文档库 最新最全的文档下载
当前位置:文档库 › 第8讲直线与圆锥曲线的位置关系(教师用)

第8讲直线与圆锥曲线的位置关系(教师用)

第8讲直线与圆锥曲线的位置关系(教师用)
第8讲直线与圆锥曲线的位置关系(教师用)

第8讲 直线与圆锥曲线的位置关系

【2013年高考会这样考】

1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入和设而不求的思想.

2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向量等在解决问题中的综合运用. 【复习指导】

本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题.

基础梳理

1.直线与圆锥曲线的位置关系

判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程.

即???

Ax +By +C =0,F (x ,y )=0,

消去y 后得ax 2+bx +c =0. (1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;

Δ=0?直线与圆锥曲线C 相切; Δ<0?直线与圆锥曲线C 无公共点.

(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)圆锥曲线的弦长

直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长.

(2)圆锥曲线的弦长的计算

设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),

则|AB|=(x2-x1)2+(y2-y1)2=1+k2|x1-x2|=1+1

k2·|y1-y2|.(抛物线的焦点

弦长|AB|=x1+x2+p=

2p

sin2θ,θ为弦AB所在直线的倾斜角).

一种方法

点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,然后利用中点求出直线方程.“点差法”的常见题型有:求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ是否为正数.

一条规律

“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.

双基自测

1.(人教A版教材习题改编)直线y=kx-k+1与椭圆x2

9+

y2

4=1的位置关系为

().

A.相交B.相切

C.相离D.不确定

解析直线y=kx-k+1=k(x-1)+1恒过定点(1,1),而点(1,1)在椭圆内部,故直线与椭圆相交.

答案 A

2.(2012·泉州质检)“直线与双曲线相切”是“直线与双曲线只有一个公共点”

的( ).

A .充分而不必要条件

B .必要而不充分条件

C .充要条件

D .既不充分也不必要条件

解析 与渐近线平行的直线也与双曲线有一个公共点. 答案 A

3.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( ).

A .3 2

B .2 6

C .27

D .4 2

解析 根据题意设椭圆方程为x 2b 2+4+y 2

b 2=1(b >0),则将x =-3y -4代入椭圆

方程,得4(b 2+1)y 2+83b 2y -b 4+12b 2=0,∵椭圆与直线x +3y +4=0有且仅有一个交点,∴Δ=(83b 2)2-4×4(b 2+1)·(-b 4+12b 2)=0,即(b 2+4)(b 2-3)=0,∴b 2=3,

长轴长为2b 2+4=27. 答案 C

4.(2012·成都月考)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( ). A.x 23-y 2

6=1 B.x 24-y 2

5=1 C.x 26-y 2

3=1

D.x 25-y 2

4=1

解析 设双曲线的标准方程为x 2a 2-y 2

b 2=1(a >0,b >0),由题意知

c =3,a 2+b 2=

9,设A (x 1,y 1),B (x 2,y 2),则有:?????

x 21a 2-y 21b

2=1,x 2

2a 2-y 22

b

2=1,两式作差得:y 1-y 2x 1-x 2=

b 2(x 1+x 2)

a 2(y 1+y 2)

=-12b 2-15a 2

=4b 25a 2,又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2

=4,b 2

=5,所以双曲线的标准方程是x 24-y 2

5=1.

答案 B

5.(2011·泉州模拟)y =kx +2与y 2=8x 有且仅有一个公共点,则k 的取值为________.

解析 由???

y =kx +2,y 2=8x ,得ky 2-8y +16=0,若k =0,则y =2;若k ≠0,则Δ=0,

即64-64k =0,解得k =1.故k =0或k =1. 答案 0或1

考向一 直线与圆锥曲线的位置关系

【例1】?(2011·合肥模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( ). A.??????-12,12 B .[-2,2] C .[-1,1]

D .[-4,4]

[审题视点] 设直线l 的方程,将其与抛物线方程联立,利用Δ≥0解得. 解析 由题意得Q (-2,0).设l 的方程为y =k (x +2),代入y 2=8x 得k 2x 2+4(k 2-2)x +4k 2=0,∴当k =0时,直线l 与抛物线恒有一个交点;当k ≠0时,Δ=16(k 2-2)2-16k 4≥0,即k 2≤1,∴-1≤k ≤1,且k ≠0,综上-1≤k ≤1. 答案 C

研究直线和圆锥曲线的位置关系,一般转化为研究其直线方程与圆锥

曲线方程组成的方程组解的个数,但对于选择题、填空题,常充分利用几何条件,利用数形结合的方法求解.

【训练1】 若直线mx +ny =4与⊙O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 2

4=1的交点个数是( ). A .至多为1 B .2 C .1 D .0

解析 由题意知:

4m 2+n

2>2,即m 2+n 2<2, ∴点P (m ,n )在椭圆x 29+y 2

4=1的内部,故所求交点个数是2个. 答案 B

考向二 弦长及中点弦问题

【例2】?若直线l 与椭圆C :x 23+y 2

=1交于A 、B 两点,坐标原点O 到直线l 的距离为3

2,求△AOB 面积的最大值.

[审题视点] 联立直线和椭圆方程,利用根与系数关系后代入弦长公式,利用基本不等式求出弦长的最大值即可. 解 设A (x 1,y 1),B (x 2,y 2). (1)当AB ⊥x 轴时,|AB |=3;

(2)当AB 与x 轴不垂直时,设直线AB 的方程为y =kx +m .由已知,得

|m |1+k

2=3

2,即m 2=3

4(k 2+1).把y =kx +m 代入椭圆方程,整理,得(3k 2+1)x 2+6kmx +3m 2-3=0.

∴x 1+x 2=-6km 3k 2+1,x 1x 2=3(m 2-1)

3k 2+1.

∴|AB |2=(1+k 2)(x 2-x 1)2=(1+k 2

)·????

??36k 2m 2

(3k 2+1)2-12(m 2-1)3k 2

+1=12(k 2+1)(3k 2+1-m 2)

(3k 2+1)2

=3(k 2+1)(9k 2+1)(3k 2+1)2=3+12k 29k 4+6k 2+1.

当k ≠0时,上式=3+

129k 2+1k 2+6

≤3+12

2×3+6=4, 当且仅当9k 2

=1k 2,即k =±3

3时等号成立.此时|AB |=2;当k =0时,|AB |=3,

综上所述|AB |max =2.

∴当|AB |最大时,△AOB 面积取最大值S max =12×|AB |max ×32=3

2.

当直线(斜率为k )与圆锥曲线交于点A (x 1,y 1),B (x 2,y 2)时,则|AB |=1+k 2

·|x 1-x 2|=

1+1

k 2|y 1-y 2|,而|x 1-x 2|=(x 1+x 2)2-4x 1x 2,可根据直线方

程与圆锥曲线方程联立消元后得到的一元二次方程,利用根与系数的关系得到两根之和、两根之积的代数式,然后再进行整体代入求解.

【训练2】 椭圆ax 2+by 2=1与直线x +y -1=0相交于A ,B 两点,C 是AB 的中点,若AB =22,OC 的斜率为

2

2

,求椭圆的方程. 解 法一 设A (x 1,y 1)、B (x 2,y 2), 代入椭圆方程并作差得

a (x 1+x 2)(x 1-x 2)+

b (y 1+y 2)(y 1-y 2)=0. 而y 1-y 2x 1-x 2=-1,y 1+y 2x 1+x 2=k o

c =22, 代入上式可得b =2a .

再由|AB |=1+k 2|x 2-x 1|=2|x 2-x 1|=22, 其中x 1、x 2是方程(a +b )x 2-2bx +b -1=0的两根, 故? ??

??2b a +b 2-4·b -1a +b =4,

将b =2a 代入得a =13,∴b =2

3. ∴所求椭圆的方程是x 23+2y 2

3=1.

法二 由???

ax 2+by 2

=1,

x +y =1,

得(a +b )x 2-2bx +b -1=0.

设A (x 1,y 1)、B (x 2,y 2), 则|AB |=(k 2

+1)(x 1-x 2)2

=2·4b 2-4(a +b )(b -1)

(a +b )2

.

∵|AB |=22,∴

a +

b -ab

a +b

=1.①

设C (x ,y ),则x =

x 1+x 22=b a +b ,y =1-x =a

a +b

∵OC 的斜率为22,∴a b =2

2. 代入①,得a =13,b =2

3. ∴椭圆方程为x 23+2

3y 2=1.

考向三 圆锥曲线中的最值(或取值范围)问题

【例3】?(2011·湘潭模拟)已知椭圆x 22+y 2

=1的左焦点为F ,O 为坐标原点. (1)求过点O 、F ,并且与直线l :x =-2相切的圆的方程;

(2)设过点F 且不与坐标轴垂直的直线交椭圆于A ,B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. [审题视点] (1)求出圆心和半径,得出圆的标准方程;

(2)设直线AB 的点斜式方程,由已知得出线段AB 的垂直平分线方程,利用求值域的方法求解.

解 (1)∵a 2=2,b 2=1,∴c =1,F (-1,0), ∵圆过点O ,F ,∴圆心M 在直线x =-1

2上. 设M ? ????-12,t ,则圆半径r =??????? ????-12-(-2)=32,

由|OM |=r ,得

? ??

??-122+t 2=3

2,解得t =±2,

∴所求圆的方程为? ??

??

x +122+(y ±2)2=94.

(2)设直线AB 的方程为y =k (x +1)(k ≠0),代入x 22+y 2

=1, 整理得(1+2k 2)x 2+4k 2x +2k 2-2=0.

∵直线AB 过椭圆的左焦点F 且不垂直于x 轴, ∴方程有两个不等实根.

如图,设A (x 1,y 1),B (x 2,y 2),AB 中点N (x 0,y 0),

则x 1+x 2=-4k 22k 2+1,x 0=12(x 1+x 2)=-2k 2

2k 2+1,

y 0=k (x 0+1)=k

2k 2+1

∴AB 的垂直平分线NG 的方程为y -y 0=-1

k (x -x 0). 令y =0,得x G =x 0+ky 0=-2k 22k 2+1+k 2

2k 2+1

=-k 22k 2+1=-12+14k 2+2,

∵k ≠0,∴-1

2<x G <0,

∴点G 横坐标的取值范围为? ??

??

-12,0.

直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地

渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.

【训练3】 (2012·金华模拟)已知过点A (-4,0)的动直线l 与抛物线G :x 2=2py (p >0)相交于B 、C 两点.当直线l 的斜率是12时,AC →=4AB →.

(1)求抛物线G 的方程;

(2)设线段BC 的中垂线在y 轴上的截距为b ,求b 的取值范围.

解 (1)设B (x 1,y 1),C (x 2,y 2),当直线l 的斜率是12时,l 的方程为y =1

2(x +4),即x =2y -4.

由???

x 2

=2py ,x =2y -4

得2y 2-(8+p )y +8=0, ∴?????

y 1y 2=4, ①y 1+y 2=8+p

2, ②

又∵AC →=4AB →,∴y 2=4y 1

,③ 由①②③及p >0得:y 1=1,y 2=4,p =2,

得抛物线G 的方程为x 2=4y .

(2)设l :y =k (x +4),BC 的中点坐标为(x 0,y 0),

由???

x 2

=4y ,y =k (x +4)

得x 2-4kx -16k =0,④ ∴x 0=

x C +x B 2

=2k ,y 0=k (x 0+4)=2k 2

+4k . ∴线段BC 的中垂线方程为y -2k 2-4k =-1

k (x -2k ), ∴线段BC 的中垂线在y 轴上的截距为: b =2k 2+4k +2=2(k +1)2,

对于方程④,由Δ=16k 2+64k >0得k >0或k <-4. ∴b ∈(2,+∞).

考向四 定值(定点)问题

【例4】?(2011·四川)椭圆有两顶点A (-1,0)、B (1,0),过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q . (1)当|CD |=3

22时,求直线l 的方程.

(2)当点P 异于A 、B 两点时,求证:O P →·O Q →为定值.

[审题视点] (1)设出直线方程与椭圆方程联立.利用根与系数的关系和弦长公式可求出斜率从而求出直线方程;(2)关键是求出Q 点坐标及其与P 点坐标的关系,从而证得OP →·OQ →为定值.证明过程中要充分利用已知条件进行等价转化. (1)解 因椭圆焦点在y 轴上,

设椭圆的标准方程为y 2a 2+x 2

b 2=1(a >b >0), 由已知得b =1,

c =1,

所以a =2,椭圆方程为y 22+x 2

=1. 直线l 垂直于x 轴时与题意不符.

设直线l 的方程为y =kx +1,将其代入椭圆方程化简得 (k 2+2)x 2+2kx -1=0. 设C (x 1,y 1),D (x 2,y 2),

则x 1+x 2=-2k k 2+2,x 1·x 2=-1

k 2+2,

|CD |=k 2

+1·(x 1+x 2)2

-4x 1x 2=22(k 2+1)

k 2+2

.

由已知得22(k 2+1)k 2+2=3

22,解得k =±2.

所以直线l 的方程为y =2x +1或y =-2x +1. (2)证明 直线l 与x 轴垂直时与题意不符. 设直线l 的方程为y =kx +1(k ≠0且k ≠±1), 所以P 点坐标为? ??

??-1k ,0.

设C (x 1,y 1),D (x 2,y 2),由(1)知x 1+x 2=-2k k 2+2,x 1·x 2=-1

k 2+2

, 直线AC 的方程为y =y 1

x 1+1(x +1),

直线BD 的方程为y =

y 2

x 2-1

(x -1), 将两直线方程联立,消去y 得x +1x -1=y 2(x 1+1)

y 1(x 2-1).

因为-1<x 1,x 2<1,所以x +1x -1与y 2

y 1

异号.

? ????x +1x -12=y 22(x 1+1)2

y 21(x 2-1)

2 =2-2x 222-2x 21·(x 1+1)2

(x 2-1)2=(1+x 1)(1+x 2)(1-x 1)(1-x 2)

=1+-2k k 2+2+-1k 2

+21--2k k 2+2+

-1k 2+2=?

????k -1k +12

. 又y 1y 2=k 2x 1x 2+k (x 1+x 2)+1 =2(1-k )(1+k )k 2+2=-2(1+k )2k 2+2·k -1k +1,

∴k -1k +1与y 1y 2异号,x +1x -1与k -1k +1

同号,

∴x +1x -1=k -1k +1

,解得x =-k . 因此Q 点坐标为(-k ,y 0). O P →·O Q →=? ????-1k ,0·()-k ,y

0=1. 故O P →·O Q →为定值.

解决圆锥曲线中的定值问题的基本思路很明确:即定值问题必然是在

变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积等,其不受变化的量所影响的一个值即为定值,化解这类问题的关键是引进参数表示直线方程、数量积等,根据等式的恒成立、数式变换等寻找不受参数影响的量,解题过程中要注意讨论直线斜率的存在情况,计算要准确. 【训练4】 (2011·山东)在平

面直角坐标系xOy 中,已知椭圆C :x 23+y 2

=1.如图所示,斜率为k (k >0)且不过原点的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点G ,交直线x =-3于点D (-3,m ). (1)求m 2+k 2的最小值;

(2)若|OG |2=|OD |·|OE |,求证:直线l 过定点.

(1)解 设直线l 的方程为y =kx +t (k >0),由题意,t >0. 由方程组????

?

y =kx +t ,x 23

+y 2

=1,得(3k 2+1)x 2+6ktx +3t 2-3=0.

由题意Δ>0,所以3k 2+1>t 2. 设A (x 1,y 1),B (x 2,y 2),

由根与系数的关系得x 1+x 2=-6kt

3k 2+1,

所以y 1+y 2=2t

3k 2+1

.

由于E 为线段AB 的中点,因此x E =-3kt

3k 2+1,

y E =

t

3k 2

+1

, 此时k OE =y E x E

=-13k .所以OE 所在直线方程为y =-1

3k x ,又由题设知D (-3,m ),令x =-3,得m =1

k ,即mk =1,

所以m 2+k 2≥2mk =2,当且仅当m =k =1时上式等号成立,

此时由Δ>0得0<t <2,因此当m =k =1且0<t <2时,m 2+k 2取最小值2. (2)证明 由(1)知OD 所在直线的方程为y =-1

3k x , 将其代入椭圆C 的方程,并由k >0, 解得G ?

????-3k 3k 2+1,13k 2+1. 又E ? ????-3kt 3k 2+1,t 3k 2+1,D ? ?

???-3,1k ,

由距离公式及t >0得

|OG |2=?

????-3k 3k 2+12+? ????13k 2+12=9k 2+13k 2+1,

|OD |= (-3)2

+? ??

??1k 2=9k 2+1k ,

|OE |=

? ?

???-3kt 3k 2+12+? ??

??t 3k 2+12=t 9k 2+13k 2+1,

由|OG |2=|OD |·|OE |得t =k , 因此直线l 的方程为y =k (x +1), 所以直线l 恒过定点(-1,0).

规范解答17——怎样求解析几何中的探索性问题

【问题研究】 解析几何中探索性问题的结论往往不明确,需要根据已知条件通过推理论证或是计算对结论作出明确的肯定或是否定,因此解决起来具有较大的

难度.

【解决方案】 明确这类问题的解题思想:即假设其结论成立、存在等,在这个假设下进行推理论证,如果得到了一个合情合理的推理结果,就肯定假设,对问题作出正面回答,如果得到一个矛盾的结果,就否定假设,对问题作出反面回答. 【示例】?(本题满分12分)(2011·辽宁)

如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M 、N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e .直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D . (1)设e =1

2,求|BC |与|AD |的比值;

(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.

第(1)问,设C 1的方程,C 2的方程同样由C 1的系数a ,b 来表示,再分

别求点A 、B 的坐标,进而可求|BC |∶|AD |;第(2)问利用k BO =k AN ,得t 与e 、a 的关系式,再由|t |<a ,求e 的范围.

[解答示范] (1)因为C 1,C 2的离心率相同,故依题意可设C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2

a 4+x 2

a 2=1,(a >

b >0).

设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立, 求得A (t ,a b a 2-t 2),B ? ??

??

t ,b a a 2-t 2.(4分)

当e =12时,b =3

2a ,分别用y A ,y B 表示A ,B 的纵坐标,可知 |BC |∶|AD |=2|y B |2|y A

|=b 2a 2=3

4.(6分)

(2)t =0时的l 不符合题意.t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即

b

a a

2-t2

t=a

b a

2-t2

t-a

,(8分)

解得t=-

ab2

a2-b2

=-

1-e2

e2·a.

因为|t|<a,又0<e<1,所以1-e2

e2<1,解得

2

2<e<1.(10分)

所以当0<e≤

2

2时,不存在直线l,使得BO∥AN;

2

2<e<1时,存在直线l,使得BO

∥AN.(12分)

本题探索的是离心率e的变化范围,化解这个难点的方法首先假设存在直线l,使得BO∥AN,根据k BO=k AN,再由|t|<a构建关于e的不等式,解出e的范围,最后作出肯定回答.

【试一试】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.

(1)求曲线C的方程;

(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有F A

·FB

<0?若存在,求出m的取值范围;若不存在,请说明理由.

[尝试解答](1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足:

(x-1)2+y2-x=1(x>0).

化简得y2=4x(x>0).

(2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2).

设l的方程为x=ty+m,由

?

?

?x=ty+m,

y2=4x,

得y2-4ty-4m=0,

Δ=16(t2+m)>0,于是

?

?

?y1+y2=4t,

y1y2=-4m.

又F A

=(x1-1,y1),FB

=(x2-1,y2).

F A→·FB

<0?(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0.②

又x=

y2

4,于是不等式②等价于

y21

y22

4+y1y2-?

?

?

?

?

y21

4+

y22

4+1<0?

(y1y2)2

16+y1y2-

1

4[(y1

+y 2)2-2y 1y 2]+1<0,③

由①式,不等式③等价于m 2-6m +1<4t 2,④

对任意实数t,4t 2的最小值为0,所以不等式④对于一切t 成立等价于m 2-6m +1<0,即3-22<m <3+2 2.

由此可知,存在正数m ,对于过点M (m,0)且与曲线C 有两个交点A ,B 的任一直线,都有F A →·FB

→<0,且m 的取值范围是(3-22,3+22).

直线与圆锥曲线的综合问题专题二

专题二 直线与圆锥曲线的综合问题 第一课时 一.知识体系小结 22 2222222222 222222 cos 1(0)()sin 11(0)1(00)1(00)2(0)2(0213x a x y x a b y b a b y x y a b a b x y y x x a b y a b a b a b y px p y px p 圆锥曲线的标准方程 椭圆:焦点在轴上时参数方程,其中为参数; 焦点在轴上时. 双曲线:焦点在轴上:,;焦点在轴上:,. 抛物线:开口向右时,,开口向左时,.22)2(0)2(0)x py p x py p ,开口向上时,开口向下时. 2222 2222 2222 222222 222222 221111 1(0)123142x y x y a b a b x y x y a b a b x y x y a b a b mx ny 常用曲线方程设法技巧 共焦点的设法:与椭圆有公共焦点的椭圆方程为;与双曲线有公共焦点的双曲线方程为;与双曲线共渐近线的双曲线方程为;中心在原点,对称轴为坐标轴的椭圆、双曲线方程可设为;不清楚开口方向的抛.物线设法:焦22(0)(0)x y mx m y x my m 点在轴上,; 焦点在轴上,. 3.解决直线与圆锥曲线问题的通法: (1)设方程及点的坐标; (2)联立直线方程与曲线方程得方程组,消元得方程; (3)应用韦达定理及判别式; (4)结合已知、中点坐标公式、斜率公式及弦长公式求解. 1212|||| |.AB AB x x y y (5)直线与圆锥曲线相交的弦长公式或 222 0002220 222 0002220 2000 1()1()2(0)(). b x x y P x y k a b a y b x x y P x y k a b a y p y px p P x y k y 圆锥曲线中点弦斜率公式 在椭圆中,以,为中点的弦所在直线的斜率; 在双曲线中,以,为中点的弦所在直线的斜率; 在抛物线中,以,为中点的弦所在直线的斜率以上公式均可由点4.差法可得.

圆锥曲线解题技巧和方法综合(方法讲解+题型归纳,经典)

圆锥曲线解题方法技巧归纳 第一、知识储备: 1. 直线方程的形式 (1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。 (2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈ ②点到直线的距离d = ③夹角公式:2121 tan 1k k k k α-= + (3)弦长公式 直线 y kx b =+上两点1122(,),(,)A x y B x y 间的距离:12AB x =- = 或12AB y y =- (4)两条直线的位置关系 ①1212l l k k ⊥?=-1 ② 212121//b b k k l l ≠=?且 2、圆锥曲线方程及性质 (1)、椭圆的方程的形式有几种?(三种形式) 标准方程:22 1(0,0)x y m n m n m n +=>>≠且 2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种 标准方程:22 1(0)x y m n m n +=?< 距离式方程: 2a = (3)、三种圆锥曲线的通径你记得吗?

22 222b b p a a 椭圆:;双曲线:;抛物线: (4)、圆锥曲线的定义你记清楚了吗? 如:已知21F F 、是椭圆13 42 2=+y x 的两个焦点,平面内一个动点M 满足221=-MF MF 则 动点M 的轨迹是( ) A 、双曲线; B 、双曲线的一支; C 、两条射线; D 、一条射线 (5)、焦点三角形面积公式:1 2 2tan 2 F PF P b θ ?=在椭圆上时,S 1 2 2cot 2 F PF P b θ ?=在双曲线上时,S (其中222 1212121212||||4,cos ,||||cos |||| PF PF c F PF PF PF PF PF PF PF θθθ+-∠==?=?) (6)、记住焦半径公式:(1)00;x a ex a ey ±±椭圆焦点在轴上时为焦点在y 轴上时为,可简记为 “左加右减,上加下减”。 (2)0||x e x a ±双曲线焦点在轴上时为 (3)11||,||22 p p x x y ++抛物线焦点在轴上时为焦点在y 轴上时为 (6)、椭圆和双曲线的基本量三角形你清楚吗? 第二、方法储备 1、点差法(中点弦问题) 设() 11,y x A 、()22,y x B ,()b a M ,为椭圆13 42 2=+y x 的弦AB 中点则有 1342 12 1=+y x ,1342 22 2=+y x ;两式相减得( )()03 4 2 2 2 1 2 2 21=-+-y y x x ? ()() ()() 3 4 21212121y y y y x x x x +-- =+-?AB k =b a 43- 2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什 么?如果有两个参数怎么办? 设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,

直线与圆锥曲线

直线与圆锥曲线 考情分析: 本节内容是高中数学的重要内容之一,也是历年高考尝试新题的板块,各种解题方法在这里表现得比较充分,尤其是在近几年高考的新课程卷中.平面向量与解几融合在一起,综合性很强,题目多变,解法灵活多样,能充分体现高考的选拔功能. 1、考查直线的基本概念,求在不同条件下的直线方程、直线的位置关系,此类题大都属中、低档题,以选择、填空题的形式出现,每年必考. 2、二次曲线的基础知识,直线与二次曲线的普通方程、参数方程,以及普通方程与参数方程的互化,常以选择题、填空题的形式出现属于中档题. 3、有关直线与圆、直线与圆锥曲线的综合题,多以解答题的形式出现,这类题主要考查学生几何知识与代数知识的综合应用,对学生分析问题、解决问题的能力要求较高. 二、考点整合 1、第一部分内容:直线的倾斜角、斜率,直线的方程,两条直线的位置关系;简单的线性规划及其实际应用;曲线和方程、圆的方程. 2、第二部分内容包括椭圆、双曲线、抛物线的定义、性质,以及它们与直线的位置关系的判定,弦长的有关计算、证明等,本部分内容为高考命题的热点. 3、椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质. 4、椭圆、双曲线、抛物线统称圆锥曲线,它们的统一性如下: (1)从方程的形式看:在直角坐标系中,这几种曲线的方程都是二元二次方程,所以它们属于二次曲线; (2)从点的集合(或轨迹)的观点看:它们都是与定点和定直线距离的比是常数e 的集合(或轨迹),这个点是它们的焦点,定直线是它们的准线.只是由于离心率e 取值范围的不同,而分为椭圆(10<e )和抛物线(1=e )三种曲线; (3)这三种曲线都是由平面截圆锥面得到的截线. 5、坐标法是研究曲线的一种重要方法,本节进一步研究求曲线方程的一般方法,利用曲线的方程讨论曲线的几何性质,以及用坐标法证明简单的几何问题等. 6、椭圆、双曲线、抛物线是常见的曲线,利用它们的方程及几何性质,可以解决一些简单的实际问题;利用方程可以研究它们与直线的交点、相交弦等有关问题. 解析几何的综合问题,主要是以圆锥曲线为载体,考查直线与圆锥曲线的有关性质以及函数、方程、不等式、三角、向量等知识.考查的数学思想有数形结合的思想、分类整合的思想、换元的思想、等价转化的思想等.常见题型有求曲线方程,由方程研究性质以及定值、最值、范围、探索性问题等.这类题目一般难度较大,常作高考题中的压轴题. 三、典例精讲: 例 1 (1)由动点P 向圆12 2 =+y x 作两条切线、PB PA ,切点分别为、B A , ο60=∠APB ,则动点P 的轨迹方程为______________________. (2)设直线022:=++y x l 关于原点对称的直线为/ l ,若/ l 与椭圆14 2 2 =+y x 的交 点为、B A ,点P 为椭圆上的动点,则使得PAB ?的面积为2 1的点P 的个数为( ) A 、1 B 、2 C 、3 D 、4 (3)已知双曲线的中心在原点,离心率为3,它的一条准线与抛物线x y 42 =的准

教师招聘圆锥曲线经典总结

圆锥曲线必背口诀(红字为口诀)-椭圆 一、椭圆定义 定点为焦点,定值为长轴.(定值=2a ) 椭圆.定点为焦点,定直线为准线,定值为离心率.(定值=e ) 定点为短轴顶点,定值为负值. (定值2k e 1=-) 二、椭圆的性质定理 长轴短轴与焦距,形似勾股弦定理① 准线方程准焦距,a 方、b 方除以c ② 通径等于 2 e p ,切线方程用代替③ 焦三角形计面积,半角正切连乘b ④ 注解: 1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+ 2准线方程:2 a x c = ( a 方除以c ) 3椭圆的通径 d :过焦点垂直于长轴的直线与椭圆的两交点之间的距

离称为椭圆的通径.(通径22 c b 2b 2a c a d 2ep =??==) 过椭圆上00x y (,)点的切线方程,用00x y (,)等效代替椭圆方程得到. 等效代替后的是切线方程是:0022x x y y 1a b += 4、焦三角形计面积,半角正切连乘b 焦三角形:以椭圆的两个焦点12F F ,为顶点,另一个顶点P 在椭圆上的三角形称为焦三角形.半角是指12F PF θ=∠的一半. 则焦三角形的面积为:2 S b 2 tan θ = 证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理: 222m n 2mn 4c cos θ+-?= 22224a 4b m n 4b ()=-=+- 即:2 2mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+. 即:2 122b mn PF PF 1||||cos θ==+ 故:12 F PF 1S m n 2sin θ=??△2 2 12b b 211sin sin cos cos θθθθ=? ?=?++ 又:22221222 sin cos sin tan cos cos θθ θ θ θθ = =+ 所以:椭圆的焦点三角形的面积为122 F PF S b 2tan θ ?=. 三、椭圆的相关公式 切线平分焦周角,称为弦切角定理① 1F 2F O x y P m n

圆锥曲线-直线与圆锥曲线的位置关系

直线与圆锥曲线位置关系 一、基础知识: (一)直线与椭圆位置关系 1、直线与椭圆位置关系:相交(两个公共点),相切(一个公共点),相离(无公共点) 2、直线与椭圆位置关系的判定步骤:通过方程根的个数进行判定, 下面以直线y kx m =+和椭圆:()22 2210x y a b a b +=>>为例 (1)联立直线与椭圆方程:222222 y kx m b x a y a b =+??+=? (2)确定主变量x (或y )并通过直线方程消去另一变量y (或x ),代入椭圆方程得到关于主变量的一元二次方程:() 2 22 2 22b x a kx m a b ++=,整理可得: ()22 222222220a k b x a kxm a m a b +++-= (3)通过计算判别式?的符号判断方程根的个数,从而判定直线与椭圆的位置关系 ① 0?>?方程有两个不同实根?直线与椭圆相交 ② 0?=?方程有两个相同实根?直线与椭圆相切 ③ 0?>为例: (1)联立直线与双曲线方程:22 2 2 22 y kx m b x a y a b =+?? -=?,消元代入后可得: ()()2 2222222220b a k x a kxm a m a b ---+= (2)与椭圆不同,在椭圆中,因为2 2 2 0a k b +>,所以消元后的方程一定是二次方程,但双曲线中,消元后的方程二次项系数为2 2 2 b a k -,有可能为零。所以要分情况进行讨论

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线的综合问题 [题型分析·高考展望] 本部分重点考查直线和圆锥曲线的综合性问题,从近几年的高考试题来看,除了在解答题中必然有直线与圆锥曲线的联立外,在填空题中出现的圆锥曲线问题也经常与直线结合起来.本部分的主要特点是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍的效果.预测在今后高考中,主要围绕着直线与椭圆的位置关系进行命题,有时会与向量的共线、模和数量积等联系起来;对于方程的求解,不要忽视轨迹的求解形式,后面的设问将是对最值、定值、定点、参数围的考查,探索类和存在性问题考查的概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系的判断及应用 例1 (1)(2015·改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若AF +BF =4,点M 到直线l 的距离不小于45 ,则椭圆E 的离心率的取值围是________________. (2)设焦点在x 轴上的椭圆M 的方程为x 24+y 2b 2=1 (b >0),其离心率为22 . ①求椭圆M 的方程; ②若直线l 过点P (0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点的直线与圆锥曲线的位置关系问题,一是利用方程的根的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零;二是利用图形来处理和理解;三是直线过定点位置不同,导致直线与圆锥曲线的位置关系也不同.

变式训练1 已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的焦距为4,且过点P (2,3). (1)求椭圆C 的方程; (2)设Q (x 0,y 0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E .取点A (0,22),连结AE ,过点A 作AE 的垂线交x 轴于点D .点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 题型二 直线与圆锥曲线的弦的问题 例2 设椭圆C :x 2a 2+y 2 b 2=1 (a >b >0)的左,右焦点分别为F 1,F 2,且焦距为6,点P 是椭圆短轴的一个端点,△PF 1F 2的周长为16. (1)求椭圆C 的方程; (2)求过点(3,0)且斜率为45 的直线l 被椭圆C 所截得的线段中点的坐标. 点评 直线与圆锥曲线弦的问题包括求弦的方程,弦长,弦的位置确定,弦中点坐标轨迹等问题,解决这些问题的总体思路是设相关量,找等量关系,利用几何性质列方程(组),不等式(组)或利用一元二次方程根与系数的关系,使问题解决.

直线和圆锥曲线的位置关系

聚焦考点直线和圆锥曲线的位置关系 直线与圆锥曲线的位置关系是历年高考命题的热点;试题具有一定的综合性,覆盖面大,不仅考查“三基”掌握的情况,而且重点考查学生的作图、数形结合、等价转化、分类讨论、逻辑推理、合理运算,以及运用数学知识分析问题和解决问题的能力。在近几年的高考中,每年风格都在变换,考查思维的敏捷性,在探索中求创新。 具体来说,这些问题常涉及到圆锥曲线的性质和直线的基本知识点,如直线被圆锥曲线截得的弦长、弦中点问题,垂直问题,对称问题。与圆锥曲线性质有关的量的取值范围等是近几年命题的新趋向。 纵观近几年高考和各类型考试,可以发现: 1.研究直线与圆锥曲线位置关系的问题,通常有两种方法:一是转化为研究方程组的解的问题,利用直线方程与圆锥曲线方程所组成的方程组消去一个变量后,将交点问题(包括公共点个数、与交点坐标有关的问题)转化为一元二次方程根的问题,结合根与系数的关系及判别式解决问题;二是运用数形结合,迅速判断某些直线和圆锥曲线的位置关系。 2.涉及弦长问题,利用弦长公式及韦达定理求解,涉及弦的中点及中点弦问题,利用差分法较为简便。 3.充分发挥判别式和韦达定理在解题中的作用。灵活应用数形结合的思想、函数思想、等价转化思想、分类讨论思想解题。 热点透析 题型1:直线与圆锥曲线的交点个数问题

例1已知双曲线C:2x2-y2=2与点P(1,2) (1)求过P(1,2)点的直线l的斜率取值范围,使l与C分别有一个交点,两个交点,没有交点. (2)若Q(1,1),试判断以Q为中点的弦是否存在. 解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y-2=k(x-1),代入C的方程,并整理得 (2-k2)x2+2(k2-2k)x-k2+4k-6=0 .(*) (ⅰ)当2-k2=0,即k=±时,方程(*)有一个根,l与C有一个交点 (ⅱ)当2-k2≠0,即k≠±时 Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k) ①当Δ=0,即3-2k=0,k=时,方程(*)有一个实根,l与C有一个交点. ②当Δ>0,即k<,又k≠±, 故当k<-或-<k<或<k<时,方程(*)有两不等实根,l与C有两个交点. ③当Δ<0,即k>时,方程(*)无解,l与C无交点.

圆锥曲线性质归纳答案版(教师版)

常 用 经 验 公 式 1.圆的切线方程 (1)已知圆222x y r +=. ①过圆上的000(,)P x y 点的切线方程为2 00x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±2.椭圆22 221(0)x y a b a b +=>>焦半径公式 1020 MF a ex MF a ex =+=- 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部220022 1x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200 22 1x y a b ? +>. 4. 椭圆的切线方程 椭圆22 221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. 5.双曲线22221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200 2 21x y a b ? ->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200 2 21x y a b ? -<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ, 焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=. 9. 抛物线px y 22 =的焦半径公式 抛物线22(0)y px p =>焦半径02 p CF x =+. 过焦点弦长p x x p x p x CD ++=+++ =21212 2. 10.抛物线px y 22=上的动点可设为200(,)2y P y p 或或)2,2(2pt pt P 00(,)P x y ,其中 2 002y px =. 11. 抛物线的切线方程 (1)抛物线px y 22 =上一点00(,)P x y 处的切线方程是00()y y p x x =+. 12.直线与圆锥曲线相交的弦长公式 AB = 21AB x =-=(弦端点A ),(),,(2211y x B y x ,由方程 ?? ?=+=0 ),(y x F d kx y 消去y 得到02=++f nx mx ,0?>, k 为直线的斜率).

直线与圆锥曲线的综合问题

第32练 直线与圆锥曲线得综合问题 [题型分析·高考展望] 本部分重点考查直线与圆锥曲线得综合性问题,从近几年得高考试题来瞧,除了在解答题中必然有直线与圆锥曲线得联立外,在填空题中出现得圆锥曲线问题也经常与直线结合起来.本部分得主要特点就是运算量大、思维难度较高,但有时灵活地借助几何性质来分析问题可能会收到事半功倍得效果。预测在今后高考中,主要围绕着直线与椭圆得位置关系进行命题,有时会与向量得共线、模与数量积等联系起来;对于方程得求解,不要忽视轨迹得求解形式,后面得设问将就是对最值、定值、定点、参数范围得考查,探索类与存在性问题考查得概率也很高. 常考题型精析 题型一 直线与圆锥曲线位置关系得判断及应用 例1 (1)(2015·福建改编)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)得右焦点为F ,短轴得一个端点为M ,直线l :3x—4y =0交椭圆E于A ,B两点。若AF +BF =4,点M 到直线l 得距离不小于\f(4,5),则椭圆E 得离心率得取值范围就是________________。 (2)设焦点在x 轴上得椭圆M 得方程为错误!+错误!=1 (b >0),其离心率为错误!. ①求椭圆M得方程; ②若直线l 过点P(0,4),则直线l 何时与椭圆M 相交? 点评 对于求过定点得直线与圆锥曲线得位置关系问题,一就是利用方程得根得判别式来确定,但一定要注意,利用判别式得前提就是二次项系数不为零;二就是利用图形来处理与理解;三就是直线过定点位置不同,导致直线与圆锥曲线得位置关系也不同. 变式训练1 已知椭圆C :x2a2+y 2 b 2=1(a>b >0)得焦距为4,且过点P (2,\r(3))。 (1)求椭圆C得方程; (2)设Q (x 0,y0)(x 0y 0≠0)为椭圆C 上一点,过点Q 作x 轴得垂线,垂足为E 、取点A (0,2\r(2)),连结AE ,过点A 作AE 得垂线交x 轴于点D 。点G 就是点D 关于y轴得对称点,作直线Q G,问这样作出得直线QG就是否与椭圆C一定有唯一得公共点?并说明理由、 题型二 直线与圆锥曲线得弦得问题 例2 设椭圆C :x 2 a 2+错误!=1 (a>b>0)得左,右焦点分别为F1,F 2,且焦距为6,点P就是椭圆短

(全国通用版)201X版高考数学一轮复习 高考达标检测(三十八)圆锥曲线的综合问题——直线与圆锥曲线

高考达标检测(三十八) 圆锥曲线的综合问题——直线与圆锥曲线 的位置关系 一、选择题 1.已知过抛物线y 2=4x 的焦点F 的直线l 交抛物线于A ,B 两点,且点A 在第一象限,若|AF |=3,则直线l 的斜率为( ) A .1 B.2 C. 3 D .22 解析:选D 由题意可知焦点F (1,0),设A (x A ,y A ), 由|AF |=3=x A +1,得x A =2,又点A 在第一象限, 故A (2,22),故直线l 的斜率为2 2. 2.若直线y =kx +2与抛物线y 2=x 有一个公共点,则实数k 的值为( ) A. 1 8 B .0 C. 1 8 或0 D .8或0 解析:选C 由??? y =kx +2, y 2=x , 得ky 2-y +2=0, 若k =0,直线与抛物线有一个交点,则y =2, 若k ≠0,则Δ=1-8k =0,∴k =1 8, 综上可知k =0或 1 8 . 3.已知双曲线C :x 2a 2-y 2 b 2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点, 且AB 的中点为N (12,15),则双曲线C 的离心率为( ) A .2 B.32 C.355 D.52 解析:选B 设A (x 1,y 1),B (x 2,y 2), 由AB 的中点为N (12,15),得x 1+x 2=24,y 1+y 2=30,

由????? x 21a 2-y 21 b 2=1,x 2 2 a 2 -y 22b 2 =1, 两式相减得: x 1+x 2 x 1-x 2 a 2 = y 1+y 2 y 1-y 2 b 2 , 则y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=4b 2 5a 2.

圆锥曲线中的定点定值问题(教师版)

第四讲 圆锥曲线中的定点定值问题 一、直线恒过定点问题 例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2 :4C x y =的切线,EA EB , 切点为 A 、 B , 求证:直线AB 恒过一定点,并求出该定点的坐标; 解:设),2,(-a E )4,(),4,(2 22211x x B x x A ,x y x y 2 1 4'2=∴= , )(21 41121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(2 1 421121x a x x -=--∴整理得:082121=--ax x 同理可得:2 22280x ax --= 8 ,2082,2121221-=?=+∴=--∴x x a x x ax x x x 的两根是方程 )2 4,(2+a a AB 中点为可得,又22 12 121212124442 AB x x y y x x a k x x x x - -+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2 a y x AB =+∴即过定点0,2. 例2、已知点00(,)P x y 是椭圆22:12x E y +=上任意一点,直线l 的方程为0012 x x y y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒 过一定点G ,求点G 的坐标。 解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --= 设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n 则0000001 212022x n m y x n m y x y ?=-?+??-??--=??,解得3200020432 0000 2002344424482(4)x x x m x x x x x n y x ?+--=?-??+--?=?-? ∴ 直线PN 的斜率为4320000032 00004288 2(34) n y x x x x k m x y x x -++--==---+

高中数学复习指导:直线与圆锥曲线问题之设而不求与设而求.doc

“设而不求”与“设而求” 一般地,我们解答直线与圆锥曲线问题,已经形成一种习惯,利用一元二次方程的判别式 研 究范围,利用根与系数的关系研究有关参数的关系,还美其名曰“设而不求”,事实上,“设而 求”也可能比“设而不求”更加简单,避开了一元二次方程的判别式与根与系数的关系研究有关 参数的关系,也许另有一种更好的解法等待着你去探究,不信请看下面的例题: 丫2 例1、己知椭圆方程为y+/=l,过定点P(0,2)的直线交椭圆于不同的两点A 、B (在 A 、P 之间),且满足西=2顾,求的取值范围. 解析1:设AB 的方程为)=尬+ 2, A3」),Ba ,%),贝9 PA = (x },y }-2), PB = (x 2,y 2 -2),由 PB = ZPA ,得 X 2 1 3 由 Q + * '得(1 + 2比2)严+池+6二0.又△二64疋一24(1 + 2/)= 0>0,得k 2>~. y = kx + 2, Sk 6 由根与系数关系,坷+禺=一 ,= - 1+2F - 1 + 2亡 把七=2西代入坷+召=_] + 2加 有西(1+2) = _] +朮,(1) 6 0 6 把x 2=^代入“2=仃乔有彷=匚乔,(2) 由(1)、(2)可以消去西得到含有入比的关系式,这个过程比较复杂,这个关系式是 32k 2 (1+A)2 3 1 3(1+2/) 2 八 3 _― =—■—, 或者变为__+?7 =—石刁—= — , 由* >二,可以求得 召=2坷, y 2-2 = A(y l -2).

3(1+2Q A 32k「 16 32k~(1 + 久)「2

初于是建立了关于2的不等式 '2 v£,又0vQvl,解得£v2vl. 32K I O O (1+A ) O 3 当初没有斜率时,宀亍所以扫<「 解析2:构造2 + ]=玉+玉=(召+兀T ,如此可以直接把年+召=一£「 / x } x 2 x }x 2 l + 2k 6 1 ao&2 3 也=砲代入得到'+君茹莎r"込百-2,由解法1知:宀亍可以 求得2<丐<罟,又061,解得打<1?当仙殳有斜率时,4,所以押<1. 解析3:设人(西,刃),8也,%),则 力4 =(兀[,刃一2), PB = (X 2,>2-2),由 PB = APA ,得v 4+^=i, 2 O 1 又人(召,刃),3(%,%)在二+b=l 上,所以]2 2 - + ^=1. 〔2 - 事实上仅用以上这四个等式就可以求出2与西,必,兀2,%中任意一个的关系. j 吕+*=1,⑴ F 字+(勿 _2Q +2)2=[.(2) (l)x A 2 _(2)得:(Ay.)2 -(心 -22 + 2)2 = / 一 1, (22-2)(22^ -2A + 2) = -1,注意到0<2<1,所以4仇开 一2 + 1) = 2 + 1,解得 气J) _ 3 斥彳一3 1 ”=—,注意到—1S)[S1,所以—is — <1,解得一5/153,又0V/lvl, 1 4A 1 4 2 3 所以-<2<1. 3 解法评价:解法1与解法2都是利用一元二次方程根的判别式与根与系数的关系,是解析 几何常用的方法,但是用这种方法必须对直线方程进行讨论,还应注意,有些时候仅仅使用其中 的根与系数的关系而没有用根的判别式,但是由于根与系数的关系是从整体上建立有关系数的关 系的,所以无法保证实数根的存在性,因此一定要检验判别式大于零.解法3 32k 1 冷=岔, y 2-2 = /l(y l -2).

直线与圆锥曲线的综合问题

教学过程 一、复习预习 圆锥曲线的综合问题包括:解析法的应用,与圆锥曲线有关的定值问题、最值问题、参数问题、应用题和探索性问题,圆锥曲线知识的纵向联系,圆锥曲线知识和三角、复数等代数知识的横向联系,解答这部分试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整. 二、知识讲解 考点1范围问题 求范围和最值的方法: 几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 考点2对称问题 要抓住对称包含的三个条件: (1)中点在对称轴上 (2)两个对称点的连线与轴垂直

(3)两点连线与曲线有两个交点(0>?),通过该不等式求范围 考点/易错点3定点、定值、最值等问题 定点与定值问题的处理一般有两种方法: (1)从特殊入手,求出定点和定值,再证明这个点(值)与变量无关; (2)直接推理、计算,并在计算过程中消去变量,从而得到定点(定值). 三、例题精析 【例题1】 【题干】已知椭圆1:22221=+b y a x C (0>>b a )与直线01=-+y x 相交于两点A 、B .当 椭圆的离心率e 满足2 223≤≤e ,且0=?OB OA (O 为坐标原点)时,求椭圆长轴长的取值范围. 【答案】 []6,5 【解析】由???=-+=+0 12 22222y x b a y a x b ,得()()012222222=-+-+b a x a x b a 由( ) 0122222>-+=?b a b a ,得12 2 >+b a 此时222212b a a x x +=+,() 2 22 2211b a b a x x +-= 由0=?OB OA ,得02121=+y y x x ,∴()0122121=++-x x x x 即022 2 2 2 =-+b a b a ,故1 222 2 -=a a b 由2 22222 a b a a c e -==,得2 222e a a b -= ∴2 2 11 12e a -+ = 由 2 223≤≤e 得23452 ≤≤a ,∴625≤≤a 所以椭圆长轴长的取值范围为 []6,5 【例题2】

圆锥曲线经典结论总结(教师版)

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是 22 00002222x x y y x y a b a b +=+.

圆锥曲线中离心率及其范围地求解专题(教师版)

圆锥曲线中离心率及其围的求解专题 【高考要求】 1.熟练掌握三种圆锥曲线的定义、标准方程、几何性质,并灵活运用它们解决相关的问题。 2.掌握解析几何中有关离心率及其围等问题的求解策略; 3.灵活运用教学中的一些重要的思想方法(如数形结合的思想、函数和方程的思想、分类讨论思想、等价转化的思想学)解决问题。 【热点透析】 与圆锥曲线离心率及其围有关的问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线等)列出所讨论的离心率(a,b,c )适合的不等式(组),通过解不等式组得出离心率的变化围; (3)函数值域求解法:把所讨论的离心率作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求离心率的变化围。 (4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思; (5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: ① 通过参数θ简明地表示曲线上点的坐标; ② 利用三角函数的有界性及其变形公式来帮助求解围等问题; (6)构造一个二次方程,利用判别式?≥0。 2.解题时所使用的数学思想方法。 (1)数形结合的思想方法。一是要注意画图,草图虽不要求精确,但必须正确,特别是其中各种量之间的大小和位置关系不能倒置;二是要会把几何图形的特征用代数方法表示出来,反之应由代数量确定几何特征,三要注意用几何方法直观解题。 (2)转化的思想方汉。如方程与图形间的转化、求曲线交点问题与解方程组之间的转化,实际问题向数学问题的转化,动点与不动点间的转化。 (3)函数与方程的思想,如解二元二次方程组、方程的根及根与系数的关系、求最值中的一元二次函数知识等。 (4)分类讨论的思想方法,如对椭圆、双曲线定义的讨论、对三条曲线的标准方程的讨论等。 【题型分析】 1. 已知双曲线22 122:1(0,0)x y C a b a b -=>>的左、右焦点分别为1F 、2F ,抛物线2C 的顶点在原点, 准线与双曲线1C 的左准线重合,若双曲线1C 与抛物线2C 的交点P 满足212PF F F ⊥,则双曲线1C 的离 心率为( ) A . B C D . 解:由已知可得抛物线的准线为直线2 a x c =- ,∴ 方程为2 2 4a y x c =;

直线圆锥曲线与向量的综合问题

直线圆锥曲线与向量的综合问题 高考考什么 知识要点: 1.直线与圆锥曲线的公共点的情况 00 ),(0 2=++??? ?==++C Bx Ax y x f c by ax 曲线:直线:)0'''(2=++C y B y A 或 (1)没有公共点 → 方程组无解 (2)一个公共点 → 0 ,0)0)=?≠→=→A ii A i 相切相交 (3)两个公共点 → 0,0>?≠A 2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常 用的弦长公式:1212AB x y y =-=- 3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4.几何与向量综合时可能出现的向量容 (1) 给出直线的方向向量或; (2)给出与相交,等于已知过的中点; (3)给出,等于已知是的中点; (4)给出,等于已知A 、B 与PQ 的中点三点共线; (5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线. (6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。 (8)给出,等于已知是的平分线。 (9)在平行四边形中,给出,等于已知是菱形;

(10)在平行四边形中,给出,等于已知是矩形; (11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点); (12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点); (14)在中,给出等于已知通过的心; (15)在中,给出等于已知是的心(三角形切圆的圆心,三角形的心是三角形三条角平分线的交点); (16)在中,给出,等于已知是中边的中线; 高考怎么考 主要题型: 1.三点共线问题;2.公共点个数问题;3.弦长问题; 4.中点问题;5.定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。 近几年平面向量与解析几何交汇试题考查方向为 (1)考查学生对平面向量知识的简单运用,如向量共线、垂直、定比分点。 (2)考查学生把向量作为工具的运用能力,如求轨迹方程,圆锥曲线的定义,标准方程和几何性质,直线与圆锥曲线的位置关系。 特别提醒:法和韦达定理是解决直线和圆锥曲线位置关系的重要工具。 高考真题 1.[2012·卷] 若n=(-2,1)是直线l的一个法向量,则l的倾斜角的大小为________(结果用反三角函数值表示)..arctan2 [解析] 考查直线的法向量和倾斜角,关键是求出直线的斜率. 由已知可得直线的斜率k× 1 -2 =-1,∴k=2,k=tanα,所以直线的倾斜角α=arctan2. 2.[2012·卷] 如图1-3,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形. 图1-3

直线与圆锥曲线的位置关系一教学设计

北京市北纬路中学徐学军 《直线与圆锥曲线的位置关系(一)》教学设计 一、教材分析及学生情况分析 本节课是平面解析几何的核心内容之一。在此之前,学生已学习了直线的基本知识,圆锥曲线的定义、标准方程和简单的几何性质,直线与圆的位置关系及判定,这为本节课的学习起着铺垫作用。本节内容是《直线与圆锥曲线的位置关系》的第一节课,着重是教会学生如何判断直线与椭圆的位置关系,体会运用方程思想、数形结合、分类讨论、类比归纳等数学思想方法,优化学生的解题思维,提高学生解题能力。这为后面解决直线与圆锥曲线的综合问题打下良好的基础。所以是承上启下的一节课。这节课还是培养学生数学能力的良好题材,所以说是解析几何的核心内容之一。 数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识。因此本节课在教学中力图让学生动手操作,自主探究、发现共性、类比归纳、总结解题规律。 学生情况分析:对于直线和圆,学生已经非常熟悉,并且知道直线与圆有三种位置关系:相离,相切和相交,会从代数、几何两个方面进行判断。本节课,学生将类比挖掘直线与椭圆圆的位置关系,学会从不同角度分析思考问题,为后续学习打下基础。本班为理科班,学生整体思维能力较强,勤于动脑,喜欢想问题,但不愿动手实践,特别是进行相关计算,另外学生在探究问题的能力,合作交流的意识及反思总结等方面有待加强。 二、教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知心理特征和实际,制定如下教学目标: 知识与技能:①理解直线与椭圆的位置关系; ②会进行位置关系的判断,计算弦长。 过程与方法:根据本节课的内容和学生的实际水平,通过回忆画图让学生理解直线与椭圆的位置关系;观察类比直线与圆的位置关系的判定,归纳总结出直线与椭圆的位置关系的判定,掌握代数方法, 学会解决相关的问题。 情感、态度、价值观:使得学生在学习知识的同时,培养学生自主探究和数形结合解决问题的能力。 三、教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得这节课是解决直线与圆锥曲线综合问题的基础。对解决综合问题,我觉得只有先定性分析画出图形并观察图形,以形助数,才能定量分析解决综合问题。如:解决圆锥

圆锥曲线的方程(教师版)

圆锥曲线的方程 一、单选题 1.(2020·全国课时练习)一动圆P 过定点(4,0)M -,且与已知圆22:(4)16N x y -+=相切,则动圆圆心 P 的轨迹方程是( ) A .22 1(2)412x y x -= B .221(2)412 x y x -=- C .22 1412 x y -= D .221412 y x -= 【答案】C 【解析】 【分析】 分两圆内切和外切两种情况进行讨论可得4PN PM -=,结合双曲线的定义可求出其圆心的轨迹方程. 【详解】 由已知得(4,0)N ,当两圆内切时,定圆N 在动圆P 的内部,有||||4PN PM =-; 当两圆外切时有||||4PN PM =+,故4PN PM -=,由双曲线的定义知, 点P 的轨迹是以M ,N 为焦点的双曲线,且24,4a c ==,所以224,12a b ==, 故圆心P 的轨迹方程为22 1412 x y -=. 故选:C 【点睛】 本题考查了双曲线的定义,考查了双曲线轨迹方程的求解,考查了两圆相切问题,属于基础题. 2.(2020·全国课时练习)已知点(,)P x y =P 的轨迹是( ) A .椭圆 B .双曲线 C .两条射线 D .双曲线的一支 【答案】B 【解析】 【分析】

根据两点间距离公式化简条件,再根据双曲线定义判断,即可选择. 【详解】 设(1,0),(1,0)A B -,则由已知得||PA PB -=‖∣P 到两个定点A ?B 的距离之差的绝对值等于常 ,又||2AB =2<,所以根据双曲线的定义知,动点P 的轨迹是双曲线. 故选:B 【点睛】 本题考查双曲线的定义,考查基本分析判断能力,属基础题. 3.(2020·全国课时练习)已知平面上的定点12,F F 及动点M ,甲:12MF MF m -=(m 为常数),乙:点M 的轨迹是以12,F F 为焦点的双曲线,则甲是乙的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】B 【解析】 【分析】 根据双曲线的定义以及必要不充分条件的定义可得答案. 【详解】 根据双曲线的定义,乙?甲,但甲乙,只有当120m F F <<时,点M 的轨迹才是双曲线. 故选:B. 【点睛】 本题考查了双曲线的定义,考查了必要不充分条件,属于基础题. 4.(2020·全国课时练习)若方程22 141 y x m -=+表示双曲线,则实数m 的取值范围是( ) A .13m -<< B .1m >- C .3m > D .1m <- 【答案】B 【解析】 【分析】 根据双曲线的标准方程列式可得结果. 【详解】

相关文档
相关文档 最新文档