在指数函数中的应用

1、已知0a >,且1a ≠,解不等式

2

6

5x

x a a ->

2、已知f(x)=2231

x x a -+,g(x)=225

x x a

+- (a >0且a ≠1),确定x 的取值范围,1x ≠使得f(x)>

g(x).

Ⅱ.对数与对数函数

1、对数的运算:

1、互化:N b N a a b log =?=

2、恒等:N a N a =log

3、换底: a

b b

c c a log log log =

推论1 a

b b a log 1log =

推论2 log log log a b a

b c c ?=

推论3 log log m n

a a

n b b m

=)0(≠m

4、N M MN a a a log log log += log log log a a a M M N N

=-

5、M n M a n a log log ?=

2对数函数:

【基础过关】

类型一:对数的基本运算

此类习题应牢记对数函数的基本运算法则,注意

1常用对数:将以10为底的对数叫常用对数,记为N lg ○

2自然对数:以e=2.71828…为底的对数叫自然对数,记为N ln ○

3零和负数没有对数,且1log ,01log a ==a a 1、(1)、 9

lg 2lg 008

.0lg 31

81.0lg 212+++ (2)、()20lg 5lg 2lg 2?+

(3)、())2log 2(log )5log 5(log 3log 3log 2559384+?+?+

2、已知2log =x a ,3log =x b ,6log =x c 求 x abc log 的值.

对数函

01

图 象

表达式 log a y x

=

定义域 (0,)+∞

值 域 R

过定点 (1,0)

单调性

单调递减

单调递增

类型二:指数,对数的混合运算

指数函数)1,0(≠>=a a a y x

与对数函数)1,0(log ≠>=a a x

y a 的图象与性质

1、若log 2,log 3,a a m n ==则32m n a -=_________

2、若1a >且01b <<,则不等式log (3)

1b x a

->的解集为________

3、已知35,a b A ==且11

2a b

+=,则A 的值是________

4、已知32a =,那么33log 82log 6-用a 表示是…………………………( ) A 、2a - B 、52a - C 、23(1)a a -+ D 、 23a a - 【能力提升】

类型三:对数函数的定义域与解析式

注意复合函数的定义域的求法,形如[])(x g f y =的复合函数可分解为基本初等函数

)(),(x g u u f y ==,分别确定这两个函数的定义域。

1

、函数y =

____________

2、已知2

35

(log ())22x f x ++=,则(0)f =___________

3、已知6

2()log f x x =,那么(8)f =____________

类型四:对数函数的值域

注意复合函数的值域的求法,形如[])(x g f y =的复合函数可分解为基本初等函数

)(),(x g u u f y ==,分别确定这两个函数的定义域和值域。

1. 函数

212

log (617)

y x x =-+的值域是________

2. 设1a >,函数()log a f x x

=在区间[,2]a a 上的最大值与最小值之差为1

2,则

a =___________

3. 函数

()log (1)x

a f x a x =++在[0,1]上最大值和最小值之和为a ,则a 的值为

_______________

类型五:对数函数的单调性、奇偶性

1、函数lg y x

=的单调递增区间是_______ ; 函数212log (32)

y x x =-+的递增

区间是_______________

2、下列各函数中在(0,1)上为增函数的是……………………………………………( )

A.

12

log (1)

y x =+

B.

2log y = C.

3

1log y x = D.213log (43)

y x x =-+

3、函数

2lg 11y x ??

=- ?

+??的图像关于………………………………………………………( ) A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y x =对称 4

、函数

)()lg

f x x

=是 (奇、偶)函数。

5、已知函数

1010()1010x x x

x f x ---=+,判断()f x 的奇偶性和单调性。

类型六:对数中的不等关系

比较同底数的两个对数值的大小;比较两个同真数的对数值的大小

1、设

0.724log 0.8log 0.9log 5

a b c ===,则,,a b c 的大小关系是_______

2

、设

2

lg ,(lg ),a e b e c ===,,a b c 的大小关系是_______ 3、如果3

log

15m <,那么m 的取值范围是______

4、如果

log 3log 30

a b >>,那么,a b 的关系是…………………………………………( )

A. 01a b <<<

B. 1a b <<

C. 01b a <<<

D. 1b a << 5、已知2log (1)log (24)0

a a x x +<+<,则不等式解集为_______

6、若

()log a f x x

=在[2,)+∞上恒有()1f x >,则实数a 的取值范围是________

类型七:其它题型(奇偶性,对数方程,抽象函数)

1、设2()lg()

1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是________

2、已知集合

{}2

log 2,(,)

A x x

B a =≤=-∞,若A B ?则实数a 的取值范围是(,)c +∞,

其中c = ______.

3、若

1x 满足2x+2x =5, 2x 满足2x+2)1(log 2-x =5, 1x +2x =………………………( )

A.52

B.3

C. 7

2 D.4

幂函数

一、幂函数图象的作法:

根据幂函数k

x y =的定义域、奇偶性,先作出其在第一象限的图象,再根据其奇偶性作出其他象限的图形.如果幂函数的解析式为m

n x y =或m

n x

y -=(m 、*

∈N n ,2≥m ,m 、

n 互质)的形式,先化为m n x y =,或m

n

x

y 1

=

的形式,再确定函数的定义域、奇偶性、

单调性等性质,从而能比较准确地作出幂函数的图象.

二、幂函数图象的类型:(共有11种情况)

k 0<-

=m

n

k 10<=

n

k 1>=

m

n

k 奇函数

m 、n 都是

奇数

y=x

-

13

-1

1

y x

o

y=x

3

5

-1

1

y x

o

y=x

5

3

-1

1

y

x

o

偶函数

m 是奇数,n 是偶数

y=x

-

23

-1

1

y x

o y=x

2

3

-1

1

y x

o y=x

4

3

-1

1

y

x

o

非奇非偶函数

m 是偶数,n 是奇数

y=x

-

12

-1

1

y x

o y=x

1

2

-11

y x

o y=x

3

2

-1

1

y

x

o

三、幂函数图象特征:

(1)当0

(2)当0=k 时,图象是一条不包括点(0,1)的直线; (3)当10<

y=x

y=x o (x ≠0)o -1

1

y

x

o 象为凸的曲线;

(4)当1=k 时,图象是一、三象限的角平分线;

(5)当1>k 时,在第一象限内,图象单调递增,图象为凹的曲线. (6)幂函数图象不经过第四象限;

(7)当0>k 时,幂函数k

x y =的图象一定经过点(0,0)和点(1,1) (8)如果幂函数k

x y =的图象与坐标轴没有交点,则0≤k ;

(9)如果幂函数

m

n p

x

y )1(-=(m 、n 、p 都是正整数,且m 、n 互质)的图象不经过

第三象限,则p 可取任意正整数,m 、n 中一个为奇数,另一个为偶数. 四、幂函数典型问题: 1.概念问题:

【例1】1.已知幂函数,当

时为减函数,则幂

函数__________.

【变式】当m 为何值时,幂函数y=(m 2-5m+6)的图象同时通过点(0,0)

和(1,1).

2.定义域问题:

【例2】函数05

32

1)2(--+=-

x x

x y 的定义域为

【变式】.求函数y=

的定义域.

3.单调性问题:

【例3】已知5

35

3)21()3(-

-

+<-a a ,求实数a 的取值范围.

【变式1】讨论函数的单调性.

【变式2】讨论函数的定义域、奇偶性和单调性.

4.图象问题: 【例4】若函数)(3

22

Z m x y m m

∈=--的图象与坐标轴没有交点,且关于y 轴对称,求函数

)(x f 的解析式.

【例5】利用函数的图象确定不等式的解集:

(1) 不等式)1(3

2

->

x x 的解集为 (2) 不等式3

14

x x ≥的解集为

说明:先在同一坐标系中作出不等式两边函数的图象,并确定交点的坐标,从而能较容易地写出不等式的解集

5.函数图象的平移、对称、翻折变换问题:

说明:很多较复杂函数的图象,都是通过将下列函数的图象经过平移、对称、翻折变换而得到

x y 1=

;x y 1-=;)1,0(≠>=k k x k y ;)1,0(≠>-=k k x

k

y 【例6】作出下列函数的大致图象,并结合图象写出函数的值域、奇偶性和单调区间.

(1)12--=

x x y (2)x

x y --=21

(3)1

4

-=

x y ,)5,2[)1,(Y -∞∈x (4)112--=x x y ,),0[+∞∈x

(5)x

y +=11

(6)31

)2(--=x y

【例7】已知幂函数)(x f y =是偶函数,且在区间),0(+∞上单调递增,若

)12()1(22++<-a a f a f ,则实数a 的取值范围是 .

6.比较幂函数值大小

【例8】.比较

的大小.

【例9】.已知幂函数, , , 在第一

象限内的图象分别是C 1,C 2,C 3,C 4,(如图),则n 1,n 2,n 3,n 4,0,1的大小关系?

《指数函数和对数函数》知识点汇总及习题详解)

一、指数的性质 (一)整数指数幂 1.整数指数幂概念: a n n a a a a 个???= )(* ∈N n ()010a a =≠ ()1 0,n n a a n N a -*= ≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +?=∈ (2)()(),n m mn a a m n Z =∈ (3)()()n n n ab a b n Z =?∈ 其中m n m n m n a a a a a --÷=?=, ()1n n n n n n a a a b a b b b --??=?=?= ??? . 3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a ( )* ∈>N n n ,1,那么这个数叫做a 的n 次方根, 即: 若a x n =,则x 叫做a 的n 次方根, ()* ∈>N n n ,1 例如:27的3次方根3273=, 27-的3次方根3273-=-, 32的5次方根2325=, 32-的5次方根2325-=-. 说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=;

⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则?? ?<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)() 338- (2) ()210- (3)()44 3π- (4) ()()b a b a >-2解:略。 例2.已知,0<N n n ,1, 化简:()()n n n n b a b a ++-. 解:当n 是奇数时,原式a b a b a 2)()(=++-= 当n 是偶数时,原式a b a a b b a b a 2)()(||||-=--+-=++-= 所以,()()n n n n b a b a ++-22a n a n ?=? -?为奇数 为偶数 . 例3.计算:407407-++ 解:407407-++52)25()25(22=-++= 例4.求值: 54 925-+. 解:549 25-+4 25254 5 49252 )(-+=-+= 452622525+=-+= 2 1 54152 += +=)( (二)分数指数幂 1.分数指数幂: ()10 2 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ???== ??? ,4 554544a a a ???== ???, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用

对数函数知识点总结(供参考)

对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○2 x N N a a x =?=log ; ○3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log = ; (2)a b b a log 1log =. (二)对数函数 1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函 数,其中x 是自变量,函数的定义域是(0,+∞). 注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如:x y 2log 2=,5 log 5x y = 都不是对数函数,而只能称 其为对数型函数. ○ 2 对数函数对底数的限制:0(>a ,且)1≠a . 对数函数·例题解析 例1.求下列函数的定义域: (1)2log x y a =; (2))4(log x y a -=; (3))9(log 2 x y a -=.

专题:对数函数知识点总结及类型题归纳

专题:对数函数知识点总结 1.对数函数的定义: 一般地,函数 x y a log =( )叫做对数函数 .定义域是 2. 对数函数的性质为 思考:函数log a y x =与函数x y a =)10(≠>a a 且的定义域、值域之间有什么关系? ___________________________________________________________________________ 对数函数的图象与指数函数的图象关于_______________对称。 一般的,函数y=a x 与y=log a x (a>0且a ≠1)互称相对应的反函数,它们的图象关于直线y=x 对称 y=f(x)存在反函数,一般将反函数记作y=f -1 (x) 如:f(x)=2x ,则f -1 (x)=log 2x,二者的定义域与值域对调,且图象关 于直线y=x 对称 函数与其反函数的定义域与值域对调,且它们的图象关于直线y=x 对称 专题应用练习 一、求下列函数的定义域

(1)0.2log (4);y x =-; (2)log 1a y x =- (0,1).a a >≠; (3)2(21)log (23)x y x x -=-++ (4)2log (43)y x =- (5) y=lg 1 1 -x (6) y=x 3log =log(5x-1)(7x-2)的定义域是________________ = )8lg(2x - 的定义域是_______________ 3.求函数2log (21)y x =+的定义域___________ 4.函数y=13 log (21)x -的定义域是 5.函数y =log 2(32-4x )的定义域是 ,值域是 . 6.函数5log (23)x y x -=-的定义域____________ 7.求函数2 log ()(0,1)a y x x a a =->≠的定义域和值域。 8.求下列函数的定义域、值域: (1)2log (3)y x =+; (2)2 2log (3)y x =-; (3)2log (47)a y x x =-+(0a >且1a ≠). 9.函数f (x )=x 1 ln (432322+--++-x x x x )定义域 10.设f(x)=lg x x -+22,则f )2 ()2(x f x +的定义域为 11.函数f(x)=)1(lo g 1 |2|2---x x 的定义域为 12.函数f(x)= 2 29)2(1x x x g --的定义域为 ; 13.函数f (x )= x 1 ln (432322+--++-x x x x )的定义域为 14 2 2 2 log log log y x =的定义域是 1. 设f (x )=lg(ax 2 -2x +a ), (1) 如果f (x )的定义域是(-∞, +∞),求a 的取值围; (2) 如果f (x )的值域是(-∞, +∞),求a 的取值围. 15.已知函数)32(log )(22 1+-=ax x x f (1)若函数的定义域为R ,数a 的取值围 (2)若函数的值域为R ,数a 的取值围

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解 1.对数: (1) 定义:如果,那么称为,记作,其中称为对数的底,N称为真数. ①以10为底的对数称为常用对数,记作___________. ②以无理数为底的对数称为自然对数,记作_________. (2) 基本性质: ①真数N为 (负数和零无对数);②;③; ④对数恒等式:. (3) 运算性质: ① log a(MN)=___________________________; ② log a=____________________________; ③ log a M n= (n∈R). ④换底公式:log a N= (a>0,a≠1,m>0,m≠1,N>0) ⑤ . 2.对数函数: ①定义:函数称为对数函数,1) 函数的定义域为( ;2) 函数的值域为; 3) 当______时,函数为减函数,当______时为增函数; 4) 函数与函数互为反函数. ② 1) 图象经过点( ),图象在;2) 对数函数以为渐近线(当时,图象向上无限接近y轴;当时,图象向下无限接近y轴); 4) 函数y=log a x与的图象关于x轴对称. ③函数值的变化特征: ①②③①②③ 例1 计算:(1) (2)2(lg)2+lg·lg5+; (3)lg-lg+lg. 解:(1)方法一利用对数定义求值设=x,则(2+)x=2-==(2+)-1,∴x=-1.方法二利用对数的运算性质求解 = =(2+)-1=-1.

(2)原式=lg(2lg+lg5)+=lg(lg2+lg5)+|lg-1| =lg+(1-lg)=1. (3)原式=(lg32-lg49)-lg8+lg245 = (5lg2-2lg7)-×+ (2lg7+lg5) =lg2-lg7-2lg2+lg7+lg5=lg2+lg5 =lg(2×5)= lg10=. 变式训练1:化简求值. (1)log2+log212-log242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log32+log92)·(log43+log83). 解:(1)原式=log2+log212-log2-log22=log2 (2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2. (3)原式=( 例2 比较下列各组数的大小. (1)log3与log5;(2)log1.10.7与(3)已知logb<loga<logc,比较2b,2a,2c的大小关系.解:(1)∵log3<log31=0,而log5>log51=0,∴log3<log5. (2)方法一∵0<<1,<,∴0>, ∴, 即由换底公式可得log1.10.7<方法二作出y=与y=的图象. 如图所示两图象与x=相交可知log1.10.7<为减函数,且, ∴b>a>c,而y=2x是增函数,∴2b>2a>2c. 变式训练2:已知0<a<1,b>1,ab>1,则log a的大小关系是() B. C. D. 解: C 例3已知函数f(x)=log a x(a>0,a≠1),如果对于任意x∈[3,+∞)都有|f(x)|≥1成立,试求a的取值范围. 解:当a>1时,对于任意x∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x在[3,+∞)上为增函数, ∴对于任意x∈[3,+∞),有f(x)≥log a3. 因此,要使|f(x)|≥1对于任意x∈[3,+∞)都成立. 只要log a3≥1=log a a即可,∴1<a≤3. 当0<a<1时,对于x∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f(x)=log a x在[3,+∞)上为减函数, ∴-f(x)在[3,+∞)上为增函数. ∴对于任意x∈[3,+∞)都有

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果,那么叫做的次方根,其中 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0. 式子叫做根式,叫做根指数,叫做被开方数. 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1)(2)(3) 知识点二:指数函数及其性质1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域为. 2.指数函数函数性质: 函数名称指数函数 定义函数且叫做指数函数 图象 定义域 值域 过定点图象过定点,即当时,. 奇偶性非奇非偶 单调性在上是增函数在上是减函数

函数值的变化情况 变化对图象的影响在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向看图象,逐渐减小. 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中…). 4.对数的运算性质 如果,那么①加法:②减法:③数乘: ④⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2.对数函数性质: 函数名称对数函数 定义函数且叫做对数函数图象

对数与对数函数知识点及例题讲解

对数与对数函数 1.对数 (1)对数的定义: 如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a N M =log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =b N a a log log (a >0,a ≠1, b >0,b ≠1,N >0). 2.对数函数 (1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢? 在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实

数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象 x y > O x y

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

对数函数图象及其性质知识点及例题解析

对数函数的图象及性质例题解析 题型一 判断对数函数 【例1】函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =__________. 解析:由a 2-a +1=1,解得a =0,1. 又a +1>0,且a +1≠1,∴a =1. 【例1-1】下列函数中是对数函数的为__________. (1)y =log a >0,且a ≠1);(2)y =log 2x +2;(3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1);(5)y =log 6x . 解析: 题型二 【例2】如图所示的曲线是对数函数y =log a x 的图象.已知a , 43,35,110 中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为( ) A 43,35,110 B ,43,110,35 C .43,35,110 D .43110,35 解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1 的底数.故相应于曲线C 1,C 2,C 3,C 443,35,110 .答案:A 点技巧 作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小. 题型三 对数型函数的定义域的求解 (1)对数函数的定义域为(0,+∞). (2)在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1. 若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义. (3)求函数的定义域应满足以下原则: ①分式中分母不等于零; ②偶次根式中被开方数大于或等于零; ③指数为零的幂的底数不等于零; ④对数的底数大于零且不等于1;

中考攻略:初中数学函数知识点大全+典型例题

初中数学函数知识点大全+典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称

点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 a b x 2-=时,a b a c y 442-=最值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时, c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减 小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222 最小。 知识点四、二次函数的性质 1、二次函数的性质

基本初等函数I知识点总结

第二章 基本初等函数 一、指数函数 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N * . ◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n 。 当n 是奇数时,a a n n =,当n 是偶数时,???<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m , )1,,,0(1 1* >∈>= = - n N n m a a a a n m n m n m ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3) s r r a a ab =)(),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1. 2 注意:利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上, )1a 0 a (a )x (f x ≠>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为.底.N 的对数,记作:N x a log =(a — 底数,N — 真数,N a log —对数式) 说明:○1 注意底数的限制0>a ,且1≠a ; ○ 2 x N N a a x =?=log ; ○ 3 注意对数的书写格式. 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数Λ71828.2=e 为底的对数的对数N ln . ◆ 指数式与对数式的互化 幂值 真数 = b

对数及对数函数知识点总结及题型分析

对数及对数函数 1、对数的基本概念 (1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对 数, 记作b N a =log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式 (2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln . (3)指数式与对数式的关系:log x a a N x N =?=(0>a ,且1≠a ,0N >) (4)对数恒等式: 2、对数的性质 (1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a 3、对数的运算性质 (1)如果a >0,a ≠1,M >0,N >0,那么 ①N M MN a a a log log )(log +=; ②N M N M a a a log log log -=; ③M n M a n a log log = (2)换底公式: 推论:① b N N b log 1log = ; ② ; ③ 1log log =?a b b a 4、对数函数的定义: 函数 叫做对数函数,其中x 是自变量 (1)研究对数函数的图象与性质: 由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。 (2)复习)10(≠>=a a a y x 且的图象和性质 ()010log >≠>=N a a N a N a ,且b N N a a b log log log = b m n b a n a m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x =x y a =y x =

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

指数函数和对数函数知识点总结

指数函数和对数函数知识点总结及练习题 一.指数函数 (一)指数及指数幂的运算 n m n m a a = s r s r a a a +=? rs s r a a =)( r r r b a ab =)( (二)指数函数及其性质 1.指数函数的概念:一般地,形如x a y =(0>a 且1≠a )叫做指数函数。 2.指数函数的图象和性质 10<a 6 54321 -1 -4-2 2460 1 6 5 4 3 2 1 -1 -4-2 246 1 定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递减 在R 上单调递增 非奇非偶函数 非奇非偶函数 定点(0,1) 定点(0,1) 二.对数函数 (一)对数 1.对数的概念:一般地,如果N a x =(0>a 且1≠a ),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做底数,N 叫做真数,N a log 叫做对数式。 2.指数式与对数式的互化 幂值 真数 x N N a a x =?=log 底数 指数 对数

3.两个重要对数 (1)常用对数:以10为底的对数N lg (2)自然对数:以无理数 71828.2=e 为底的对数N ln (二)对数的运算性质(0>a 且1≠a ,0,0>>N M ) ①MN N M a a a log log log =+ ②N M N M a a a log log log =- ③M n M a n a log log = ④换底公式:a b b c c a log log log =(0>c 且1≠c ) 关于换底公式的重要结论:①b m n b a n a m log log = ②1log log =?a b b a (三)对数函数 1.对数函数的概念:形如x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量。 2对数函数的图象及性质 01 32.5 2 1.51 0.5-0.5 -1-1.5-2-2.5 -1 1 23456780 1 1 32.5 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -2.5 -1 1 2345678 1 1 定义域x >0 定义域x >0 值域为R 值域为R 在R 上递减 在R 上递增 定点(1,0) 定点(1,0)

对数函数的图像与性质知识点与习题

对数函数的图像与性质知识点与习题 一、知识回顾: 1、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 的图象与性质 2、指数函数)1,0(≠>=a a a y x 与对数函数)1,0(log ≠>=a a x y a 互为反函数,其 图象关于直线x y =对称 二、例题与习题 1.)35lg(lg x x y -+=的定义域为___ __; 2. 已知函数=-=+-=)(,2 1 )(,11lg )(a f a f x x x f 则若 3.04 1 log 2 12≤-x ,则________∈x 4.函数)2(log )(π≤≤=x x x f a 的最大值比最小值大1,则__________∈a

5.若函数m y x +=+-1 2 的图象不经过第一象限,则m 的取值范围是 ( ) (A )2-≤m (B )2-≥m (C )1-≤m (D )1-≥m 6.函数x x f a )1(2log )(-=是减函数,则实数a 的取值范围是 . 7.若13 2 log >a ,则a 的取值范围是 8.已知函数)(x f y =是奇函数,则当0≥x 时,13)(-=x x f ,设)(x f 的反函数是)(x g y =,则=-)8(g 9.方程lgx -x +1=0的实数解有______个. 10.)2lg(2 x x y +-=的递增区间为___________ ,值域为 . 11.求)1,0() (log ≠>-=a a a a y x a 的定义域。 12.已知3log 1)(x x f +=,2log 2)(x x g =,试比较)(x f 与)(x g 的大小关系。 13.已知函数)10)(1(log )1(log )(≠>--+=a a x x x f a a 且, (1)讨论)(x f 的奇偶性与单调性; (2)若不等式2|)(|

对数与对数函数知识点与题型归纳

●高考明方向 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点. 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1). ★备考知考情 通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题.主要考查对数运算、换底公式等.及对数函数的图象和性质.对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点. 一、知识梳理《名师一号》P27

注意: 知识点一对数及对数的运算性质 1.对数的概念 一般地,对于指数式a b=N,我们把“以a为底N的对数b”记作log a N,即b=log a N(a>0,且a≠1).其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”. 注意:(补充)关注定义---指对互化的依据 2.对数的性质与运算法则 (1)对数的运算法则 如果a>0且a≠1,M>0,N>0,那么 ①log a(MN)=log a M+log a N; ②log a M N=log a M-log a N; ③log a M n=nlog a M(n∈R); ④log a m M n=n m log a M. (2)对数的性质

①a logaN =N ;②log a a N =N (a>0,且a≠1). (3)对数的重要公式 ①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1); ②log a b =1 log b a ,推广log a b·log b c·log c d =log a d. 注意:(补充)特殊结论:log 10, log 1a a a == 知识点二 对数函数的图象与性质 1.对数函数的图象与性质(注意定义域!) 指数函数y =a x 与对数函数y =log a x 互为反函数, 它们的图象关于直线y =x 对称. (补充) 设y =f(x)存在反函数,并记作y =f -1(x), 1) 函数y =f(x)与其反函数y =f -1(x)的图象 关于直线y x =对称.

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

指数函数与对数函数知识点总结

指数函数与对数函数知识点总结 (一)指数与指数幂的运算 1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次 方根,其中n >1,且n ∈N * . 当n 是奇数时, a a n n =,当n 是偶数时, ?? ?<≥-==) 0() 0(||a a a a a a n n 2.分数指数幂 正数的分数指数幂的意义,规定: ) 1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1*>∈>= = - n N n m a a a a n m n m n m 3.实数指数幂的运算性质 (1)r a ·s r r a a += ),,0(R s r a ∈>; (2)rs s r a a =)( ),,0(R s r a ∈>; (3)s r r a a ab =)( ),,0(R s r a ∈>. (二)指数函数及其性质 1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R . 二、对数函数 (一)对数 1.对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数, 记作:N x a log =(a — 底数,N — 真数,N a log — 对数式) 两个重要对数: ○ 1 常用对数:以10为底的对数N lg ; ○ 2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 指数式与对数式的互化 幂值 真数 (二)对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1 M a (log ·=)N M a log +N a log ; ○ 2 =N M a log M a log -N a log ; ○ 3 n a M log n =M a log )(R n ∈. 注意:换底公式 a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ; 0>b ). 利用换底公式推导下面的结论 (1)b m n b a n a m log log =; (2)a b b a log 1log =. (二)对数函数

相关文档
相关文档 最新文档